

INSTYTUT TECHNIKI BUDOWLANEJ PL 00-611 WARSZAWA ul. Filtrowa 1 tel.: (+48 22) 825-04-71 (+48 22) 825-76-55 fax: (+48 22) 825-52-86 www.itb.pl

European Technical Assessment

ETA-19/0662 of 04/11/2019

General Part

Technical Assessment Body issuing the European Technical Assessment	Instytut Techniki Budowlanej
Trade name of the construction product	DXTM, DXTMX12, DLXTM and DXTM-SS
Product family to which the construction product belongs	Deformation-controlled expansion anchors for use in non-cracked concrete
Manufacturer	ICCONS Pty Ltd Po BOX 4349 Dandenong South 3164 VIC, Australia
Manufacturing plant	Manufacturing Plant no. 2
This European Technical Assessment contains	13 pages including 3 Annexes which form an integral part of this assessment
This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of	European Assessment Document (EAD) 330232-00-0601 "Mechanical fasteners for use in concrete"

This European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

Specific Part

1 Technical description of the product

The DXTM, DLXTM, DXTM-SS and DXTMX12 are deformation-controlled expansion anchors. The anchors DXTM, DLXTM and DXTMX12 are made of zinc plated steel and DXTM-SS are made of stainless steel.

The anchor is installed in a drilled hole and anchored by deformation-controlled expansion.

The description of the product is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document (EAD)

The performances given in Annex C are only valid if the anchors are used in compliance with the specifications and conditions given in Annex B.

The provisions made in this European Technical Assessment are based on an assumed working life of the anchor of 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer or the Technical Assessment Body, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Performance of the product

3.1.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance	See Annexes C1 to C5
Edge distances and spacings	See Annexes C1 to C5

3.1.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchors satisfy requirements for Class A1
Resistance to fire	No performance assessed

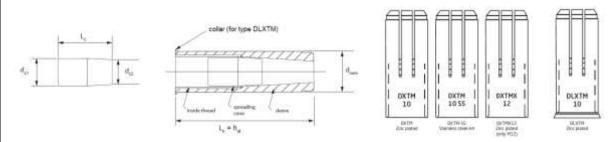
3.2 Methods used for the assessment

The assessment of the products has been made in accordance with the EAD 330232-00-0601 "Mechanical fasteners for use in concrete".

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

According to Decision 96/582/EC of the European Commission the system 1 of assessment and verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) given in the following table applies.

5 Technical details necessary for the implementation of the AVCP system, as provided in the applicable European Assessment Document (EAD)


Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited in Instytut Techniki Budowlanej.

For the type testing the results of the tests performed as part of the assessment for the European Technical Assessment shall be used unless there are changes in the production line or plant. In such cases the necessary type testing has to be agreed between Instytut Techniki Budowlanej and the notified body.

Issued in Warsaw on 04/11/2019 by Instytut Techniki Budowlanej

Krzysztof Kuczyński, PhD

Krzysztof Kúczyński, PhD Deputy Director of ITB

Table A1. Anchors DXTM, DLXTM, DXTMX12 – dimensions and materials

Anchor type		DXTM, DLXTM								
Anchor size		M6x25	M8x30	M10x30	M10x40∗	M12x50	M16x65	M20x80	M12x50	
Anchor length L _H	[mm]	25	30	30	40	50	65	80	50	
Thread inside	[mm]	[mm] 6 8 10 10 12 16 20								
External diameter d _{nom}	[mm]	m] 8 10 12 12 15 20 25								
Anchor material	$f_{uk} \ge 450$ *cold form	cold forming steel C1008 or EN 10277; thickness of zinc coating $\ge 5 \ \mu m$ acc. to EN ISO 40 $f_{uk} \ge 450 \ N/mm^2$ and $f_{yk} \ge 360 \ N/mm^2$ *cold forming steel C1015 or EN 10277; thickness of zinc coating $\ge 5 \ \mu m$ acc. to EN ISO 4 $f_{uk} \ge 450 \ N/mm^2$ and $f_{yk} \ge 360 \ N/mm^2$								

Table A2. Anchor DXTM-SS - dimensions and materials

Anchor type		DXTM-SS								
Anchor size		M6x25	M8x30	M10x40	M12x50	M16x65	M20x80			
Anchor length L _H	[mm]	25	30	40	50	65	80			
Thread inside	[mm]	6	8	10	12	16	20			
External diameter d _{nom}	[mm]	[mm] 8 10 12 15 20 25								
Anchor material		steel 1.4401 a N/mm ² and f _{yk}								

Table A3. Spreading cone – dimensions and materials

Spreading cone		M6	M8	M10	M12	M16	M20			
Rear diameter d _{c1}	[mm]	5,0	6,4	8,0	10,3	13,5	16,8			
Front diameter d _{c2}	[mm]	[mm] 4,3 5,1 6,8 7,8 13,0 15,2								
Length I _c	[mm]	[mm] 9,8 11,4 16,0 20,8 29,2 30,0								
Spreading cone material		cold forming steel C1008; thickness of zinc coating > 5 μ m or stainless steel 1.4401, 1.4404 acc. to EN 10088								

DXTM, DLXTM, DXTM-SS and DXTMX12

Annex A1

of European Technical Assessment ETA-19/0662

Product description Characteristic of the product

SPECIFICATION OF INTENDED USE

Anchorages subject to:

• Static and quasi-static loads: sizes from M6 to M20.

Base material:

- Reinforced or unreinforced normal weight concrete of strength class C20/25 at minimum to C50/60 at maximum according to EN 206.
- Non-cracked concrete.

Use conditions (environmental conditions):

- Structures subject to dry internal conditions: zinc coated steel (all the sizes) and stainless steel (size M6).
- Structures subject to dry internal conditions and also external atmospheric exposure (including
 industrial and marine environment) or exposure in permanently damp internal conditions if no particular
 aggressive conditions exist:

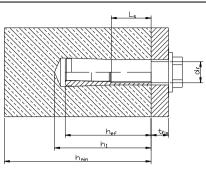
stainless steel (sizes M8 to M20)

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be transmitted. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages under static and quasi-static loads are designed in accordance with EOTA Technical Report TR 055.

Installation:


- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Use of the anchor only as supplied by the manufacturer without exchanging any component of the anchor.
- Anchor installation in accordance with the manufacturer's specifications and drawings and using the appropriate tools.
- Check of concrete being well compacted, e.g. without significant voids.
- Positioning of the drill holes without damaging the reinforcement.
- In case of aborted hole: new drilling at a minimum distance away of twice the depth of the aborted hole
 or smaller distance if the aborted drill hole is filled with high strength mortar and if under shear or
 oblique tension load it is not in the direction of load application.
- Anchor installation such that the effective anchorage depth is complied with.

DXTM, DLXTM, DXTM-SS and DXTMX12

Annex B1

of European Technical Assessment ETA-19/0662

Intended use Specification

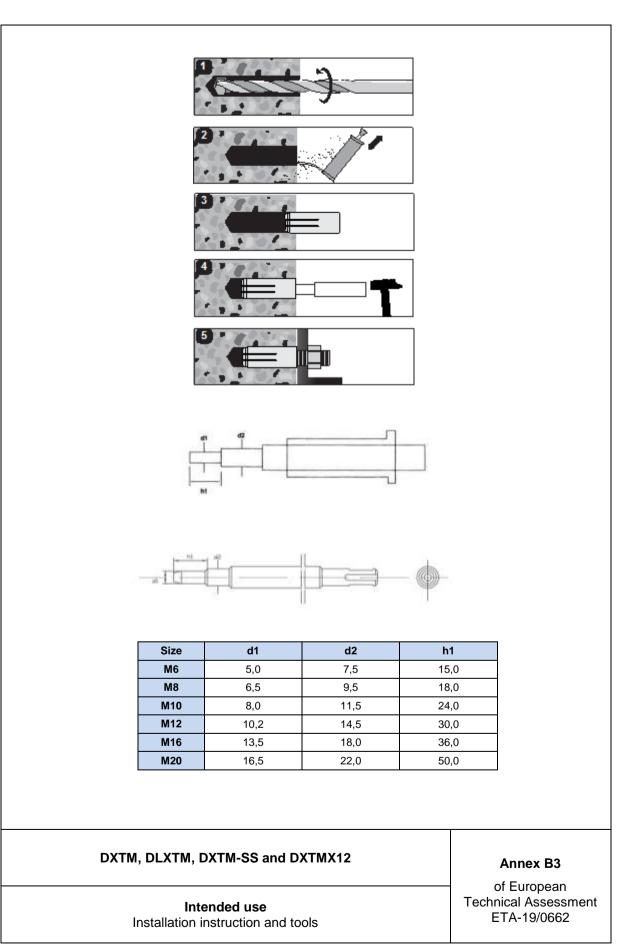
Table B1: Installation parameters – DXTM and DLXTM

Anchor size	Effective anchorage depth	Drill hole depth	Drill hole diameter	Installation torque (max)	Thickness of concrete member (min)	Screwing depth (min)	Screwing depth (max)	Diameter of clearance hole in the fixture	Spacing (min)	Edge distance (min)
	[mm]	[mm]	[mm]	[Nm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
	h _{ef}	h ₁	d ₀	max T _{inst}	h _{min}	L _{s, min}	L _{s, max}	d _f	Smin	C _{min}
M6x25	25	30	8	4,5	100	6	10	7	60	105
M8x30	30	32	10	11	100	8	13	9	90	105
M10x30	30	32	12	22	100	8	13	12	90	105
M10x40	40	42	12	22	100	10	17	12	90	140
M12x50	50	54	15	38	100	12	21	16	100	175
M16x65	65	70	20	98	130	16	27	18	130	230
M20x80	80	85	25	130	160	20	34	22	160	280

Table B2: Installation parameters – DXTM-SS and DXTMX12

Anchor size	Effective anchorage depth	Drill hole depth	Drill hole diameter	Installation torque (max)	Thickness of concrete member (min)	Screwing depth (min)	Screwing depth (max)	Diameter of clearance hole in the fixture	Spacing	Edge distance
	[mm]	[mm]	[mm]	[Nm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
	h _{ef}	h ₁	d ₀	max T _{inst}	h _{min}	L _{s, min}	L _{s, max}	d _f	S _{min}	C _{min}
M6x25	25	30	8	4,5	100	6	10	7	60	105
M8x30	30	32	10	11	100	8	13	9	90	105
M10x40	40	42	12	22	100	10	17	12	90	140
M12x50	50	54	15	38	100	12	21	16	100	175
M12x50*	50	54	16	38	100	12	21	16	100	175
M16x65	65	70	20	98	130	16	27	18	130	230
M20x80	80	85	25	130	160	20	34	22	160	280

* DXTMX12 only


Fastening screws or anchor threaded rods:

Steel, property class 4.6 / 4.8 / 5.6 / 6.8 / 8.8 according to EN-ISO 898-1; galvanized \geq 5 μ m (DXTM, DXTMX12, DLXTM) Stainless steel 1.4401 according to EN 10088, property class 50 or 70 according to EN ISO 3506 (DXTM-SS)

DXTM, DLXTM, DXTM-SS and DXTMX12

Annex B2

Intended use Installation parameters

Size				M6x25	M8x30	M10x30	M10x40	M12x50	M16x65	M20x80
Steel failure										
Steel failure with threaded	rod grade 4.6	6								
Characteristic resistance		N _{Rk,s}	[kN]	8,0	14,6	23,2	23,2	33,7	62,8	98,0
Partial safety factor		γ _{Ms} ¹⁾	[-]				2,00			
Steel failure with threaded	rod grade 4.8			-1			· ·			
Characteristic resistance		N _{Rk.s}	[kN]	8,0	14,6	23,2	23,2	33,7	62,8	98,0
Partial safety factor		γ _{Ms} ¹⁾	[-]				1,50			
Steel failure with threaded	rod grade 5.6)					· · · · · · · · · · · · · · · · · · ·			
Characteristic resistance	0	N _{Rk.s}	[kN]	8,4	15,4	24,4	29,0	35,4	65,9	102,9
Partial safety factor		1) γMs	[-]		, .		1,50			
Steel failure with threaded	rod grade 5.8		b 2	-						
Characteristic resistance		N _{Rk,s}	[kN]	8,4	15,4	24,4	29,0	35,4	65,9	102,9
Partial safety factor		γ _{Ms} ¹⁾	[-]				1,50			
Steel failure with threaded	rod grade 6.8			-						
Characteristic resistance		N _{Rk,s}	[kN]	8,4	15,4	24,4	29,0	35,4	65,9	102,9
Partial safety factor		γ _{Ms} ¹⁾	[-]				1,50			
Steel failure with threaded	rod grade 8.8			-						
Characteristic resistance		N _{Rk,s}	[kN]	8,4	15,4	24,4	29,0	35,4	65,9	120,9
Partial safety factor		γ _{Ms} ¹⁾	[-]				1,50			
Pull-out failure		· · ·								
Characteristic resistance i	n	N	[LN]	5	5)	5)	12	5)	20	35
non-cracked concrete C20)/25	N _{Rk,p}	[kN]	Э	,	,	12	· ·	20	30
Installation safety factor		$\gamma_2^{(2)} = \gamma_{\text{inst}}^{(3)4)}$	[-]	1,4	1,4	1,4	1,4	1,2	1,2	1,4
Increasing factor for	C30/37		[-]				1,05			
Increasing factor for concrete:	C40/50	Ψc	[-]				1,08			
concrete.	C50/60		[-]				1,11			
Concrete cone failure an	nd splitting fa	ilure								
Effective embedment dept	th	h _{ef}	[mm]	25	30	30	40	50	65	80
Factor for non cracked con	ncrete	$k_1^{(2)} = k_{ucr}^{(3)}$	[-]	1,4	1,4	1,4	1,4	1,2	1,2	1,4
Factor for non cracked con	ncrete	k _{ucr,N} ⁴⁾	[-]				10,1			
nstallation safety factor		$\gamma_2^{(2)} = \gamma_{\text{inst}}^{(3)4)}$	[-]				11,0			
Characteristic resistance for splitting		N ⁰ _{Rk,sp}	[kN]	5	5)	5)	12	5)	20	35
in non cracked concrete		IN Rk,sp	[KIN]	Э			12		20	30
Spacing		S _{cr,N}	[mm]	50	60	60	80	100	130	160
Edge distance		C _{cr.N}	[mm]	75	90	90	120	150	195	240

able C1. Characteristic resistance for tension loads in non-cracked concrete DXTM and DI XTM

²⁾ Parameter for design acc. ETAG 001 Annex C
 ³⁾ Parameter for design acc. CEN/TS 1992-4-4:2009
 ⁴⁾ Parameter for design acc. EN 1992-4:2018
 ⁵⁾ Pull-out value is not decisive

Table C2: Displacement under tension and shear loads – DXTM and DLXTM

Size	M6x25	M8x30	M10x30	M10x40	M12x50	M16x65	M20x80	
Tension and shear loads in non-cracked concrete	N = V [kN]	1,70	2,82	2,82	4,08	7,10	7,94	11,90
Displacement	δ _{N0} [mm]	2,56	2,22	2,14	1,55	7,24	1,93	2,15
Displacement	δ _{N∞} [mm]	1,44	1,44	1,44	1,44	1,44	1,44	1,44

DXTM, DLXTM, DXTM-SS and DXTMX12

Annex C1

Performances Characteristic resistance for tension loads and displacement -DXTM and DLXTM

Size			M6x25	M8x30	M10x30	M10x40	M12x50	M16x65	M20x8
Steel failure without lever arm								1	
Steel failure with threaded rod grade 4.6									
Characteristic resistance	V _{Rk,s}	[kN]	4,0	7,3	11,6	11,6	16,9	41,4	49,0
Partial safety factor	γ _{Ms} ¹⁾	[-]				1,67	•		
Steel failure with threaded rod grade 4.8									
Characteristic resistance	V _{Rk,s} γ _{Ms} ¹⁾	[kN]	4,0	7,3	11,6	11,6	16,9	41,4	49,0
Partial safety factor	γ _{Ms} ¹⁾	[-]				1,25			
Steel failure with threaded rod grade 5.6									
Characteristic resistance	V _{Rk,s}	[kN]	5,0	9,2	14,5	14,5	21,1	39,3	61,
Partial safety factor	γ _{Ms} ¹⁾	[-]				1,25			
Steel failure with threaded rod grade 5.8									
Characteristic resistance	V _{Rk,s}	[kN]	5,0	9,2	14,5	14,5	21,1	39,3	61,
Partial safety factor	1) γMs	[-]				1,25		. <u>·</u>	. ,
Steel failure with threaded rod grade 6.8									
Characteristic resistance	V _{Rk,s}	[kN]	6,0	11,0	17,4	17,4	25,3	47,1	73,
Partial safety factor	1) γMs	[-]	- / -	7-	,	1,25	- / -	,	
Steel failure with threaded rod grade 8.8	1110		1			, -			
Characteristic resistance	V _{Rk,s}	[kN]	8,0	14,6	23,2	23,2	33,7	62,8	98.
Partial safety factor	1) γMs	[-]	- / -	1-	- 1	1,25	1	- /-	
Factor considering ductility	$k^{2} = k_2^{3} = k_7^{4}$	[-]				0.8			
Steel failure with lever arm	11 112 111					0,0			
Steel failure with threaded rod grade 4.6									
Characteristic resistance	M ⁰ _{Rk,s}	[Nm]	6,1	15,0	29,9	29,9	52,4	133,3	259
Partial safety factor	γMs	[-]	0,1	,.	20,0	1,67	02,1	,.	
Steel failure with threaded rod grade 4.8	/ WIS					.,0.			
Characteristic resistance	M ⁰ _{Rk,s}	[Nm]	6,1	15,0	29,9	29,9	52,4	133,3	259
Partial safety factor	γMs	[-]	0,1	,.	20,0	1,25	02,1	,.	
Steel failure with threaded rod grade 5.6	/ MS					1,20			
Characteristic resistance	M ⁰ _{Rk,s}	[Nm]	7,6	18,8	37,4	37,4	65,6	166,6	324
Partial safety factor	γ _{Ms} ¹⁾	[-]	7,0	10,0	07,4	1.25	00,0	100,0	021
Steel failure with threaded rod grade 5.8	∦Ms					1,20			
Characteristic resistance	M ⁰ _{Rk,s}	[Nm]	7,6	18,8	37,4	37,4	65,6	166,6	324
Partial safety factor	1) γ _{Ms}	[-]	7,0	10,0	57,4	1,25	05,0	100,0	524
Steel failure with threaded rod grade 6.8	YMs	[-]				1,20			
Characteristic resistance	M ⁰ _{Rk,s}	[Nm]	9,2	22,5	44,9	44,9	78,7	199,9	389
Partial safety factor	1) γ _{Ms}	[-]	9,2	22,5	44,9	1,25	10,1	199,9	308
Steel failure with threaded rod grade 8.8	Ϋ́Ms ΄	[-]				1,20			
Characteristic resistance	M ⁰ _{Rk,s}	[Nm]	10.0	20.0	50.0	50.0	101.0	266.6	E40
	1)		12,2	30,0	59,9	59,9	104,9	266,6	519
Partial safety factor	γ _{Ms} ¹⁾	[-]	1			1,25			
Concrete pry-out failure	$k^{2} = k_3^{3} = k_8^{4}$	F 1	10	10	1.0	1.0	1.0	2.0	
Factor for uncracked concrete	$\kappa' = \kappa_3'' = \kappa_8''$	[-]	1,0	1,0	1,0	1,0	1,0	2,0	2,0
Partial safety factor	γ _{Mc} ¹⁾	[-]				1,50			
Concrete edge failure		[40	40	40	45	00	
Outside diameter of the anchor	d _{nom}	[mm]	8	10	12	12	15	20	25
Effective length of anchor under shear loads	 f 1)	[mm]	25	30	30	40	50	65	80
Partial safety factor Minimum member thickness	γ _{Mc} ¹⁾	[-]				1,50			
	h _{min}	[mm]	100	100	100	100	100	130	16

¹⁾ In the absence of other national regulation
 ²⁾ Parameter for design acc. ETAG 001 Annex C
 ³⁾ Parameter for design acc. CEN/TS 1992-4-4:2009
 ⁴⁾ Parameter for design acc. EN 1992-4:2018

DXTM, DLXTM, DXTM-SS and DXTMX12

Performances Characteristic resistance for shear loads -DXTM and DLXTM

Annex C2

	Table C4: Characteristic resistance for tension loads in non-cracked concrete	– DXTM-SS
--	---	-----------

Size				DXTM-SS						
Size				M6x25	M8x30	M10x40	M12x50	M16x65	M20x80	
Steel failure							1	1		
Steel failure with sta	inless steel thre	eaded rod A4-50								
Characteristic resista	ance	N _{Rk,s}	[kN]	10,1	18,3	29,0	42,2	78,5	122,5	
Partial safety factor		γ _{Ms} ¹⁾	[-]			1,	50			
Steel failure with sta	inless steel thre	eaded rod A4-70								
Characteristic resista	ance	N _{Rk,s}	[kN]	14,1	25,6	40,6	59,0	109,9	171,5	
Partial safety factor		γ _{Ms} ¹⁾	[-]	1,50						
Pull-out failure										
Characteristic resistance in non-cracked concrete C20/25		N _{Rk,p}	[kN]	3	5	6	12	20	20	
Installation safety factor		$\gamma_2^{(2)} = \gamma_{inst}^{(3)4)}$	[-]	1.4	1.4	1.4	1.0	1,0	1,0	
	C30/37	12 11130	[-]	1,18						
Increasing factor	C40/50	Ψ_{c}	[-]	1,35						
for concrete:	C50/60		[-]	1,46						
Concrete cone fail	ure and splittin	ng failure				,	-			
Effective embedment depth		h _{ef}	[mm]	25	30	40	50	65	80	
Factor for non cracked concrete		$k_1^{(2)} = k_{ucr}^{(3)}$	[-]	1,4	1,4	1,4	1,0	1,0	1,0	
Factor for non cracked concrete		k _{ucr,N} ⁴⁾	[-]	10,1						
Installation safety factor		$\gamma_2^{(2)} = \gamma_{inst}^{(3)4)}$	[-]	11,0						
Characteristic resistance for splitting in non cracked concrete		N ⁰ _{Rk,sp}	[kN]	3	5	6	12	20	20	
Spacing		S _{cr,N}	[mm]	50	60	80	100	130	160	
Edge distance		C _{cr.N}	[mm]	75	90	120	150	195	240	
¹⁾ In the absence of ²⁾ Parameter for des	other national re ign acc. ETAG	egulation		³⁾ Par ⁴⁾ Par	ameter for de ameter for de	esign acc. CE esign acc. EN	N/TS 1992-4 1992-4:2018	-4:2009 3	1	

Table C5: Characteristic resistance for shear loads in non-cracked concrete – DXTM-SS

Sina					DXT	M-SS			
Size			M6x25	M8x30	M10x40	M12x50	M16x65	M20x80	
Steel failure without lever arm					1		1	I	
Steel failure with stainless steel t	threaded rod A4-5	0							
Characteristic resistance	V _{Rk,s}	[kN]	5,0	9,2	14,5	21,1	39,3	61,3	
Partial safety factor	γ _{Ms} ¹⁾	[-]			1,	25		•	
Steel failure with stainless steel t	threaded rod A4-7	0							
Characteristic resistance	V _{Rk,s}	[kN]	7,0	12,8	20,3	29,5	55,0	85,8	
Partial safety factor	γ _{Ms} 1)	[-]			1,	25			
Steel failure with lever arm	· · ·								
Steel failure with stainless steel t	threaded rod A4-5	0							
Characteristic resistance	M ⁰ _{Rk,s}	[Nm]	7,6	18,8	37,4	65,6	166,6	324,8	
Partial safety factor	γMs ¹⁾	[-]			1,	25			
Steel failure with stainless steel t		0							
Characteristic resistance	M ⁰ _{Rk,s}	[Nm]	10,7	26,3	52,4	91,8	233,3	454,7	
Partial safety factor	1) γ _{Ms}	[-]		1,25					
Concrete pry-out failure									
Factor for uncracked concrete	$k^{2} = k_3^{3} = k_8^{4}$	[-]	1,0	1,0	1,0	1,0	2,0	2,0	
Partial safety factor	γ _{Mc} ¹⁾	[-]			1,	50			
Concrete edge failure									
Outside diameter of the anchor	d _{nom}	[mm]	8	10	12	15	20	25	
Effective length of anchor	lf	[mm]	25	30	40	50	65	80	
under shear loads		finini	25	50	40	50	05	00	
Partial safety factor	γ _{Mc} ¹⁾	[-]			1,	50			
Minimum member thickness	h _{min}	[mm]	100	100	100	100	130	160	
¹⁾ In the absence of other nationa	al regulation			³⁾ Parameter fo	or design acc.	CEN/TS 1992	-4-4:2009		
²⁾ Parameter for design acc. ETA	G 001 Annex C			⁴⁾ Parameter for	or design acc.	EN 1992-4:20	18		

DXTM, DLXTM, DXTM-SS and DXTMX12

Performances Characteristic resistance for tension and shear loads – DXTM-SS Annex C3

Size				DXTMX12 M12x50
Steel failure				
Steel failure with threaded I	od grade 4.6			
Characteristic resistance		N _{Rk,s}	[kN]	33,7
Partial safety factor		γ _{Ms} ¹⁾	[-]	2,00
Steel failure with threaded I	od grade 4.8	•		
Characteristic resistance		N _{Rk,s}	[kN]	33,7
Partial safety factor		γ _{Ms} ¹⁾	[-]	1,50
Steel failure with threaded i	od grade 5.6			
Characteristic resistance	-	N _{Rk,s}	[kN]	35,4
Partial safety factor		γ _{Ms} ¹⁾	[-]	1,50
Steel failure with threaded I	od grade 5.8			
Characteristic resistance		N _{Rk,s}	[kN]	35,4
Partial safety factor		γ _{Ms} 1)	[-]	1,50
Steel failure with threaded i	od grade 6.8	• •		
Characteristic resistance		N _{Rk,s}	[kN]	35,4
Partial safety factor		γ _{Ms} ¹⁾	[-]	1,50
Steel failure with threaded I	od grade 8.8			
Characteristic resistance		N _{Rk,s}	[kN]	35,4
Partial safety factor		γ _{Ms} ¹⁾	[-]	1,50
Pull-out failure		•		
Characteristic resistance in		N	[LN]	5)
non cracked concrete C20/2	25	N _{Rk,p}	[kN]	,
Installation safety factor		$\gamma_2^{(2)} = \gamma_{inst}^{(3)4)}$	[-]	1,2
	C30/37		[-]	1,05
Increasing factor for concrete:	C40/50	Ψc	[-]	1,08
	C50/60		[-]	1,11
Concrete cone failure and	I splitting failure)		
Effective embedment depth		h _{ef}	[mm]	50
Factor for non cracked concrete		$k_1^{(2)} = k_{ucr}^{(3)}$	[-]	1,2
Factor for non cracked concrete		k _{ucr,N} ⁴⁾	[-]	10,1
Installation safety factor		$\frac{k_{ucr,N}}{\gamma_2^{(2)} = \gamma_{inst}^{(3)4)}}$	[-]	11,0
Characteristic resistance for splitting in				5)
non cracked concrete		$N^0_{Rk,sp}$	[kN]	
Spacing		S _{cr,N}	[mm]	100
Edge distance		C _{cr.N}	[mm]	150

³⁾ Parameter for design acc. CEN/TS 1992-4-4:2009
 ⁴⁾ Parameter for design acc. EN 1992-4:2018
 ⁵⁾ Pull-out value is not decisive

Table C7: Displacement under tension and shear loads – DXTM-SS and DXTMX12

Size				DXT	M-SS			DXTMX12
5120		M6x25	M8x30	M10x40	M12x50	M16x65	M20x80	M12x50
Tension and shear loads in non-cracked concrete	N = V [kN]	1,02	1,70	2,04	5,71	9,52	9,52	7,10
Displacement	δ _{N0} [mm]	2,24	1,23	1,95	3,54	4,30	2,10	2,41
Displacement	$\delta_{N^{\infty}}$ [mm]	1,27	1,27	1,27	1,27	1,27	1,27	1,44

DXTM, DLXTM, DXTM-SS and DXTMX12

Performances Characteristic resistance for tension loads - DXTMX12 and displacement – DXTM-SS and DXTMX12

Annex C4

Size			DXTMX12 M12x50
Steel failure without lever arm		L.	
Steel failure with threaded rod grade 4.6			
Characteristic resistance	V _{Rk,s}	[kN]	49,0
Partial safety factor	γ _{Ms} ¹⁾	[-]	1,67
Steel failure with threaded rod grade 4.8			
Characteristic resistance	V _{Rk,s}	[kN]	49,0
Partial safety factor	γ _{Ms} ¹⁾	[-]	1,25
Steel failure with threaded rod grade 5.6			
Characteristic resistance	V _{Rk,s}	[kN]	61,3
Partial safety factor	γ _{Ms} ¹⁾	[-]	1,25
Steel failure with threaded rod grade 5.8			
Characteristic resistance	V _{Rk,s}	[kN]	61,3
Partial safety factor	γ _{Ms} ¹⁾	[-]	1,25
Steel failure with threaded rod grade 6.8			
Characteristic resistance	V _{Rk,s}	[kN]	73,5
Partial safety factor	γ _{Ms} ¹⁾	[-]	1,25
Steel failure with threaded rod grade 8.8			
Characteristic resistance	V _{Rk,s}	[kN]	98,0
Partial safety factor	γ _{Ms} ''	[-]	1,25
Factor considering ductility	$k^{2} = k_2^{3} = k_7^{4}$	[-]	0,8
Steel failure with lever arm			
Steel failure with threaded rod grade 4.6			
Characteristic resistance	M ⁰ _{Rk,s}	[Nm]	52,4
Partial safety factor	γ _{Ms} 1)	[-]	1,67
Steel failure with threaded rod grade 4.8	· ·		
Characteristic resistance	M ⁰ _{Rk,s}	[Nm]	52,4
Partial safety factor	γ _{Ms} ¹⁾	[-]	1,25
Steel failure with threaded rod grade 5.6			
Characteristic resistance	M ⁰ _{Rk,s}	[Nm]	65,6
Partial safety factor	γ _{Ms} ¹⁾	[-]	1,25
Steel failure with threaded rod grade 5.8			
Characteristic resistance	M ⁰ _{Rk,s}	[Nm]	65,6
Partial safety factor	γ _{Ms} 1)	[-]	1,25
Steel failure with threaded rod grade 6.8			
Characteristic resistance	M ⁰ _{Rk,s}	[Nm]	78,7
Partial safety factor	1) γ _{Ms}	[-]	1,25
Steel failure with threaded rod grade 8.8		· · · · ·	· · · · · · · · · · · · · · · · · · ·
Characteristic resistance	M ⁰ _{Rk,s}	[Nm]	104,9
Partial safety factor	1) γ _{Ms}	[-]	1,25
Concrete pry-out failure			·
Factor for uncracked concrete	$k^{2} = k_3^{3} = k_8^{4}$	[-]	1,0
Partial safety factor	γ _{Mc} ¹⁾	[-]	1,5
Concrete edge failure	, 100		
Outside diameter of the anchor	d _{nom}	[mm]	16
Effective length of anchor under shear			
loads	I _f	[mm]	50
Partial safety factor	γ _{Mc} ¹⁾	[-]	1,5
Minimum member thickness	h _{min}	[mm]	100

²⁾ Parameter for design acc. ETAG 001 Annex C
 ³⁾ Parameter for design acc. CEN/TS 1992-4-4:2009
 ⁴⁾ Parameter for design acc. EN 1992-4:2018

DXTM, DLXTM, DXTM-SS and DXTMX12

Performances Characteristic resistance for shear loads – DXTMX12 displacement – DXTM-SS and DXTMX12

Annex C5