AT-XP® High-Strength Acrylic Adhesive

AT-XP Adhesive Cartridge System

Model No.	Capacity ounces (cubic in.)	Cartridge Type	Carton Qty.	Dispensing Tool	Mixing Nozzle
AT-XP10⁵	9.4 (16.9)	Coaxial	6	CDT10S	
AT-XP13 ⁴	12.5 (22.5)	Side-by-side	10	ADT813S	AMN19Q
AT-XP30⁴	30 (54)	Side-by-side	5	ADT30S ADTA30P or ADTA30CKT	

- 1. Cartridge estimation guidelines are available at strongtie.com/apps.
- Detailed information on dispensing tools, mixing nozzles and other adhesive accessories is available at strongtie.com.
- 3. Use only Simpson Strong-Tie® mixing nozzles in accordance with Simpson Strong-Tie instructions. Modification or improper use of mixing nozzle may impair AT-XP adhesive performance.
- 4. One AMN19Q mixing nozzle and one nozzle extension are supplied with each cartridge.
- 5. Two AMN19Q mixing nozzles and two nozzle extensions are supplied with each cartridge.

Cure Schedule

Base Materia	l Temperature	Gel Time	Cure Time
°F	°C	(minutes)	(hrs.)
14	-10	30	24
32	0	15	8
50	10	7	3
68	20	4	1
86	30	1½	30 min.
100	38	1	20 min.

For water-saturated concrete, the cure times must be doubled.

Test Criteria

Anchors installed with AT-XP adhesive have been tested in accordance with ICC-ES Acceptance Criteria for Post-Installed Adhesive Anchors in Masonry Elements (AC58) and Adhesive Anchors in Concrete Elements (AC308).

Property	Test Method	Result*
Consistency	ASTM C881	Passed, non-sag
Heat deflection	ASTM D648	253°F (123°C)
Bond strength (moist cure, 60°F)	ASTM C882	3,227 psi (2 days) 3,560 psi (14 days)
Water absorption	ASTM D570	0.10% (24 hours)
Compressive yield strength (cured 60°F)	ASTM D695	18,860 psi
Compressive modulus (cured 60°F)	ASTM D695	718,250 psi
Gel time	ASTM C881	5 minutes
Shrinkage coefficient	ASTM D2566	0.002 in./in.

^{*}Material and curing conditions: 73 ± 2°F, unless otherwise noted.

AT-XP® Design Information — Concrete

AT-XP Installation Information and Additional Data for Threaded Rod and Rebar in Normal-Weight Concrete¹

IDC	्रा	7 ,
IDU		

Charactariatia		Cumbol	Units	Nominal Anchor Diameter d _a (in.) / Rebar Size						
Characteristic		Symbol	Ullits	% / #3	1/2 / #4	% / #5	3⁄4 / #6	7/8 / # 7	1 / #8	11/4 / #10
			Installatio	n Informatio	n					
Drill Bit Diameter for Threaded Rod		d _{hole}	in.	7/16	9⁄16	11/16	13/16	1	1 1/8	1%
Drill Bit Diameter for Rebar		d _{hole}	in.	1/2	5/8	3/4	7/8	1	1 1/8	1%
Maximum Tightening Torque		T _{inst}	ftlb.	10	20	30	45	60	80	125
Dayraithad Fush advant Danth Dayra?	Minimum	h _{ef}	in.	23/8	23/4	31/8	3½	3¾	4	5
Permitted Embedment Depth Range ²	Maximum	h _{ef}	in.	71/2	10	12½	15	17½	20	25
Minimum Concrete Thickness		h _{min}	in.				h _{ef} + 5d _{hole}		,	
Critical Edge Distance ²		Cac	in.	in. See foonote 2						
Minimum Edge Distance		C _{min}	in. 1¾				23/4			
Minimum Anchor Spacing		S _{min}	in.			,	3			6

^{1.} The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 and ACI 318-11.

 $[h/h_{ef}] \le 2.4$

 $\tau_{\textit{k,uncr}} = \text{the characteristic bond strength in uncracked concrete, given in the tables that follow} \leq \textit{k_{uncr}} ((\textit{h_{ef}} \times \textit{f'}_{c})^{0.5} / (\pi \times \textit{d}_{a}))$

h =the member thickness (inches)

 h_{ef} = the embedment depth (inches)

^{2.} $c_{ac} = h_{ef}(\tau_{k,uncr}/1,160)^{0.4} \times [3.1 - 0.7(h/h_{ef})], \text{ where:}$

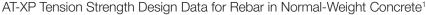
AT-XP® Design Information — Concrete

AT-XP Tension Strength Design Data for Threaded Rod in Normal-Weight Concrete¹

IBC	1	THE	
ibo	250 250		

	Characteristic		Symbol	Units	Nominal Anchor Diameter d _a (in.)						
	Characteristic		Бушрог	Units	3/8	1/2	5/8	3/4	7/8	1	11/4
		Stee	l Strength	in Tensio	n						
	Minimum Tensile Stress Area		Ase	in. ²	0.078	0.142	0.226	0.334	0.462	0.606	0.969
	Tension Resistance of Steel — ASTM F155	4, Grade 36			4,525	8,235	13,110	19,370	26,795	35,150	56,200
	Tension Resistance of Steel — ASTM A193	, Grade B7			9,750	17,750	28,250	41,750	57,750	75,750	121,125
Threaded Rod	Tension Resistance of Steel — Type 410 Stainless (ASTM A193, Grade B6)		N _{sa}	lb.	8,580	15,620	24,860	36,740	50,820	66,660	106,590
	Tension Resistance of Steel — Type 304 ar (ASTM A193, Grade B8 and B8M)	ce of Steel — Type 304 and 316 Stainless ade B8 and B8M)			4,445	8,095	12,880	19,040	26,335	34,540	55,235
	Strength Reduction Factor — Steel Failure			_				0.75^{6}			
	Concrete	Breakout Strenç	yth in Tens	ion (2,500	o psi ≤ f' _c	≤ 8,000 ps	si)				
Effectiveness	Factor — Uncracked Concrete		K _{uncr}	_				24			
Effectiveness	Factor — Cracked Concrete		k _{cr}	_	17						
Strength Redu	uction Factor — Breakout Failure		φ	_	— 0.65 ⁸						
	Bo	nd Strength in T	ension (2,5	500 psi ≤	f' _c ≤ 8,000) psi)					
	Characteristic Bond Strength		$ au_{k,uncr}$	psi	1,390	1,590	1,715	1,770	1,750	1,655	1,250
Uncracked Concrete ^{2,3,4}	2 11 15 1 1 12 11 2	Minimum			2%	23/4	31/8	3½	3¾	4	5
001101010	Permitted Embedment Depth Range	Maximum	h _{ef}	in.	7½	10	12½	15	17½	20	25
	Characteristic Bond Strength ^{9,10,11}		$ au_{k,cr}$	psi	1,085	1,035	980	950	815	800	700
Cracked Concrete ^{2,3,4}	D 31 15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Minimum			3	3	31/8	3½	3¾	4	5
	Permitted Embedment Depth Range	Maximum	h _{ef}	in.	7½	10	12½	15	17½	20	25
	Bond Strength in Tension	— Bond Stren	gth Reduct	tion Facto	ors for Con	tinuous S _l	pecial Insp	ection			
Strength Redu	uction Factor — Dry Concrete		φ _{dry}	_			0.657			0.:	55 ⁷
Strength Redu	uction Factor — Water-Saturated Concrete		φ _{sat}	_				0.457			
Additional Fac	ctor for Water-Saturated Concrete		K _{sat}	_	0.8	54 ⁵		0.775		0.9	96 ⁵
	Bond Strength in Tension	on — Bond Stre	ngth Redu	ction Fac	tors for Pe	eriodic Spe	ecial Inspe	ction			
Strength Redu	uction Factor — Dry Concrete		ϕ_{dry}				0.55 ⁷			0.4	45 ⁷
Strength Redu	uction Factor — Water-Saturated Concrete		φ _{sat}	_				0.457		1	
Additional Fac	ctor for Water-Saturated Concrete		K _{sat}	_	0.4	16 ⁵		0.655		0.8	31 ⁵

- The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 and ACI 318-11.
- 2. Temperature Range: Maximum short-term temperature of 180°F. Maximum long-term temperature of 110°F.
- Short-term concrete temperatures are those that occur over short intervals (diurnal cycling).
- Long-term concrete temperatures are constant temperatures over a significant time period.
- 5. In water-saturated concrete, multiply $\tau_{k,uncr}$ and $\tau_{k,cr}$ by \textit{K}_{sat} .
- 6. The value of ϕ applies when the load combinations of ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used. If the load combinations of ACI 318 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of ϕ .
- 7. The value of ϕ applies when both the load combinations of ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3 or ACI 318-11 D.4.3 (c) for Condition B are met. If the load combinations of ACI 318 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of ϕ .
- 8. The value of ϕ applies when both the load combinations of ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3 or ACI 318-11 D.4.3 (c) for Condition B are met. If the load combinations of ACI 318 Section 9.2 are used and the requirements of ACI 318-11 D.4.3 (c) for Condition A are met, refer to ACI 318-11 D.4.4 to determine the appropriate value of ϕ . If the load combinations of ACI 318 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of ϕ .
- 9. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, the bond strength values for ½", %", %" and 1" anchors must be multiplied by $\alpha_{N,Seis} = 0.85$.
- 10. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, the bond strength values for 1½" anchors must be multiplied by $\alpha_{N,\text{Seis}} = 0.75$.
- 11. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, the bond strength values for 7/8" anchors must be multiplied by $\alpha_{N,seis} = 0.59$.


C-A-2018 @ 2018 SIMPSON STRONG-TIE COMPANY INC.

^{*} See p. 13 for an explanation of the load table icons.

C-A-2018 @ 2018 SIMPSON STRONG-TIE COMPANY INC.

AT-XP® Design Information — Concrete

	Characteristic				Rebar Size						
	Characteristic		Symbol	Units	#3	#4	#5	#6	#7	#8	#10
		;	Steel Stren	gth in Ten	sion						
	Minimum Tensile Stress	Area	A _{se}	in.²	0.11	0.2	0.31	0.44	0.6	0.79	1.27
Rebar	Tension Resistance of S (ASTM A615 Grade 60)	Tension Resistance of Steel — Rebar (ASTM A615 Grade 60)			9,900	18,000	27,900	39,600	54,000	71,100	114,300
Repai	Tension Resistance of S (ASTM A706 Grade 60)	teel — Rebar	- N _{sa}	lb.	8,800	16,000	24,800	35,200	48,000	63,200	101,600
	Strength Reduction Fact	or — Steel Failure	φ	_				0.75^{6}			
	Co	ncrete Breakout St	trength in T	ension (2	,500 psi ≤	f' _c ≤ 8,000	psi)				
Effectiveness Factor — Ur	ncracked Concrete		k _{uncr}	_				24			
Effectiveness Factor — Cr	acked Concrete		k _{cr}					17			
Strength Reduction Factor	— Breakout Failure		φ	_				0.658			
		Bond Strength	in Tension	(2,500 ps	$si \leq f'_{c} \leq 8,$	000 psi)					
	Characteristic Bo	nd Strength	$ au_{k,uncr}$	psi	1,010	990	970	955	935	915	875
Uncracked Concrete 2,3,4	Permitted Embedment	Minimum			2%	2¾	31/8	3½	3¾	4	5
	Depth Range	Maximum	h _{ef}	in.	71/2	10	12½	15	17½	20	25
	Characteristic Bo	nd Strength	$ au_{k,cr}$	psi	340	770	780	790	795	795	820
Cracked Concrete 2,3,4	Permitted Embedment	Minimum			3	3	31/8	3½	3¾	4	5
	Depth Range	Maximum	h _{ef}	in.	71/2	10	121/2	15	17½	20	25
	Bond Strength in	Tension — Bond S	trength Re	duction F	actors for (Continuous	Special In	spection			
Strength Reduction Factor	— Dry Concrete		ϕ_{dry}	_			0.65 ⁷			0.9	55 ⁷
Strength Reduction Factor	— Water-Saturated Concr	ete	ϕ_{sat}	_				0.457			
Additional Factor for Water-Saturated Concrete			K _{sat}	_	0.8	54 ⁵		0.775		0.0	965
	Bond Strength i	n Tension — Bond		eduction	Factors for	r Periodic S	pecial Insp	ection			
Strength Reduction Factor	— Dry Concrete		ϕ_{dry}				0.55 ⁷			0.4	45 ⁷
Strength Reduction Factor	— Water-Saturated Concr	ete	ϕ_{sat}	_				0.457			
Additional Factor for Water	-Saturated Concrete		K _{sat}	_	0.4	46 ⁵		0.655		0.0	31 ⁵

- The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 and ACI 318-11.
- 2. Temperature Range: Maximum short-term temperature of 180°F. Maximum long-term temperature of 110°F.
- 3. Short-term concrete temperatures are those that occur over short intervals (diurnal cycling).
- Long-term concrete temperatures are constant temperatures over a significant time period.
- 5. In water-saturated concrete, multiply $au_{\textit{k,uncr}}$ and $au_{\textit{k,cr}}$ by $extit{K}_{\textit{sat.}}$
- 6. The value of ϕ applies when the load combinations of ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used. If the load combinations of ACI 318 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of ϕ .
- 7. The value of ϕ applies when both the load combinations of ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3 or ACI 318-11 D.4.3 (c) for Condition B are met. If the load combinations of ACI 318 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of ϕ .
- 8. The value of φ applies when both the load combinations of ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3 or ACI 318-11 D.4.3 (c) for Condition B are met. If the load combinations of ACI 318 Section 9.2 are used and the requirements of ACI 318-11 D.4.3 (c) for Condition A are met, refer to ACI 318-11 D.4.4 to determine the appropriate value of φ. If the load combinations of ACI 318 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of φ.

AT-XP® Design Information — Concrete

Adhesive Anchors

AT-XP Shear Strength Design Data for Threaded Rod in Normal-Weight Concrete¹

AT-XP Shea	I-XP Shear Strength Design Data for Threaded Rod in Normal-Weight Concrete										
	Characteristic	Symbol	Units	Nominal Anchor Diameter (in.)							
	GildidGleiiSuG	Syllibol	UIIILS	3/8	1/2	5/8	3/4	7/8	1	11/4	
	Si	teel Streng	th in She	ear							
	Minimum Shear Stress Area	Ase	in. ²	0.078	0.142	0.226	0.334	0.462	0.606	0.969	
	Shear Resistance of Steel — ASTM F1554, Grade 36			2,260	4,940	7,865	11,625	16,080	21,090	33,720	
	Shear Resistance of Steel — ASTM A193, Grade B7			4,875	10,650	16,950	25,050	34,650	45,450	72,675	
	Shear Resistance of Steel — Type 410 Stainless (ASTM A193, Grade B6)	V _{sa}	lb.	4,290	9,370	14,910	22,040	30,490	40,000	63,955	
Threaded	Shear Resistance of Steel — Type 304 and 316 Stainless (ASTM A193, Grade B8 and B8M)			2,225	4,855	7,730	11,425	15,800	20,725	33,140	
Rod	Reduction for Seismic Shear — ASTM F1554, Grade 36						0.85				
	Reduction for Seismic Shear — ASTM A193, Grade B7			0.85							
	Reduction for Seismic Shear — Type 410 Stainless (ASTM A193, Grade B6)	$\alpha_{V,seis}^{5}$ —	$lpha_{V\!,seis}{}^{5}$	$\alpha_{V,seis}$ —	0.85	0.75					0.85
	Reduction for Seismic Shear — Type 304 and 316 Stainless (ASTM A193, Grade B8 and B8M)			0.85	0.85 0.75				0.85		
	Strength Reduction Factor — Steel Failure	φ	_				0.65^{2}				
	Concrete	Breakout	Strength	in Shear							
Diameter of An	nchor	da	in.	0.375	0.5	0.625	0.75	0.875	1	1.25	
Load-Bearing Length of Anchor in Shear		ℓ_e	in.	h _{ef}							
Strength Reduction Factor — Breakout Failure		φ	_	0.70³							
	Concret	te Pryout S	trength i	in Shear							
Coefficient for	Pryout Strength	k _{cp}	_		1.0	of for $h_{ef} < 2$	2.50"; 2.0 f	or h _{ef} ≥ 2.5	60"		

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 and ACI 318-11.

Strength Reduction Factor — Pryout Failure

- 2. The value of ϕ applies when the load combinations of ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used. If the load combinations of ACI 318 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of ϕ .
- 3. The value of ϕ applies when both the load combinations of ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3 or ACI 318-11 D.4.3 (c) for Condition B are met. If the load combinations of ACI 318 Section 9.2 are used and the requirements of ACI 318-11 D.4.3 (c) for Condition A are met, refer to ACI 318-11 D.4.4 to determine the appropriate value of ϕ . If the load combinations of ACI 318 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of ϕ .
- 4. The value of ϕ applies when both the load combinations of ACI 318-14 5.3 or ACI 318-15 Section 9.2 are used and the requirements of ACI 318-14 17.3.3 or ACI 318-11 D.4.3 (c) for Condition B are met. If the load combinations of ACI 318 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of ϕ .

 0.70^{4}

5. The values of $V_{\rm Sa}$ are applicable for both cracked concrete and uncracked concrete. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, $V_{\rm Sa}$ must be multiplied by $\alpha_{V_{\rm Seis}}$ for the corresponding anchor steel type.

C-A-2018 @2018 SIMPSON STRONG-TIE COMPANY INC.

^{*} See p. 13 for an explanation of the load table icons.

C-A-2018 @ 2018 SIMPSON STRONG-TIE COMPANY INC.

AT-XP® Design Information — Concrete

AT-XP Shear Strength Design Data for Rebar in Normal-Weight Concrete¹

	Characteristic	Symbol	Units	Rebar Size						
	GildiaGleriStic	Syllibol	UIIILS	#3	#4	#5	#6	#7	#8	#10
		Steel Stre	ngth in S	hear						
	Minimum Shear Stress Area	A _{se}	in.²	0.11	0.2	0.31	0.44	0.6	0.79	1.27
	Shear Resistance of Steel — Rebar (ASTM A615 Grade 60)	V	lb.	4,950	10,800	16,740	23,760	32,400	42,660	68,580
Rebar	Shear Resistance of Steel — Rebar (ASTM A706 Grade 60)	V _{sa}	ID.	4,400	9,600	14,880	21,120	28,800	37,920	60,960
nenai	Reduction for Seismic Shear — Rebar (ASTM A615 Grade 60)	g 5			0.56			0.8	80	
	Reduction for Seismic Shear — Rebar (ASTM A706 Grade 60)	$lpha_{V\!\!,seis}{}^{5}$			0.56			0.0	80	
	Strength Reduction Factor — Steel Failure	φ					0.65^{2}			
	Conc	crete Breako	ut Streng	th in Shear						
Diameter of Ar	nchor	da	in.	0.375	0.5	0.625	0.75	0.875	1	1.25
Load-Bearing	Length of Anchor in Shear	ℓ_e	in.				h _{ef}			
Strength Reduction Factor — Breakout Failure		φ	_				0.70 ³			
	Con	ncrete Pryou	t Strengtl	n in Shear						
Coefficient for Pryout Strength			_	1.0 for h_{ef} < 2.50"; 2.0 for $h_{ef} \ge 2.50$ "						
Strength Redu	ction Factor — Pryout Failure	φ	_				0.70 ⁴			

- 1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 and ACI 318-11.
- 2. The value of ϕ applies when the load combinations of ACl 318-14 5.3 or ACl 318-11 Section 9.2 are used. If the load combinations of ACl 318 Appendix C are used, refer to ACl 318-11 D.4.4 to determine the appropriate value of ϕ .
- 3. The value of ϕ applies when both the load combinations of ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3 or ACI 318-11 D.4.3 (c) for Condition B are met. If the load combinations of ACI 318 Section 9.2 are used and the requirements of ACI 318-11 D.4.3 (c) for Condition A are met, refer to ACI 318-11 D.4.4 to determine the appropriate value of ϕ . If the load combinations of ACI 318 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of ϕ .
- 4. The value of ϕ applies when both the load combinations of ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3 or ACI 318-11 D.4.3 (c) for Condition B are met. If the load combinations of ACI 318 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of ϕ .
- 5. The values of $V_{\rm Sa}$ are applicable for both cracked concrete and uncracked concrete. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, $V_{\rm Sa}$ must be multiplied by $\alpha_{V,\rm Seis}$ for the corresponding anchor steel type.

For additional load tables, visit **strongtie.com/atxp**.

Anchor Designer[™] Software for ACI 318, ETAG and CSA

Simpson Strong-Tie® Anchor Designer software accurately analyzes existing design or suggests anchor solutions based on user-defined design elements in cracked and uncracked concrete conditions.

AT-XP® Design Information — Masonry

AT-XP Allowable Tension and Shear Loads for Threaded Rod and Rebar in the Face of Fully Grouted CMU Wall Construction^{1, 3, 4, 5, 6, 8, 9, 10, 11}

IBC		•		7
	252 253	25.4 9.53	[[[]	

Diameter (in.)	Drill Bit Diameter	Minimum Embedment ²	Allowable Load Bas	ed on Bond Strength ⁷ (lb.)
or Rebar Size No.	(in.)	(in.)	Tension Load	Shear Load
		Threaded Rod Installed in the Face of CMU W	all	
3/8	1/2	3%	1,265	1,135
1/2	5/8	41/2	1,910	1,660
5/8	3/4	5%	2,215	1,810
3/4	7/8	6½	2,260	1,810
		Rebar Installed in the Face of CMU Wall		
#3	1/2	3%	1,180	1,315
#4	5/8	41/2	1,720	1,565
#5	3/4	5%	1,835	1,565

- Allowable load shall be the lesser of the bond values shown in this table and steel values, shown on p. 83.
- 2. Embedment depth shall be measured from the outside face of masonry wall.
- Critical and minimum edge distance and spacing shall comply with the information on p. 82. Figure 2 on p. 82 illustrates critical and minimum edge and end distances.
- 4. Minimum allowable nominal width of CMU wall shall be 8". No more than one anchor shall be permitted per masonry cell.
- Anchors shall be permitted to be installed at any location in the face of the fully grouted masonry wall construction (cell, web, bed joint), except anchors shall not be installed within 1½ inches of the head joint, as show in Figure 2 on p. 82.
- Tabulated allowable load values are for anchors installed in fully grouted masonry walls.
- 7. Tabulated allowable loads are based on a safety factor of 5.0.
- Tabulated allowable load values shall be adjusted for increased base material temperatures in accordance with Figure 1 below, as applicable.
- 9. Threaded rod and rebar installed in fully grouted masonry walls are permitted to resist dead, live, seismic and wind loads.
- Threaded rod shall meet or exceed the tensile strength of ASTM F1554, Grade 36 steel, which is 58,000 psi.
- 11. For installations exposed to severe, moderate or negligible exterior weathering conditions, as defined in Figure 1 of ASTM C62, allowable tension loads shall be multiplied by 0.80.

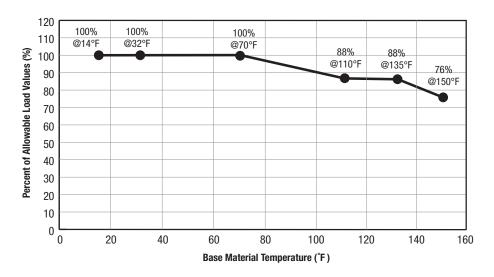


Figure 1. Load Capacity Based on In-Service Temperature for AT-XP® Adhesive in the Face of Fully Grouted CMU Wall Construction

C-A-2018 @ 2018 SIMPSON STRONG-TIE COMPANY INC.

^{*} See p. 13 for an explanation of the load table icons.

AT-XP® Design Information — Masonry

AT-XP Edge Distance and Spacing Requirements and Allowable Load Reduction Factors — Threaded Rod and Rebar in the Face of Fully Grouted CMU Wall Construction⁷

IBC			Bill Bill	7
IDU	/ → 	Ī ←→ \		

		Edge or Edge Distance ^{1,8}					Spacing ^{2,9}					
Rod Dia. Minimum (in.) Embed. or Rebar Depth Size No. (in.)	Critical (Full Anchor Capacity) ³			Minimum (Reduced Anchor Capacity)⁴			Critical (Full Anchor Capacity) ⁵		Minimum (Reduced Anchor Capacity) ⁶			
	Critical Edge or End Distance, C _{cr} (in.)	Allowable Load Reduction Factor	Minimum Edge or End Distance, C _{min} (in.)	Allowable Load Reduction Factor		Critical Spacing, S _{cr} (in.)	Allowable Load Reduction Factor	Minimum Spacing, S _{min} (in.)	Allowab Reductio			
		Load Di	irection	Load Direction		Load Direction		Load Direction				
	Tension or Tension or	Tension or	Tension	Shear ¹⁰		Tension or	Tension or	Tension or	Tension Sh	Shear		
		Shear Shear	Shear	ICHSIOH	Perp.	Para.	Shear	Shear	Shear	Tension Sileai	Sileai	
3/8	3%	12	1.00	4	1.00	0.76	0.94	8	1.00	4	1.00	1.00
1/2	41/2	12	1.00	4	0.90	0.57	0.94	8	1.00	4	1.00	1.00
5/8	5%	12	1.00	4	0.72	0.47	0.94	8	1.00	4	1.00	1.00
3/4	6½	12	1.00	4	0.72	0.47	0.94	8	1.00	4	1.00	1.00
#3	3%	12	1.00	4	1.00	0.62	0.95	8	1.00	4	1.00	1.00
#4	41/2	12	1.00	4	1.00	0.37	0.82	8	1.00	4	1.00	0.89
#5	5%	12	1.00	4	1.00	0.37	0.82	8	1.00	4	1.00	0.89

- I. Edge distance $(C_{cr} \circ C_{min})$ is the distance measured from anchor centerline to edge or end of CMU masonry wall. Refer to Figure 2 below for an illustration showing critical and minimum edge and end distances.
- 2. Anchor spacing $(S_{\it cr}\,{\rm or}\,S_{\it min})$ is the distance measured from centerline to centerline of two anchors.
- Critical edge distance, C_{cr}, is the least edge distance at which tabulated allowable load of an anchor is achieved where a load reduction factor equals 1.0 (no load reduction).
- 4. Minimum edge distance, C_{min} , is the least edge distance where an anchor has an allowable load capacity which shall be determined by multiplying the allowable loads assigned to anchors installed at critical edge distance, C_{cn} by the load reduction factors shown above.
- 5. Critical spacing, S_{cn} is the least anchor spacing at which tabulated allowable load of an anchor is achieved such that anchor performance is not influenced by adjacent anchors.
- Minimum spacing, S_{min}, is the least spacing where an anchors has an allowable load capacity, which shall be determined by multiplying the allowable loads assigned to anchors installed at critical spacing distance, S_{cr}, by the load reduction factors shown above.
- Reduction factors are cumulative. Multiple reduction factors for more than one spacing or edge or end distance shall be calculated separately and multiplied.
- 8. Load reduction factor for anchors loaded in tension or shear with edge distances between critical and minimum shall be obtained by linear interpolation.
- 9. Load reduction factor for anchors loaded in tension with spacing between critical and minimum shall be obtained by linear interpolation.
- 10. Perpendicular shear loads act towards the edge or end. Parallel shear loads act parallel to the edge or end (see Figure 3 below). Perpendicular and parallel shear load reduction factors are cumulative when the anchor is located between the critical minimum edge and end distance.

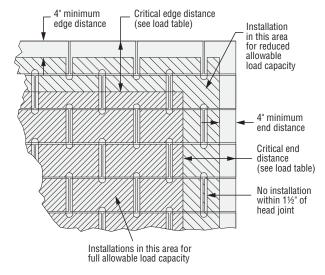


Figure 2. Allowable Anchor Locations for Full and Reduced Load Capacity When Installation Is in the Face of Fully Grouted CMU Masonry Wall Construction

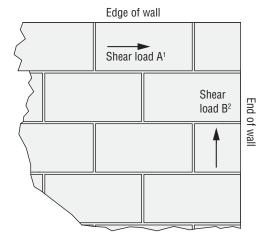


Figure 3. Direction of Shear Load in Relation to Edge and End of Wall

- 1. Direction of Shear Load A is parallel to edge of wall and perpendicular to end of wall.
- 2. Direction of Shear Load B is parallel to end of wall and perpendicular to edge of wall.

^{*} See p. 13 for an explanation of the load table icons.

Design Information — Steel

AT-XP Allowable Tension and Shear Loads — Threaded Rod Based on Steel Strength¹

IBC		→	
-----	--	----------	--

	Tensile Stress Area (in.²)	Tension Load Based on Steel Strength ² (lb.)				Shear Load Based on Steel Strength ³ (lb.)			
Threaded Rod Diameter (in.)				Stainless Steel		ACTRA	ACTA	Stainless Steel	
		ASTM F1554 Grade 36⁴	ASTM A193 Grade B7 ⁶	ASTM A193 Grade B6 ⁵	ASTM A193 Grades B8 and B8M ⁷	ASTM F1554 Grade 36 ⁴	ASTM A193 Grade B7 ⁶	ASTM A193 Grade B6 ⁵	ASTM A193 Grades B8 and B8M ⁷
3/8	0.078	1,495	3,220	2,830	1,930	770	1,660	1,460	995
1/2	0.142	2,720	5,860	5,155	3,515	1,400	3,020	2,655	1,810
5/8	0.226	4,325	9,325	8,205	5,595	2,230	4,805	4,225	2,880
3/4	0.334	6,395	13,780	12,125	8,265	3,295	7,100	6,245	4,260

- 1. Allowable load shall be the lesser of bond values given on p. 81 and steel values in the table above.
- 2. Allowable Tension Steel Strength is based on the following equation: $F_v = 0.33 \times F_u \times Tensile Stress Area$.
- 3. Allowable Shear Steel Strength is based on the following equation: $F_v = 0.17 \times F_u \times Tensile Stress Area.$
- 4. Minimum specified tensile strength ($F_u = 58,000 \text{ psi}$) of ASTM F1554, Grade 36 used to calculate allowable steel strength.
- 5. Minimum specified tensile strength ($F_u = 110,000 \text{ psi}$) of ASTM A193, Grade B6 used to calculate allowable steel strength.
- 6. Minimum specified tensile strength ($F_u = 125,000 \text{ psi}$) of ASTM A193, Grade B7 used to calculate allowable steel strength.
- 7. Minimum specified tensile strength ($F_U = 75,000 \text{ psi}$) of ASTM A193, Grades B8 and B8M used to calculate allowable steel strength.

AT-XP Allowable Tension and Shear Loads — Deformed Reinforcing Bar Based on Steel Strength¹

	Minimum Embedment ² (in.)	Tension I	Load (lb.)	Shear Load (lb.)		
Drill Bit Diameter		Based on St	eel Strength	Based on Steel Strength		
(in.)		ASTM A615 Grade 40 ²	ASTM A615 Grade 60 ³	ASTM A615 Grade 40 ^{4,5}	ASTM A615 Grade 60 ^{4,6}	
#3	0.11	2,200	2,640	1,310	1,685	
#4	0.20	4,000	4,800	2,380	3,060	
#5	0.31	6,200	7,400	3,690	4,745	

- 1. Allowable load shall be the lesser of bond values given on p. 81 and steel values in the table above.
- 2. Allowable Tension Steel Strength is based on AC58 Section 3.3.3 (20,000 psi x tensile stress area) for Grade 40 rebar.
- 3. Allowable Tension Steel Strength is based on AC58 Section 3.3.3 (24,000 psi x tensile stress area) for Grade 60 rebar.

C-A-2018 @ 2018 SIMPSON STRONG-TIE COMPANY INC.

- 4. Allowable Shear Steel Strength is based on AC58 Section 3.3.3 $(F_{\rm V}=0.17\times F_{\rm U}\times {\rm Tensile~Stress~Area}).$
- 5. $F_{\rm u} = 70,000$ psi for Grade 40 rebar.
- 6. $F_{IJ} = 90,000$ psi for Grade 60 rebar

^{*} See p. 13 for an explanation of the load table icons.