BEIJING JCZ TECHNOLOGY CO LTD

3D

calibration

Notice: Every time after we input value, It must need to click "Enter" button for enable!

Step 1 ：Open CalibrationWizard．exe．

1．Open the program
$\left.\begin{array}{|lllr|}\hline \square \text { CalibrationWizard 1．9．12 } & 2018-03-08 & 13: 22 & \text { 文件夹 } \\ \hline \square \text { CORFILE } & 2017-09-28 & 1: 43 & \text { 文件夹 }\end{array}\right]$

䁬 CalibrationFunConfig．ini	2018－03－08 11：27	配置设置	1 KB
槶 CalibrationPara．ini	2018－03－08 13：32	配置设置	3 KB
惑 CalibrationSys．ini	2018－03－08 13：32	配置设置	1 KB
嚱 CalibrationWizard．exe	2018－03－08 13：22	应用程序	12，870 KB
\square CalibrationWizard．exp	2018－03－08 13：22	EXP 文件	10 KB
\square CalibrationWizard．ilk	2018－03－08 13：22	ILK 文件	$32,220 \mathrm{~KB}$
\square CalibrationWizard．lib	2018－03－08 13：22	LIB 文件	17 KB
\square CalibrationWizard．pdb	2018－03－08 13：22	PDB 文件	$32,900 \mathrm{~KB}$
－CH365DLL64．dll	2015－06－15 17：29	应用程序扩展	25 KB
（3）DfjzhControlerDII64．dII	2016－08－12 18：27	应用程序扩展	871 KB
或 Lang＿Chs．ini	2018－03－08 12：03	配置设置	8 KB
或 Lang＿Enu．ini	2018－03－08 12：03	配置设置	8 KB

2．Choose Correction System and Set System Parameter
Config Calibration Wizard＿V1．9．12 \times

Choose Correction System

2D XY Correction\square 3D XYZ Correction（With F－Theta Lens）
\square 2D Dynamic Focus XY Correction（Without F－Theta Lens）3D Dynamic Focus XYZ Correction（Without F－Theta Lens）

Set System Parameter				
Unit Type	mm			
Language	English			

3. Click "Confirm" Button

BJJCZ CalibrationWizard_V1.9.15

Confirm Scanner Para

Mark Image($3 * 3$)
Build Cor File

Save Cor File
Load Cor File

Set Mark Parameters

Step 2 : Set Mark parameters for laser and scanhead.

Step 3 : Calibrate motor \mathbf{Z} axis (If no Motor \mathbf{Z} axis, Don't set it)

Step 4 : 3*3 Scanner calibrate

1. Click"confirm scanner para" button, on the pop-up window click"Making Test Image (3*3)" button

2. Check the marking result

3. Change "Set Galvo Parameter" and "mark Image". Until marking result same as software windows.

NOTE: the marking result must show same direction with software.
4. Click "Enter/Exit" button to confirm. The software will back to first interface.

5. Click "Mark Image ($3^{*} 3$)" button to mark. (now the marking result show will same as software, If not ,please do the last step again.)

BJJCZ CalibrationWizard_V1.9.12

6. Measure the coordinate value of point 1 to point 9

7. Input the value to software (only input the value, no need to input + or -).

BJJCZ CalibrationWizard_V1.9.12

8. Check the X and Y coordinates value , if correct, then click Build Cor File button, then click Save Cor File button to save the cor file.

9. After save the .cor files ,the will show Cor files save successfully , click "OK" .
CalibrationWizard \times
10. Click

Load Cor File
button to load the .cor file.

Step 5 : Z axis calibration

1. Click "Z Axis Cor" button to open z axis calibration page.

BJJCZ CalibrationWizard_V1.9.12 \times

2. Click

Set Mark Parameters
button , input the laser power "20\%-30\%" , and click
"Enter" Button on the Keyboard
3. Click

Enter / Exit
back to the First page

Mark Parameters Config \times

4. Set the parameter for Property :

Property Value Test Image Size $(\mathrm{mm}) \not £^{\circ}$ 2 Focal Steps $(\mathrm{mm}) £^{\circ}$ 2 Mark Rectangel Size $(\mathrm{mm}) £^{\circ}$ 25 174 -254 lens					

5. Test Z value

> Set "Test Focal: Theory (mm) " value $=0$,
> "Test Focal: Actual (mm) " value $=0$,
6. Click "Mark Test Image" button

Mark 5x5 grid rectangle image like below picture, each grid rectangle has different focus steps (different z coordinate).

Check the grid rectangles, if the grid rectangles are not symmetrical and clear, adjust Test Focal:Actual(mm) good result should look like below picture:

Noted :

There are 25 small grids, Group them like this : 1 and 25, 2-24, 3-23, 4-22, 5-21, 6-20, 7-19, 8-18......every two grids show have same marking result.

Down the Test Focal:Actual(mm) if marking result like this

Up the Test Focal:Theory (mm) if marking result like this,

7. Click "Mark Rectangle" button

Software will mark a rectangle measure this rectangle’ s size (average size of length and width). Input to

Every time we need to measured cross on the center.

Noted : if you want to change size of this rectangle, adjust Mark Rectangle Size, normally this size need to nearly your calibration size.
8. Click"Add Calibration Data" button

Add Calibration Data

 line’ s z calibration data.9. Move Z axis for different Z calibration.

- SnO is for $\mathrm{Z}=0$,
- Down the scanhead 10 mm (or Up the Work table 10 mm), the Z (theory) $=10 \mathrm{~mm}$, Up the scanhead 10 mm (Or down the work table 10 mm), the Z (theory) $=-10 \mathrm{~mm}$. And then we adjust Actual for testing.
- Set "Test Focal: Theory (mm) " value $=10$, set "Test Focal: Actual (mm) " value $=20$,(it is around this value, Need adjust it according to our marking result),
- Repeat step 6, 7, 8 to make Sn1 line's z data. Then make other line's z data
- Different lens, Layer numbers are different, for 174-254 lens, calibrate from -30 to 30 (Means Test Focal: Theory have 7 value, $-30,-20,-10,0,10,20,30$).

Example for 174-254 lens.

BJJCZ CalibrationWizard_V1.9.15

The Actual Z value will around the number on the picture's show.

Nine Point Cor		XY Internal Cor	Z Axis Cor			
Sn	Z(Theroy)	Z(Actual)	Rect Size(X)	Rect Size(Y)	Center Of...	Center Of...
0	0.000	1.000	45.000	50.000	0.000	0.000
1	10.000	19.000	43.000	49.000	0.000	0.000
2	20.000	40.000	41.000	48.000	0.000	0.000
3	30.000	59.000	40.000	47.000	0.000	0.000
4	-10.000	-21.000	46.000	51.000	0.000	0.000
5	-20.000	-43.000	47.000	52.000	0.000	0.000
6	-30.000	-65.000	48.000	53.000	0.000	0.000
7	0.000	0.000	0.000	0.000	0.000	0.000
8	0.000	0.000	0.000	0.000	0.000	0.000
9	0.000	0.000	0.000	0.000	0.000	0.000
10	0.000	0.000	0.000	0.000	0.000	0.000
11	0.000	0.000	0.000	0.000	0.000	0.000
12	0.000	0.000	0.000	0.000	0.000	0.000
13	0.000	0.000	0.000	0.000	0.000	0.000
14	0.000	0.000	0.000	0.000	0.000	0.000

After we finished this 7 layers, Input the SnOX X and Y value into the software Input Z axis layer number into the software

Z Axis Layers

Notice: every time we input value, we need to click Enter, this is very important!

10. After adding all the z calibration data, click "Generator 3D Cor File" button to build 3D calibration file. Click "Save 3D Cor File" to save 3D calibration file .

11,here have some param for 112-164 lens,

Nine Point Cor		XY Internal Cor		Z Axis Cor				
Sn	Z(Th	eroy)	Z(Actual)		Rect Size(X)	Rect Size(Y)	Center Of...	Center Of...
0		000	1.000		0.000	0.000	0.000	0.000
1		. 000	53.000		0.000	0.000	0.000	0.000
2	-10.	000	-53.000		0.000	0.000	0.000	0.000
3	0		0		0	0	0	0
4	0		0		0	0	0	0
5	0		0		0	0	0	0
6			0		0	0	0	0
7			0		0	0	0	0
8	0		0		0	0	0	0
9		0	0		0	0	0	0
10		0	0		0	0	0	0
11		0	0		0	0	0	0
12		0	0		0	0	0	0
13		0	0		0	0	0	0
14		0	0		0	0	0	0
Property					Value	Ref Rect X Size (mm)		
Test Image Size(mm):					2	0		$\stackrel{\square}{*}$
Focal Steps(mm) :					2			\checkmark
Mark Rectangel Size(mm) :					17	Ref Rect Y Size (mm)		
					\square	0		$\stackrel{+}{*}$

And there just 3 different layers.

Beijing JCZ Technology Co., Ltd.

00-86-64426995
En.bjjcz.com
Sales@bjicz.com
M3 Building ,No. 1 East Road Of Jiuxianqiao , Chaoyang District ,Beijing ,China 100016

