

Gemini Desktop NMR Quantum Computer

2 Qubits

Gemini is the world's first commercially available desktop quantum computer, launched by SpinQ. Gemini contains two qubits and is based on Nuclear Magnetic Resonance (NMR). It provides a comprehensive solution for quantum computing education. Customized quantum algorithm circuit designing and programming are also supported on Gemini. Hardware-level pulse designing and engineering are available as well. Gemini provides a very friendly platform for non-specialists who aim to learn quantum computing basics and quantum programing quickly.

Lightweight, stable, maintenance free, and cost-effective.

Provides customized solutions for universities, research institutes, science museums, etc.

Provides demonstrations of over ten famous quantum algorithms, such as Deutsch algorithm, Grover algorithm, HHL algorithm, etc.

Provides build-in teaching examples , such as Rabi oscillation observation, Bell state preparation, Decoherence time measurement, Quantum simulation of BCS Hamiltonian, etc.

Product highlights

- A real 2-qubit quantum computer, not a quantum simulator;
- Provides users with exclusive use of the QPU and fast implementation of quantum computing tasks;
- A designated physical system with an optimized control and measurement system to support implementation of more than 200 single-qubit and 20 two-qubit quantum gates;
- Access to complete quantum computing procedures including experimental data collection of the final results.

SpinQuasar

SpinQuasar is the software on Gemini for quantum computing education as well as customized quantum computing implementation.

- Supports drag and drop of gates. User-friendly and intuitive interface.
- Supports quantum programming and customized quantum computing implementations.
- Provides access to control of RF pulse generation to support pulse designing for quantum gates.

