SPECIFICATIONS APPLICATION DATA DIMENSIONS

This manual contains engineering specifications and application data for the tube style top running rotating axle end trucks.

To properly select and apply the correct end trucks, a series of engineering calculations as contained in the application data sections of this manual must be completed by a competent person. Should there be questions concerning the use of this manual, or doubt that your calculations have been properly completed, please contact the Engineering Department at Lift-Tech International, 800-866-6696.

SPECIFICATIONS

Parts of this specification refer to portions of the Crane Manufacturers Association of America (CMAA) specifications. Send requests to obtain copies of the CMAA specifications for single and double girder cranes to the following address.

Crane Manufacturers Association of America, Inc.
 8720 Red Oak Blvd., Suite 201
 Charlotte, North Carolina 28217-3992

Wheel	*Wheel	**Weight	Notoo
Dia.	Base	per Pair	Notes
	7'-6"	1224#	* Wheel bases available from 3'-6" thru 14'-6" for 12, 15, & 18" end trucks,
	8'-0"	1273#	and 3'-6" thru 10'-0" for 9" end trucks, upon request.
9	8'-6"	1322#	
9	9'-0"	1371#	** Approximate Weight per pair of end trucks does not include the drive
	9'-6"	1420#	component weights: (Motor, Brake, Gearbox)
	10'-0"	1469#	
	9'-0"	2238#	Refer to Structural Tube Rotating Axle End Trucks Parts List manual for
	10'-0"	2360#	exploded end truck assembly drawing and detailed repair parts list.
12	10'-6"	2421#	
12	11'-0"	2482#	Bumper Lengths and OSHA requirements are covered on pages 12-14.
	11'-6"	2543#	
	12'-0"	2604#	Bearing Lubrication Specifications shown on page 14.
	10'-0"	3450#	
	10'-6"	3525#	Refer to page 15 for end truck outline dimensions, these dimensions are not
15	11'-0"	3600#	certified engineering dimensions and are to be used for estimating purposes
10	11'-6"	3675#	only, contact factory for certified engineering end truck dimensions.
	12'-0"	3750#	
	12'-6"	3825#	Standard 12, 15 and 18" End Trucks come with wheels and rail sweeps for
	10'-0"	5050#	55# - 105# rail. Wheels and rail sweeps available for 30# - 55# rail.
	10'-6"	5152#	
	11'-0"	5254#	Standard 9" End Trucks come with wheels and rail sweeps for 40# - 60# rail.
18	11'-6"	5356#	Wheels and rail sweeps available for 20# - 30# rail.
	12'-0"	5458#	
	12'-6"	5560#	
	13'-0"	5662#	

SPECIFICATIONS

Truck Designed for Indoor Service.

Truck Structure is Symmetrically Designed.

Trucks are Fabricated from Structural Steel Tube.

Wheel Bearings are Self-Aligning Spherical Roller Type, Equally Spaced on Both Sides of Wheel.

Bearings Individually Lubricated Through Standard Grease Fittings.

Labyrinth Type Bearing Seals.

Cast Iron Bearing Cartridges.

Wheels are Steel with Treads Hardened to 400 - 450 BHN.

Standard Wheels are Straight Tread, Taper Tread Wheels are available.

Axles are Machined from Heat Treated Alloy Steel.

Driver Wheels are Held to Axle by Interference Fit and Key.

Trailer Wheels are Held to Axle by Interference Fit only.

NOTE: Information given in this manual is subject to change without notice.

APPLICATION DATA FOR SINGLE CONCENTRATED LOAD

SINGLE CONCENTRATED LOAD EXAMPLE CALCULATION

	Allowable Equivalent Durability Wheel Load (Pe Allowable) (pounds)										
	Wheel Diameter	ASCE 20#	ASCE 4	.0#	ASCE 6 ARA-	50# & 7 B 100;	70# #	ASCE ARA BE	80# & 85# A-A 100# TH 104#	Allowable Ben Moment	ding
								US	S 105#	(increpounds)	
	9	11,300	16,80	0	*23	3600				784,000	
	12		22,40	0	31	,400		*3	33,700	1,234,000	
	15		28,00	0	39 47	, <u>300</u> 200		*	50 500	1,907,000	
	Effective Rail Head Width (inch)	0.844	1.250)	1.	750		1	1.875	0,00 1,000	
	* These are	the Maximum	Allowable Eq	uivalent	Durability \	Vheel	Loads,	DO NOT	EXCEED		
lf w	If <i>ACTUAL</i> calculated wheel load is larger than the <i>DURABILITY</i> wheel load in the above chart, the <i>ACTUAL</i> wheel load must be converted to an Equivalent Durability wheel load. See page 8 and 9.										
E	xample:	Assume a Wh	eel/Truck Se	lection i	s required f	ⁱ or a lo	ad (R ₁) of 35,50	0#, with a whe	el base of 10'-0'	I
ar	nd a dimensio	on d of 40" to r	un on 40# ra	il at 100	FPM bride	e trav	el spee	d and 30	FPM hoist liftir	ng speed.	
R	equired Info	rmation.	R _{4DLT} =		3500	#			C =	= 80	in
	oquirou inio	mation	R =		17000	"			- 5 d -	- 40	
					17000				u -	- 40	
			$\kappa_{1DLB} = -$		15000	#			VVB =	= 120	in.
			$R_1 = -$		35500	#			DLF =	= 1.10	
		**Ass	sumed $R_T = $		1180	#(12" en	d truck)	HLF =	= 1.15	
	- I - (1	Ru	nway Rail = _		40	#/y	/d				
S	olution:				04057					00000	•
	ACT		$ad at P_A = -$		24257	#			BIVI _{ADLT} =	= 93333	
	ACI	UAL Wheel L	oad at $P_B = $		12423	#			BIM _{BDLT} =	= 93333	in-#
			$P_{ADLT} = $		2333	#			BM _{ALLT} =	= 453333	in-#
			$P_{BDLT} =$		1167	#			BM _{BLLT} =	= 453333	in-#
			$P_{ALLT} =$		11333	#			BM _{ADLB} =	400000	in-#
			P _{BLLT} =		5667	#			BM _{BDLB} =	400000	in-#
			$P_{ADLB} =$		10000	#			BM _{AET} =	= 15733	in-#
			$P_{BDLB} =$		5000	#			BM _{BET} =	= 15733	in-#
			-						BM _A =	962400	in-#
									BM _P =	962400	 in-#
	antiool Donal								B		
v	entical Denu	ing Moment.	BM		02222			1 10	_	102667	in #
					50000	·		1.10		521222	
				2	100000			1.10	=	521333	"
			BIM _{DLB} =	2	100000			1.10	=	440000	
			$BM_{ET} = $		15733		X DLF	1.10		17307	in-#
									BM _V =	= 1081307	in-#
S	election:	Select an end 24,257# or mo size being use	truck from w ore and an all ed. 15" Tru	heel loa owable i ck Sele	d/bending i bending m ected	momei oment	nt char of 1,08	t above wi 31,307 in-≉	th an allowabl # or more for tl	e wheel load of ne runway rail	
S	uggestion:	By increasing d to 60" a 12"	d up to a max end truck cou	ximum o uld be u	of (WB/2) th sed.	ne max	imum v	wheel load	d at A is reduc	ed. By increasi	ng
**	An initial ass	sumption regai	rding the truc	k weigh	t must be n	nade to	o begin	the calcu	lation. In this	example the we	ight
of	(1) 12" end	truck was assu	imed, howev	er, the r	esults requ	ire tha	t a 15"	end truck	be used. The	erefore, the resul	lts
m	ust be re-eva	aluated using t	he required 1	5" truck	weight.						

APPLICATION DATA FOR **TWO CONCENTRATED LOADS**

TWO CONCENTRATED LOADS **EXAMPLE CALCULATIONS**

	Allowable Equivalent Durability Wheel Load (Pe Allowable) (pounds)											
	Wheel	neel				ASCE	80# & 85#	Allowable	num Bendina			
	Diameter ASCE 20# ASC		ASCE 40#	ASCE	60# & 70#	AR/	A-A 100#	Mon	nent			
				ARA	А-В 100#	USS 105#		(inch-po	ounds)			
	9	11,300	16,800	*	23600			784,	000			
	12		22,400	3	31,400	**	33,700	1,234	,000			
	15		28,000	3	39,300 17 200	*/	42,100 50 500	1,907	,000			
	Effective		33,700		1,200	```	00,000	0,004	,000			
	Rail Head Width (inch)	0.844	1.250		1.750		1.875					
:4 4 07	* These are the Maximum Allowable Equivalent Durability Wheel Loads, DO NOT EXCEED											
if ACTUAL calculated wheel load is larger than the DURABILITY wheel load in the above chart, the ACTUAL wheel load must be converted to and Equivalent Durability Wheel Load. See page 8 and 9.												
Exam	Example: Assume a Wheel/Truck selection is required for a drive girder load (R_1) of 27,000# and idler girder load (R_2)											
	of 15,000#, with a wheelbase of 10'-0" and a dimension d of 20", dimension e of 28" to run on 40# runway rail.											
_	at 100	FPM bridge	travel speed and	30 FPM ho	oist lifting spee	ed.						
Requ	red Informa	tion:	D	1000	щ				100	in		
			$R_{1DLT} =$	1200	#			c =	100			
			R _{1LLT} =	20000	<u> </u>			a =	20			
			$R_{1DLB} = $	5800	#			e =	28	in.		
			$R_1 = $	27000	#				92	in.		
			$R_{2DLT} =$	1200	#		(GAGE =	84	in.		
			$R_{2LLT} =$	8000	#			WB =	120	in.		
			$R_{2DLB} =$	5800	#			DLF =	1.10			
			$R_2 =$	15000	#			HLF =	1.15			
Soluti	on	**Assum	ed $R_T =$	1180	# (12" er	nd truck)	Runwa	ay Rail =	40	#/yd		
Solut	ACTUAL	Wheel Load	lat P₄ =	26590	#		F	3Mart =	25600	in-#		
	ACTUAL	Wheel Loac	$\operatorname{At} P_{p} =$	16590	" #		F	$3M_{PDIT} = $	31360	in_#		
	/10/0/12		P.p.r =	1280	#		F	SM=	370667	in_#		
			Paris -	11200	[#]		F	SM _{ALL} =	265067	in_#		
			P	18533	[#]		P	SM	103733	in_#		
			P	9/67	#		F	$M_{ADLB} = $	151573	in_#		
			P –	6187	[#]		-	BM	0833	in#		
			$P_{\text{ADLB}} =$	5/12	#			BM	12665	in #		
			BDLB -	5415	#			BM -	520922	in #		
									100000	in_#		
Vortic	al Bonding	Momont:							400000			
Vertie	a benuing	woment.	BMD T =	25600	x DI F		1 10	_	28160	in-#		
			BMu =	370667	X HI F		1.10		426267	in_#		
				123733	× DLF		1.10		136107	in_#		
			BM	9833			1.10		10817	in_#		
			BmEI -	0000				 BM _V =	601350	— — — in-#		
		14							001000			
Selec	allow	an end truck vable bending	g moment of 601,	350 in-# or	more. Selec	t a 15" E	nd Truck.	0,590# or m	iore and ar	1		
** An i	initial assum	ption regardin	ng the truck weig	nt must be	made to begi	n the calc	ulation. In this	s example	the weight			
of (1)	12" end truck	k was assum	ed, however, the	results req	uire that a 15	end truc	k be used. Th	nerefore, th	e results			
must k	be re-evaluat	ed using the	required 15" truc	k weight.								
Page	6											

APPLICATION DATA FOR UNIFORM LOADING

must be re-evaluated using the required 18" truck weight.

APPLICATION DATA FOR EQUIVALENT DURABILITY WHEEL LOADS

$$P_e$$
 = Equivalent Durability Wheel Load
 P_{MAX} = Maximum Actual Wheel Load
 K_{WI} = Wheel Load Service Coefficient

$$F K_{WI} = K_{BW} \times C_S \times S_M$$

 $P_e = P_{MAX} \times K_{WL}$

 K_{BW} = Bridge Wheel Load Factor C_{S} = Speed Factor S_{M} = Wheel Service Factor

Speed Factor Equation:

$$RPM = \frac{V_B \times 12}{\pi \times d}$$

$$PM \le 31.5 \Rightarrow C_s = \left[1 + \left(\frac{RPM - 31.5}{360}\right)\right]^2$$

$$\text{Pr} RPM > 31.5 \Rightarrow C_s = 1 + \left(\frac{RPM - 31.5}{328.5}\right)$$

Bridge Wheel Load Factor Equation:

[⊕]
$$K_{BW} = \frac{.75(BW) + F(LL) + .5(TW) - .5F(TW)}{.75(BW) + 1.5F(LL)}$$

Where:

RPM = Wheel Speed of Rotation V_B = Bridge Speed (FPM) d = End Truck Wheel Diameter BW = Bridge Dead Weight TW = Trolley Dead Weight LL = Trolley Dead Weight + Live Load F = 1-(HA/Span) HA = Minimum Hook Approach to Runy

- HA = Minimum Hook Approach to Runway Rail
- Span = Crane Span

⊕ CLASS OF CRANE SERVICE	С	D	* If calculated K_{WL} factor is less than K_{WL} min. from
*K _{WL} min.	0.80	0.85	chart, use K _{WL} min. factor.
S _M	1.00	1.12	

The ACTUAL wheel load calculated must first be compared with the allowable equivalent durability wheel load chart, if the ACTUAL wheel load is less than the charted value, then it is not necessary to convert the ACTUAL wheel load to an equivalent durability wheel load.

⊕ Taken from CMAA specification #70 and #74, revised 2000. Excerpt of *class of crane service* chart shown.

EQUIVALENT DURABILITY WHEEL LOAD EXAMPLE CALCULATIONS

Allowable Equivalent Durability Wheel Load (P _e Allowable) (pounds) Maximum											
Wheel		· ·	ASCE 60# & 70#	ASCE 80# & 85#	Allowable Bending						
Diameter	ASCE 20#	ASCE 40#	ARA-B 100#	BETH 104#	Moment						
				USS 105#	(incri-pounds)						
9	11,300	11,300 16,800 *23600									
12		22,400	31,400	*33,700	1,234,000						
15		28,000	39,300	*42,100	1,907,000						
18		33,700	47,200	*50,500	3,554,000						
Effective											
Rail Head	0.844	1.250	250 1.750 1.875								
Width (inch)											
* These are t	he Maximum /	Allowable Equivalent	Durability Wheel Loads	DO NOT EXCEED							
The above cha	art contains Fi	OLIIVALENT DURAR		f the actual calculated wh	aal load is lass						
than the chart		onvalent borab	ate the equivalent durabi	lity wheel load	eel 10du 13 1833						
				ity wheel load.							
Exemple: Co	in contains ACT		n inte en Equivalent Dur		ha siyas data						
Example: Co	nvert the ACT	UAL wheel load give	n into an Equivalent Dura	ability wheel Load using t	ne given data.						
i nis example	illustrates an a	application where the	ACTUAL wheel load exc	ceeds the allowable equiv	alent durability						
wheel load val	ue in the abov	e chart for the specif	ied fall size.								
Poquirod Info	rmation										
		0.4000 //			00000 //						
Actual whe	ei Load, P _{max}	= 24000 #		LL =	20000 #						
	d	= <u>12</u> in.		HA =	<u>36</u> in.						
	V _B	= <u>200</u> FPM		Span =	720 in.						
	BW	= 10000 #		Runway Rail Size =	40 #/yd						
	TW	= 2000 #									
Solution:	_										
	F	= 0.95									
	K _{BW}	= 0.738									
	RPM	= <u>63.7</u> Bridge	Wheel Speed of Rotatior	1							
	-										
	Cs	= 1.098									
	S _M	= <u>1.00</u> For Cla	ss C. Service								
	K _{WL} (min)	= 0.80									
	K _{WL}	= 0.810 If K _{WL} is	s less than K_{WL} (min) use	$ K_{WL} (min) otherwise use $	K _{WL} .						
	Pe	= <u>19433</u> # ACC	EPTABLE								

Conclusion:

The Equivalent Durability Wheel Load (Pe) calculated above is less than the charted allowable equivalent durability wheel load for the specified rail size, therefore, the wheel load is no longer the limiting factor in the end truck selection process.

Total Driven Load:

W_B = Total Bridge Weight (Girders, Footwalks, End Trucks, Bridge Mounted Controls, Drives, etc.) (lbs.)

 W_T = Hoist and Trolley Weight (lbs.)

LL = Live Load and Below the Hook Lifting Devices (lbs.)

W = Total Driven Load =
$$\frac{(W_B + W_T + LL)}{2000}$$
 (tons)

Required Horsepower Equation:

$$P = K_A \times W \times V \times K_S$$

K_A = Acceleration Factor for type of motor used

V = Rated Drive Speed (FPM)

 K_S = Service Factor which accounts for type of drive and duty cycle (see table 1)

For AC Motors N_r/N_f can be assumed 1

Where:

Where:

f = Rolling Friction of Drive (including transmission losses)(lbs/ton) (see table 2)

a = Average or Equivalent Uniform Acceleration Rate up to rated motor RPM (see table 4 and 3)

C_r = Rotational Inertia Factor

$$r C_r = 1.05 + \left(\frac{a}{7.5}\right)$$

g = Gravitational Constant 32.2 (ft/sec^2)

- E = Mechanical Efficiency of Drive Machinery (assume .95 mechanical efficiency for individual drive)
- N_r = Rated Speed of Motor at Full Load (RPM)

 N_{f} = Free Running RPM of motor when driving at speed V

 K_t = Equivalent Steady State Torque relative to rated motor Torque = 1.30

For Individual Drive Cranes the required horsepower is 2/3 of the total on EACH end truck drive.

⊕ Table	1 Drive Service Factor (K _s)							
CMAA	AC Inverter AC Magnetic	🕀 Table 2 F	riction F	actor (f) m	etallic wh	neels & an	ti-friction	bearings
Class	Adjustable Voltage w/DC Shunt Motors	Wheel Dia inches	18	15	12	10	8	6
C D	1.0 1.1	Friction lbs/ton	15	15	15	15	16	16
FOR C C	THER CONTROL TYPES CONTACT FACTORY	·				Us	e for 9" W	heel

⊕ Taken from CMAA specification #70 and #74, revised 2000. Excerpts of *drive service factor* and *friction factor* charts shown.

	Table 3* Max. Acce	leration	Rate to Preve	ent Skidding						
Percer	nt of Driven Wheels		50	25						
Dry Ra	ail (0.2 coeff. of friction)		2.4 1.2							
Wet R	all (0.12 coeff. of friction)		1.5	0.7						
r										
-	Table 4* Typical Acceleration Rate Range									
	Free Running		a = Accele	eration Rate						
	Full Load Speed		for AC and	DC Motors						
	Ft. Per Min. Ft.	per Sec.	0.20	- min						
	60	1.0	0.23							
	120	2.0	0.25	- 0.80						
	180	3.0	0.30	- 1.00						
-	240	4.0	0.40	- 1.00						
L	SUU * Lico Toblo 4 to got an av	5.0	0.50							
-		bo loss t	han the annro	application,						
	n Table 3 to prevent whee	l ekiddina	i an the applo	phate value						
		i Sitiaaniy								
Example: Appropriate	ely size the required indiv	idual driv	e motor horse ase 15" end tr	power for the giv	en AC applic	ation: FPM.				
Required Information:										
Bridge	Girder Weight = 1400	0 #		f (rolling friction	factor) =	15				
Weight of Select	ted End Trucks = 3450) #		a (acceleration	factor) =	0.35				
Estimate	d Drive Weight = 1300) #	Cr	(rotational inertia	(factor) =	1.10				
Weight	of Hoist/Trolley = 1500) #	ç	g (gravitational co	onstant) =	32.2				
Total Cran	e Dead Weight = 2025	0 #	E	(mechanical effi	ciency) =	0.95				
-	Total Live Load = 2000	0 #		V (rated drive	speed) =	120				
То	tal Driven Load = 4025	0 #	Kt (ac	celerating torque	factor) =	1.30				
Driven Load (Total Driven L	_oad/2000) (W) = 20.12	25 Tons		Ks (Service	Factor) =	1.00				
Solution:					Ka =	0.0009346				
				Total Requi	ired HP =	2.26				
For Individual Drive	e Configurations use 2/3 c	of Total H	orsepower for	EACH End Truc	k Drive =	1.50				
Conclusion: Since this i	s an individual drive appli	ication, th	e motor requi	rement is (2) 1 1/	'2 horsepowe	r motors.				

DETERMINATION OF BUMPER SIZES

When determining the size of bumper for a crane, trolley, or hoist or other moving equipment, the magnitude of the energy to be stopped, expressed in foot-pounds(ft-lbs) must be established.

This energy is a function of the weight of the equipment and the travel speed at which impact occurs.

The second consideration is the rate of deceleration, expressed in (ft/sec²).

OSHA (spec. 1910/179), CMAA(spec 70, as amended) and other agencies have established MINIMUM guidelines for the decelerating and stopping of cranes.

FOR THE CRANE BRIDGE: OSHA

The bumpers, usually two, must be large enough to absorb the impact energy (ft-lbs) at 40% of full speed. Deceleration must not exceed 3.0 ft/sec^2 at 20% of full speed.

You may decide that this minimum protection is not sufficient for your equipment and substitute CMAA or your own higher speed values. The following steps to determine bumper size in conjunction with your energy absorption, deflection, and maximum force curves will allow you to calculate bumper size.

The final force curve will show you the load imposed upon your structure to which the bumper is mounted.

ENERGY CALCULATION FOR BRIDGE: OSHA

$$BE_{40\%} = \left(\frac{(0.4 \times VB)^2}{231840}\right) \times \left[\frac{WB}{2} + WT - \frac{WT \times D}{S}\right] (ft - lbs)$$

 Select a bumper (from the bumper dimension chart on page 12) with an energy absorption capacity (E.A.C.) equal or greater than BE calculated in step 5.

7) In a similar manner calculate the energy (ft-lbs) at 20% of full speed.

$$BE_{20\%} = \left(\frac{(0.2 \times VB)^2}{231840}\right) \times \left[\frac{WB}{2} + WT - \frac{WT \times D}{S}\right] (ft - lbs)$$

With your calculated energy absorption requirement (ft-lbs), from step 7, enter the diagram's left upper corner on a line **which represents the chosen bumper size**.

Interpolate and pinpoint the energy requirement on this line and draw a vertical line down until you intersect the curve in the left most diagram.

From this intersection draw a horizontal line to the left and to the right.

Where the left line intersects with the **chosen bumper line** the deflection (DE in inches) for your deceleration calculation is shown.

Where the line intersects with the curve in the right diagram draw another line straight up until you again intersect with your **chosen bumper size line**.

You can read your maximum force on the point of intersection, (tonnes) at 20%, 33% or your own substituted speed value, respectively.

The result of this calculation must be 3.0 ft/sec² or less.

BUMPER EXAMPLE CALCULATION

Example: Correctly size the OSHA required bumpers for the following application. Assume 25 ton crane traveling 150 FPM on 15" end trucks with a 60'-0" span and hook approach (D) of 2'-0".

Required Information:

60	ft.
2	ft.
150	FPM
10000	#
3000	#
	60 2 150 10000 3000

The bumper calculation only takes into account the impact forces due to the dead load of the crane, the lifted load or live load is assumed negligible because at impact the load will swing and not transfer any impact.

Solution:

OSHA requires that the bumper must have the capacity to absorb the impact energy (BE) at 40% rated speed.

 $BE_{40\%}$ = 122.7 ft-lbs Select a bumper that meets or exceeds this value.

Given this information the proper bumper can be selected from the chart on page 12. The appropriate selection would be the size R3 bumper with an Energy Absorption Capacity (E.A.C.) of 145 ft-lbs.

OSHA requires that the deceleration rate (a) not exceed 3.0 ft/sec² at 20% rated speed. For the deceleration equation the deflection is needed and must be taken from the curves. Follow the instructions provided with the curves to determine the deflection.

$$BE_{20\%} = 30.7$$
 ft-lbs
 $DE_{20\%} = 0.53$ in.
 $a = 2.83$ ft/sec² ACCEPTABLE

Conclusion: For the given application the bumper has been sized correctly for deceleration and impact energy absorption according to OSHA standards.

ROTATING AXLE END TRUCKS

LUBRICATION SPECIFICATION

NLGI Rating	2	2	1		
Ambient Temperature Range (°F)	-20°F to 50°F	50°F to 125°F	125°F to 250°F		
ASTM Worked Penetration	265 - 295	265 - 295	310 - 340		
Dropping Point	475+	475+	475+		
Base	Lithium Base	Lithium Base	Lithium Base		
9" Truck	MOBILITH SHC [®] 100	MOBILITH SHC [®] 220	MOBILITH SHC [®] 1500		
12" Truck	MOBILITH SHC [®] 100	MOBILITH SHC [®] 220	MOBILITH SHC [®] 1500		
15" Truck	MOBILITH SHC [®] 100	MOBILITH SHC [®] 220	MOBILITH SHC [®] 1500		
18" Truck	MOBILITH SHC [®] 100	MOBILITH SHC [®] 220	MOBILITH SHC [®] 1500		
*Recommended re-greasing interval	3 months	3 months	3 months		
*For ambient temperate	ures above 200°F half t	he recommended re-gre	easing interval.		

All end trucks are supplied with MOBIL[®] AW-2 multi-purpose premium industrial grease for the wheel bearings. This grease is recommended for indoor use under normal loading conditions, if crane is being operated in extreme temperatures or is exposed to the weather refer to this chart for the correct lubrication to be used.

The use of **any** of these lubricants could affect the delivery time of the end truck since these are not stocked items, consult factory for availability on these special lubricants.

DIMENSIONS

H K	Image: Construction of the second														
Wheel	Wheel Gear A B C D F F G H J K J														
9	LT2282 LT3282 CENTER	6 3/8	6	1/2	10	10	6 3/16	7 1/2	12 11/16	6	3/16	13/16			
12	LT2282 LT3282 LT4282 CENTER	8 3/4	7 1/2	1 1/2	13 1/2	12	8 1/2	10 5/8	16 1/8	8	3/16	1			
15	LT3282 LT4282 LT5282 CENTER	9 13/16	9 1/2	1	17	16	9 1/2	13 7/8	20 1/8	8	3/16	1 1/4			
18	LT4282 LT5282 LT6282 CENTER	12 9/16	12	1	20	20	12	16 7/8	25	12	3/16	1 3/8			
Wheel Diameter	Gear Reducer	М	N (nom.)	PI	KEY	R	S	Т	J.H.*	U**		V			
9	LT2282 LT3282 CENTER	11 3/8 12 1/2 9 3/8	1.435 1.623 1.5625	3/8 3/8 3/8	x 3/8 x 1/4 x 3/8	1/4 1/4 1/8	5 15/16 7 3/16 3 5/16	6 5/8 3 1/4	1	3 5/8	4	7/8			
12	LT2282 LT3282 LT4282 CENTER	13 1/16 14 3/16 15 3/16 17 11/16	1.435 1.623 2.060 2.4372	3/8 3/8 1/2 5/8	x 3/8 x 1/4 x 3/8 x 5/8	1/4 1/4 1/4 1/8	5 15/16 7 3/16 8 5/16 4 1/16	7 8 1/8 9 1/8 4	1 1/2	3 3/4	5	3/4			
15	LT3282 LT4282 LT5282 CENTER	15 1/16 16 3/16 17 3/8 17 1/2	1.623 2.060 2.436 2.9372	3/8 1/2 5/8 3/4	x 1/4 x 3/8 x 5/8 x 3/4	1/4 1/4 1/4 1/8	7 3/16 8 5/16 9 11/16 4 1/8	8 3/8 9 1/4 10 1/2 4 1/8	2	3 3/4	6	1/2			
18	LT4282 LT5282 LT6282 CENTER	19 1/4 20 1/2 22 3/4 19 1/4	2.060 2.436 2.748 3.187	1/2 5/8 5/8 3/4	x 3/8 x 5/8 x 5/8 x 5/8 x 3/4	1/4 1/4 1/4 1/4	8 5/16 9 11/16 12 3/16 5 1/4	9 1/2 10 3/4 13 1/8 5	1 7/8	3 3/4	9	9/32			
J.H.* Equa Raised to	Is the Appr Remove WI	oximate He	eight Trucł xle Assem	k Must bly.	Be	U** Ra U** Ra	il Sweep No il Sweep No	otch Widtl otch Widtl	n for 55# - n for 40# -	105# Ra 60# <u>Ra</u> il	il (12,15 (9" Truc	& 18") k)			

WARRANTY

WARRANTY AND LIMITATION OF REMEDY AND LIABILITY

A. Seller warrants that its products and parts, when shipped, and its work (including installation, construction and start-up), when performed, will meet applicable specifications, will be of good quality and will be free from defects in material and workmanship. All claims for defective products or parts under this warranty must be made in writing immediately upon discovery and, in any event, within two (2) years (or as otherwise provided) from shipment of the applicable item unless Seller specifically assumes installation, construction or start-up responsibility. All claims for defective products or parts when Seller specifically assumes installation, construction or start-up responsibility, and all claims for defective work must be made in writing immediately upon discovery and, in any event, within two (2) years (or as otherwise provided) from completion of the applicable work by Seller, provided, however, all claims for defective products and parts must be made in writing no later than thirty (30) months after shipment. Defective items must be held for Seller's inspection and returned to the original f.o.b. point upon request. THE FOREGOING IS EXPRESSLY IN LIEU OF ALL OTHER WARRANTIES WHATSOEVER, EXPRESS, IMPLIED AND STATUTORY, INCLUDING, WITHOUT LIMITATION. THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS.

B. Upon Buyer's submission of a claim as provided above and its substantiation, Seller shall, at its option, either (i) repair or replace its product, part or work at either the original f.o.b. point of delivery or at Seller's authorized service station nearest Buyer or (ii) refund an equitable portion of the purchase price.

C. This warranty is contingent upon Buyer's proper maintenance and care of Seller's products, and does not extend to normal wear and tear. Seller reserves the right to void warranty in event of Buyer's use of inappropriate materials in the course of repair or maintenance, or if Seller's products have been dismantled prior to submission to Seller for warranty inspection.

D. The foregoing is Seller's only obligation and Buyer's exclusive remedy for breach of warranty, and is Buyer's exclusive remedy hereunder by way of breach of contract, tort, strict liability or otherwise. In no event shall Buyer be entitled to or Seller liable for incidental or consequential damages. Any action for breach of this warranty must be commenced within two (2) years (or as otherwise provided) after the cause of action has accrued.

Lift-Tech International 414 West Broadway Avenue P.O. Box 0769 Muskegon, Michigan 49443-0769 Phone: (800) 866-6696 Fax: (800) 742-9270

Yale 3105 North Washington P.O. Box 1000 Forrest City, Arkansas 72335 Phone: (800) 999-6318 Fax: (800) 766-0223