

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-19/0131 of 29 November 2021

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

B+BTec Injection system BIS-HY GEN2 for concrete

Bonded anchor for use in concrete

B+BTec Munterij 8 4762 AH ZEVENBERGEN NIEDERLANDE

B+BTec Plant 1

35 pages including 3 annexes which form an integral part of this assessment

EAD 330499-01-0601, Edition 04/2020

ETA-19/0131 issued on 13 March 2019

European Technical Assessment ETA-19/0131

Page 2 of 35 | 29 November 2021

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-19/0131

Page 3 of 35 | 29 November 2021

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The "B+BTec Injection system BIS-HY GEN2 for concrete" is a bonded anchor consisting of a cartridge with injection mortar Injection mortar BIS-HY GEN2 and a steel element according to Annex A3 and A5.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 and/or 100 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex B 3, C 1 to C 4, C 6 to C 7, C 9 to C 10
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 1, C 5, C 8, C 11
Displacements under short-term and long-term loading	See Annex C 12 to C 14
Characteristic resistance and displacements for seismic performance categories C1 and C2	See Annex C 15 to C 18

3.2 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

European Technical Assessment ETA-19/0131

Page 4 of 35 | 29 November 2021

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330499-01-0601 the applicable European legal act is: [96/582/EC].

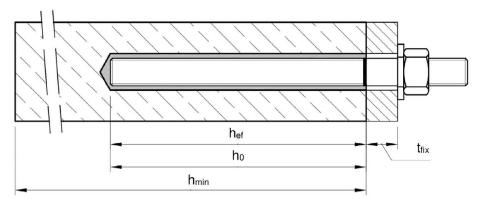
The system to be applied is: 1

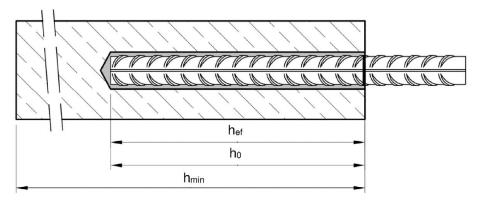
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

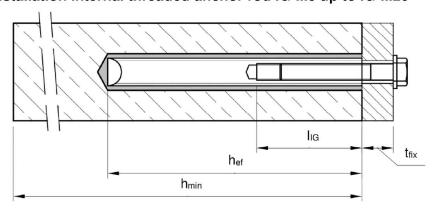
Issued in Berlin on 29 November 2021 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section


*beglaubigt:*Baderschneider


Installation threaded rod M8 up to M30

prepositioned installation or


push through installation (annular gap filled with mortar)

Installation reinforcing bar Ø8 up to Ø32

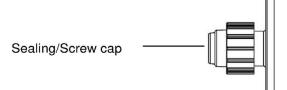
Installation internal threaded anchor rod IG-M6 up to IG-M20

 t_{fix} = thickness of fixture

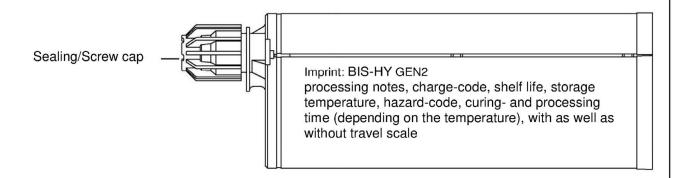
h_{ef} = effective anchorage depth

 h_0 = depth of drill hole

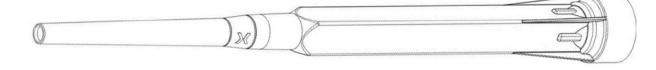
 h_{min} = minimum thickness of member


I_{IG} = Thread engagement length

B+BTec Injection System BIS-HY GEN2 for concrete	
Product description Installed condition	Annex A 1


Cartridge: BIS-HY GEN2

150 ml, 280 ml, 300 ml up to 333 ml and 380 ml up to 420 ml cartridge (Type: coaxial)

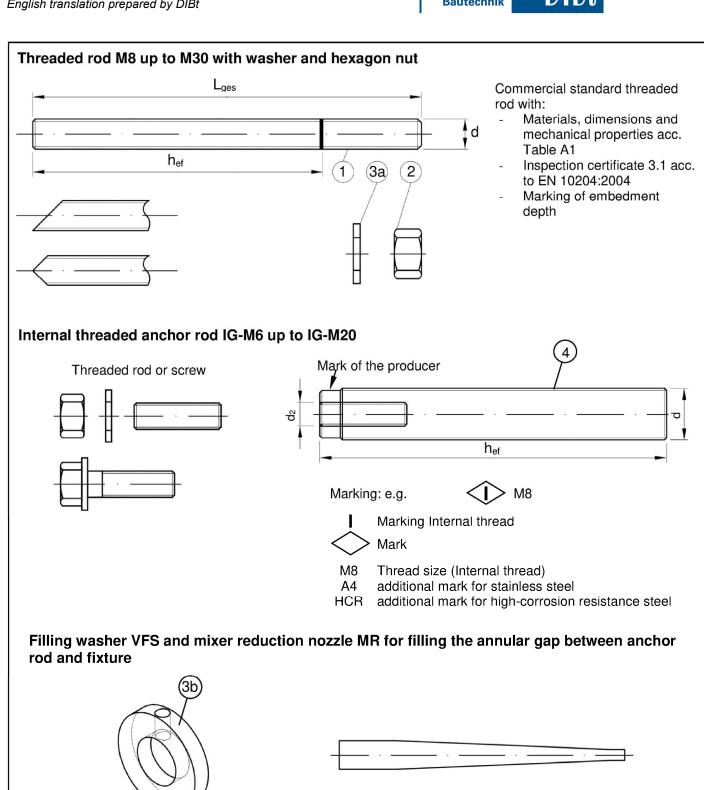


Imprint: BIS-HY GEN2, processing notes, charge-code, shelf life, storage temperature, hazard-code, curing-and processing time (depending on the temperature), with as well as without travel scale

235 ml, 345 ml up to 360 ml and 825 ml cartridge (Type: "side-by-side")

Static Mixer PM-19E

Piston plug VS and mixer extension VL


B+BTec Injection System BIS-HY GEN2 for concrete

Product description

Injection system

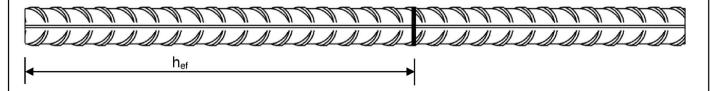
Annex A 2

B+BTec Injection System BIS-HY GEN2 for concrete	
Product description Threaded rod, internal threaded rod and filling washer	Annex A 3

Table A1: Materials								
Part Designation Material								
- zi - ho	nc plated ≥ ot-dip galvanised ≥	acc. to EN ISO 683-4:2 5 µm acc. to EN ISO 40 µm acc. to EN ISO 45 µm acc. to EN ISO	4042: 1461:	2018 or 2009 and EN ISO 10684:2	004+AC:2009 or			
		Property class		Characteristic steel ultimate tensile strength	Characteristic steel yield strength	Elongation at fracture		
1	Threaded rod			$f_{uk} = 400 \text{ N/mm}^2$ $f_{uk} = 400 \text{ N/mm}^2$	$f_{yk} = 240 \text{ N/mm}^2$ $f_{yk} = 320 \text{ N/mm}^2$	A ₅ > 8% A ₅ > 8%		
	Timodada rod	acc. to EN ISO 898-1:2013	5.6	f _{uk} = 500 N/mm ²	f _{yk} = 300 N/mm ²	A ₅ > 8%		
		211100 000 1.2010		$f_{uk} = 500 \text{ N/mm}^2$	$f_{yk} = 400 \text{ N/mm}^2$	fracture $A_5 > 8\%$ $A_5 > 12\%$ 7094:2000) Elongation at fracture $A_5 > 8\%$ $A_5 > 8\%$ $A_5 > 12\%$		
				$f_{uk} = 800 \text{ N/mm}^2$	$f_{yk} = 640 \text{ N/mm}^2$	$A_5 \ge 12\%^{(3)}$		
2	Hexagon nut	acc. to EN ISO 898-2:2012	4 5 8	for threaded rod class 4.6 for threaded rod class 5.6 for threaded rod class 8.8	or 5.8			
3a	Washer	(e.g.: EN ISO 887:200	6, EN	alvanised or sherardized ISO 7089:2000, EN ISO 7	093:2000 or EN ISO 70	094:2000)		
3b	Filling washer	Steel, zinc plated, hot-	dip ga	alvanised or sherardized	Ta	1		
4	Internal threaded	Property class		Characteristic steel ultimate tensile strength	Characteristic steel yield strength	fracture		
4	anchor rod	acc. to EN ISO 898-1:2013		$f_{uk} = 500 \text{ N/mm}^2$ $f_{uk} = 800 \text{ N/mm}^2$	$f_{yk} = 400 \text{ N/mm}^2$ $f_{vk} = 640 \text{ N/mm}^2$			
Stai	nless steel A4 (Mate	erial 1.4401 / 1.4404 / 1.	4571	/ 1.4567 or 1.4541, acc. to / 1.4362 or 1.4578, acc. to 1.4565, acc. to EN 10088-	EN 10088-1:2014)			
		Property class		Characteristic steel ultimate tensile strength	Characteristic steel yield strength			
1	Threaded rod ¹⁾⁴⁾		50	$f_{uk} = 500 \text{ N/mm}^2$	$f_{yk} = 210 \text{ N/mm}^2$	A ₅ ≥ 8%		
		acc. to EN ISO 3506-1:2020	70	f _{uk} = 700 N/mm ²	$f_{yk} = 450 \text{ N/mm}^2$			
			80	art	$f_{yk} = 600 \text{ N/mm}^2$	$A_5 \ge 12\%^{(3)}$		
2	Hexagon nut 1)4)	acc. to EN ISO 3506-1:2020	50 70 80	for threaded rod class 50 for threaded rod class 70 for threaded rod class 80				
A2: Material 1.4301 / 1.4307 / 1.4311 / 1.4567 or 1.4541, acc. to EN 10088-1:2014 A4: Material 1.4401 / 1.4404 / 1.4571 / 1.4362 or 1.4578, acc. to EN 10088-1:2014 HCR: Material 1.4529 or 1.4565, acc. to EN 10088-1: 2014 (e.g.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000)								
3b	Filling washer	Stainless steel A4, Hig	h cor					
		Property class		Characteristic steel ultimate tensile strength	Characteristic steel yield strength	fracture		
4	Internal threaded	acc. to	50	$f_{uk} = 500 \text{ N/mm}^2$	$f_{yk} = 210 \text{ N/mm}^2$			
-	anchor rod ¹⁾²⁾	EN ISO 3506-1:2020	70	$f_{uk} = 700 \text{ N/mm}^2$	$f_{yk} = 450 \text{ N/mm}^2$	A ₅ > 8%		

¹⁾ Property class 70 or 80 for threaded rods and hexagon nuts up to M24 and Internal threaded anchor rods up to IG-M16

⁴⁾ Property class 80 only for stainless steel A4 and high corrosion resistance steel HCR


B+BTec Injection System BIS-HY GEN2 for concrete	
Product description Materials threaded rod and internal threaded rod	Annex A 4

²⁾ for IG-M20 only property class 50

 $^{^{3)}}$ A₅ > 8% fracture elongation if \underline{no} use for seismic performance category C2

Reinforcing bar Ø8 up to Ø32

- Minimum value of related rip area f_{R,min} according to EN 1992-1-1:2004+AC:2010
- Rib height of the bar shall be in the range 0,05d ≤ h ≤ 0,07d
 (d: Nominal diameter of the bar; h: Rip height of the bar)

Table A2: Materials

Part	Designation	Material
Reinf	orcing bars	
1	EN 1992-1-1-2007 762010 7665 (.	Bars and de-coiled rods class B or C f_{yk} and k according to NDP or NCL of EN 1992-1-1/NA $f_{uk} = f_{tk} = k \cdot f_{yk}$

B+BTec Injection System BIS-HY GEN2 for concrete	
Product description Materials reinforcing bar	Annex A 5

Specifications of intended use									
Anchorages subject to static and quasi-static loads:									
	for a working I	ife of 50 years	for a working life of 100 years						
Base material	Uncracked concrete	cracked concrete	Uncracked concrete	cracked concrete					
Hammer drilling (HD), Hammer drilling with hollow drill bit (HDB) or compressed air drilling (CD)	M8 to Ø8 to IG-M6 to	Ø32,	Ø8 to	M30, Ø32, DIG-M20					
Temperature Range:	II: - 40 °C III: - 40 °C	to +40 °C¹) to +80 °C²) to +120 °C³) to +160 °C⁴)	I: - 40 °C to +40 °C ¹⁾ II: - 40 °C to +80 °C ²⁾						
Anchorages subject to seismic	action:								
	for Performanc	e Category C1	for Performand	ce Category C2					
Base material		Cracked and und	racked concrete						
Hammer drilling (HD), Hammer drilling with hollow drill bit (HDB) or compressed air drilling (CD)	M8 to Ø8 to	•	M12 t	o M24					
Temperature Range:	III: - 40 °C	to +40 °C¹) to +80 °C²) to +120 °C³) to +160 °C⁴)	1						

^{1) (}max long-term temperature +24 °C and max short-term temperature +40 °C)

Base materials:

- Compacted, reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013 + A1:2016.
- Strength classes C20/25 to C50/60 according to EN 206:2013 + A1:2016.

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (all materials).
- For all other conditions according to EN 1993-1-4:2006+A1:2015 corresponding to corrosion resistance class:
 - Stainless steel Stahl A2 according to Annex A 4, Table A1: CRC II
 - Stainless steel Stahl A4 according to Annex A 4, Table A1: CRC III
 - High corrosion resistance steel HCR according to Annex A 4, Table A1: CRC V

B+BTec Injection System BIS-HY GEN2 for concrete	
Intended Use Specifications	Annex B 1
GPGGIIIGATIONIO	

²⁾ (max long-term temperature +50 °C and max short-term temperature +80 °C) ³⁾ (max long-term temperature +72 °C and max short-term temperature +120 °C)

^{4) (}max long-term temperature +100 °C and max short-term temperature +160 °C)

Page 11 of European Technical Assessment ETA-19/0131 of 29 November 2021

English translation prepared by DIBt

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- The anchorages are designed in accordance to EN 1992-4:2018 and Technical Report TR 055, Edition February 2018

Installation:

- Dry, wet concrete or flooded bore holes (not sea-water).
- Hole drilling by hammer (HD), hollow (HDB) or compressed air drill mode (CD).
- · Overhead installation allowed.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- The injection mortar is assessed for installation at minimum concrete temperature of -5°C, where subsequently the temperature in the concrete does not rise at a rapid rate, i.e. from the minimum installation temperature to 24°C within a 12-hour period.

B+BTec Injection System BIS-HY GEN2 for concrete	
Intended Use Specifications	Annex B 2

Table B1: Installation parameters for threaded rod											
Anchor size	Anchor size M8 M10 M12 M16 M20 M24 M27 M3								M30		
Diameter of elemen	t	$d = d_{nom}$	[mm]	8	10	12	16	20	24	27	30
Nominal drill hole di	ameter	d ₀	[mm]	10	12	14	18	22	28	30	35
F(();		h _{ef,min}	[mm]	60	60	70	80	90	96	108	120
Effective embedmer	п аерті	h _{ef,max}	[mm]	160	200	240	320	400	480	540	600
Diameter of	Prepositioned ins	stallation d _f ≤	[mm]	9	12	14	18	22	26	30	33
clearance hole in the fixture ¹⁾	Push through i	nstallation d _f	[mm]	12	14	16	20	24	30	33	40
Maximum torque mo	oment	max T _{inst} ≤	[Nm]	10	20	402)	60	100	170	250	300
Minimum thickness of member		h _{min}	[mm]		_f + 30 m : 100 mr			1	h _{ef} + 2d ₀		
Minimum spacing		s _{min}	[mm]	40	50	60	75	95	115	125	140
Minimum edge distance		c _{min}	[mm]	35	40	45	50	60	65	75	80

¹⁾ For application under seismic loading the diameter of clearance hole in the fixture shall be at maximum d₁ + 1mm or alternatively the annular gap between fixture and threaded rod shall be filled force-fit with mortar.

Table B2: Installation parameters for rebar

Rebar size			Ø 81)	Ø 10 ¹⁾	Ø 12 ¹⁾	Ø 14	Ø 16	Ø 20	Ø	24 1)	Ø 2	25 ¹⁾	Ø 28	Ø 32
Diameter of element	d = d _{nom}	[mm]	8	10	12	14	16	20	2	4	2	5	28	32
Nominal drill hole diameter	d ₀	[mm]	10 12	12 14	14 16	18	20	25	30	32	30	32	35	40
Effective embedment depth	h _{ef,min}	[mm]	60	60	70	75	80	90	9	6	10	0	112	128
Enective embedment depth	h _{ef,max}	[mm]	160	200	240	280	320	400	48	30	50	00	560	640
Minimum thickness of member	h _{min}	[mm]		h _{ef} + 30 mm ≥ 100 mm			$h_{ef} + 2d_0$							
Minimum spacing	s _{min}	[mm]	40	50	60	70	75	95	12	20	12	20	130	150
Minimum edge distance	c _{min}	[mm]	35	40	45	50	50	60	7	0	70	0	75	85

¹⁾ both nominal drill hole diameter can be used

Table B3: Installation parameters for Internal threaded rod

Anchor size			IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20
Internal diameter of sleeve	d ₂	[mm]	6	8	10	12	16	20
Outer diameter of sleeve1)	d = d _{nom}	[mm]	10	12	16	20	24	30
Nominal drill hole diameter	d ₀	[mm]	12	14	18	22	28	35
Effective embedment depth	h _{ef,min}	[mm]	60	70	80	90	96	120
Effective embedment depth	h _{ef,max}	[mm]	200	240	320	400	480	600
Diameter of clearance hole in the fixture	d _f ≤	[mm]	7	9	12	14	18	22
Maximum torque moment	max T _{inst} ≤	[Nm]	10	10	20	40	60	100
Thread engagement length min/max	l _{IG}	[mm]	8/20	8/20	10/25	12/30	16/32	20/40
Minimum thickness of member h _{min} [mm]		h _{ef} + 30 mm ≥ 100 mm		h _{ef} + 2d ₀				
Minimum spacing	s _{min}	[mm]	50	60	75	95	115	140
Minimum edge distance	c _{min}	[mm]	40	45	50	60	65	80

¹⁾ With metric threads according to EN 1993-1-8:2005+AC:2009

B+BTec Injection System BIS-HY GEN2 for concrete Intended Use Installation parameters Annex B 3

²⁾ Maximum Torque moment for M12 with steel Grade 4.6 is 35 Nm

Table B4	l: Paran	neter clea	ning and s	etting	g tool	s				
					roomil	Market Mark				
Threaded Rod	Rebar	Internal threaded rod	d ₀ Drill bit - Ø HD, HDB, CD		ь h - Ø	d _{b,min} min. Brush - Ø	Piston plug	Installation direction and use of piston plug		
[mm]	[mm]	[mm]	[mm]		[mm]	[mm]		1		
M8	8		10	RB10	11,5	10,5		•	•	
M10	8 / 10	IG-M6	12	RB12	13,5	12,5		No olug	roguirod	
M12	10 / 12	IG-M8	14	RB14	15,5	14,5		No plug	required	
	12		16	RB16	17,5	16,5				
M16	14	IG-M10	18	RB18	20,0	18,5	VS18			
	16		20	RB20	22,0	20,5	VS20			
M20		IG-M12	22	RB22	24,0	22,5	VS22			
	20		25	RB25	27,0	25,5	VS25	h _{ef} >	h .>	
M24		IG-M16	28	RB28	30,0	28,5	VS28		h _{ef} >	all
M27	24 / 25		30	RB30	31,8	30,5	VS30	250 mm	250 mm	
	24 / 25		32	RB32	34,0	32,5	VS32			
M30	28	IG-M20	35	RB35	37,0	35,5	VS35			
		I	1 40				1 1/0/40	1	1	1

32

CAC - Rec. compressed air tool (min 6 bar)

VS40

MAC - Hand pump (volume 750 ml)

Drill bit diameter (d₀): 10 mm to 20 mm

CAC - Rec. compressed air to

Drill bit diameter (d₀): all diameters

RB40

43,5

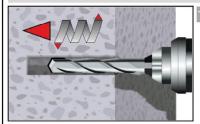
40

Drill hole depth (h_0) : < 10 d_s Only in uncracked concrete

40,5

HDB - Hollow drill bit system

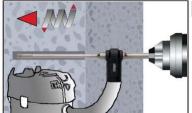
Drill bit diameter (d₀): all diameters


The hollow drill bit system contains the Heller Duster Expert hollow drill bit and a class M vacuum with minimum negative pressure of 253 hPa \underline{and} flow rate of minimum 150 m³/h (42 l/s).

B+BTec Injection System BIS-HY GEN2 for concrete	
Intended Use Cleaning and setting tools	Annex B 4

Installation instructions

Drilling of the bore hole

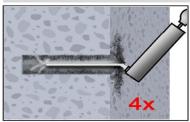


Hammer (HD) or compressed air drilling (CD)

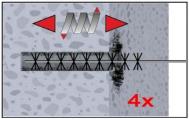
Drill a hole into the base material to the size and embedment depth required by the selected anchor (Table B1, B2, or B3).

Proceed with Step 2.

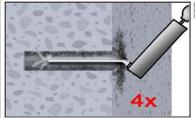
In case of aborted drill hole, the drill hole shall be filled with mortar.


Hollow drill bit system (HDB) (see Annex B 3)

Drill a hole into the base material to the size and embedment depth required by the selected anchor (Table B1, B2, or B3). This drilling system removes the dust and cleans the bore hole during drilling (all conditions). Proceed with Step 3.


In case of aborted drill hole, the drill hole shall be filled with mortar.

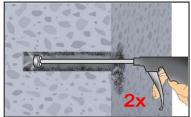
Attention! Standing water in the bore hole must be removed before cleaning.


MAC: Cleaning for dry and wet bore hole with diameter $d_0 \le 20$ mm and bore hole depth $h_0 \le 10 d_{nom}$ (uncracked concrete only!)

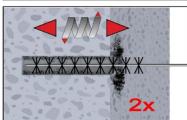
Starting from the bottom or back of the bore hole, blow the hole clean with handpump (Annex B 4) a minimum of four times until return air stream is free of noticeable dust.

Check brush diameter (Table B4). Brush the hole with an appropriate sized wire brush $> d_{b,min}$ (Table B4) a minimum of four times in a twisting motion. If the bore hole ground is not reached with the brush, a brush extension must be used.

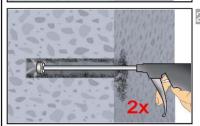
Finally blow the hole clean again with handpump (Annex B 4) a minimum of four times until return air stream is free of noticeable dust.

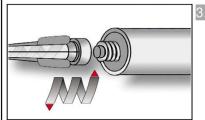

After cleaning, the bore hole has to be protected against re-contamination in an appropriate way, until dispensing the mortar in the bore hole. If necessary, the cleaning has to be repeated directly before dispensing the mortar. In-flowing water must not contaminate the bore hole again.

B+BTec Injection System BIS-HY GEN2 for concrete	
Intended Use Installation instructions	Annex B 5

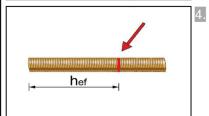


Installation instructions (continuation)

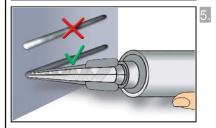

CAC: Cleaning for dry, wet and water-filled bore holes with all diameter in uncracked and cracked concrete


2a. Starting from the bottom or back of the bore hole, blow the hole clean with compressed air (min. 6 bar) (Annex B 4) a minimum of two times until return air stream is free of noticeable dust. If the bore hole ground is not reached an extension shall be used.

Check brush diameter (Table B4). Brush the hole with an appropriate sized wire brush $> d_{b,min}$ (Table B5) a minimum of two times. If the bore hole ground is not reached with the brush, a brush extension shall be used (Table B5).



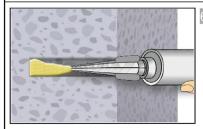
Finally blow the hole clean again with compressed air (min. 6 bar) (Annex B 4) a minimum of two times until return air stream is free of noticeable dust. If the bore hole ground is not reached an extension shall be used.



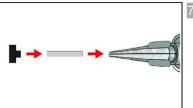
Attach the supplied static-mixing nozzle to the cartridge and load the cartridge into the correct dispensing tool.

For every working interruption longer than the recommended working time (Table B5) as well as for new cartridges, a new static-mixer shall be used.

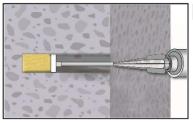
Prior to inserting the anchor rod into the filled bore hole, the position of the embedment depth shall be marked on the anchor rods.



Prior to dispensing into the anchor hole, squeeze out separately a minimum of three full strokes and discard non-uniformly mixed adhesive components until the mortar shows a consistent grey colour.


B+BTec Injection System BIS-HY GEN2 for concrete	
Intended Use Installation instructions (continuation)	Annex B 6

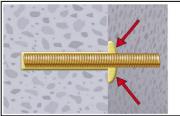
Installation instructions (continuation)



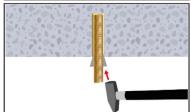
Starting from the bottom or back of the cleaned anchor hole, fill the hole up to approximately two-thirds with adhesive. Slowly withdraw the static mixing nozzle as the hole fills to avoid creating air pockets. If the bottom or back of the anchor hole is not reached, an appropriate extension nozzle must be used. Observe the gel-/ working times given in Table B5.


Piston plugs shall be used according to Table B4 for the following applications:

- Horizontal assembly (horizontal direction) and ground erection (vertical downwards direction): Drill bit-Ø d₀ ≥ 18 mm and embedment depth h_{ef} > 250mm
- Overhead assembly (vertical upwards direction): Drill bit- \emptyset d₀ \ge 18 mm Assemble mixing nozzle, extension and piston plug before injecting mortar.


Insert piston plug to back of the hole and inject adhesive. If the bottom or back of the anchor hole is not reached, an appropriate extension nozzle must be used.

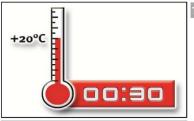
During injection the piston plug is naturally pushed out of the borehole by the back pressure of the mortar. Observe the gel-/ working times given in Table B5.



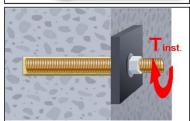
Push the threaded rod or reinforcing bar into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment mark has reached the surface level.

The anchor shall be free of dirt, grease, oil or other foreign material.

After inserting the anchor, the annular gab between anchor rod and concrete, in case of a push through installation additionally also the fixture, must be complete filled with mortar. If excess mortar is not visible at the top of the hole, the requirement is not fulfilled and the application has to be renewed.



11. For overhead application the anchor rod shall be fixed (e.g. wedges) until the mortar has started to harden.


B+BTec Injection System BIS-HY GEN2 for concrete	
Intended Use Installation instructions (continuation)	Annex B 7

Installation instructions (continuation)

Allow the adhesive to cure to the specified time prior to applying any load or torque. Do not move or load the anchor until it is fully cured (attend Table B5).

After full curing, the add-on part can be installed with up to the max. torque (Table B1 or B3) by using a calibrated torque wrench. In case of prepositioned installation the annular gab between anchor and fixture can be optional filled with mortar. Therefor substitute the washer by the filling washer and connect the mixer reduction nozzle to the tip of the mixer. The annular gap is filled with mortar, when mortar oozes out of the washer.

Table B5: Maximum working time and minimum curing time

Concrete	crete temperature		e temperature		concrete temperature		Gelling working time	Minimum curing time in dry concrete	Minimum curing time in wet concrete
- 5 °C	to	- 1 °C	50 min	5 h	10 h				
0 °C	to	+ 4 °C	25 min	3,5 h	7 h				
+ 5 °C	to	+ 9 °C	15 min	2 h	4 h				
+ 10 °C	to	+ 14 °C	10 min	1 h	2 h				
+ 15 °C	to	+ 19 °C	6 min	40 min	80 min				
+ 20 °C	to	+ 29 °C	3 min	30 min	60 min				
+ 30 °C	to	+ 40 °C	2 min	30 min	60 min				
Cartridge	temp	erature	+5°C to +40°C						

B+BTec Injection System BIS-HY GEN2 for concrete	
Intended Use Installation instructions (continuation) Curing time	Annex B 8

T	able C1: Characteristic values resistance of threaded		el ten	sion r	esistar	nce ai	nd ste	el sh	ear		
Si	ze			M8	M10	M12	M16	M20	M24	M27	M30
Cr	oss section area	As	[mm²]	36,6	58	84,3	157	245	353	459	561
Cr	naracteristic tension resistance, Steel failu	re 1)		•					•		
Sto	eel, Property class 4.6 and 4.8	N _{Rk,s}	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
Sto	eel, Property class 5.6 and 5.8	N _{Rk,s}	[kN]	18 (17)	29 (27)	42	78	122	176	230	280
Ste	eel, Property class 8.8	N _{Rk,s}	[kN]	29 (27)	46 (43)	67	125	196	282	368	449
Sta	ainless steel A2, A4 and HCR, class 50	N _{Rk,s}	[kN]	18	29	42	79	123	177	230	281
Sta	ainless steel A2, A4 and HCR, class 70	N _{Rk,s}	[kN]	26	41	59	110	171	247	_3)	_3)
Sta	ainless steel A4 and HCR, class 80	N _{Rk,s}	[kN]	29	46	67	126	196	282	_3)	_3)
Cr	naracteristic tension resistance, Partial fac	tor ²⁾									
Ste	eel, Property class 4.6 and 5.6	$\gamma_{Ms,N}$	[-]				2,0)			
Ste	eel, Property class 4.8, 5.8 and 8.8	γ _{Ms,N}	[-]				1,	5			
Sta	ainless steel A2, A4 and HCR, class 50	γ _{Ms,N}	[-]				2,8	6			
Sta	ainless steel A2, A4 and HCR, class 70	γ _{Ms,N}	[-]				1,8	i7			
Stainless steel A4 and HCR, class 80 $\gamma_{Ms,N}$ [-] 1,6											
Cr	naracteristic shear resistance, Steel failure	, 1)			,					•	
_	Steel, Property class 4.6 and 4.8	V ⁰ _{Rk,s}	[kN]	9 (8)	14 (13)	20	38	59	85	110	135
arm	Steel, Property class 5.6 and 5.8	V ⁰ Rk,s	[kN]	11 (10)	17 (16)	25	47	74	106	138	168
evel	Steel, Property class 8.8	V ⁰ Rk,s	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
Į	Stainless steel A2, A4 and HCR, class 50	V ⁰ Rk,s	[kN]	9	15	21	39	61	88	115	140
Without lever	Stainless steel A2, A4 and HCR, class 70	V ⁰ Rk,s	[kN]	13	20	30	55	86	124	_3)	_3)
>	Stainless steel A4 and HCR, class 80	V ⁰ Rk,s	[kN]	15	23	34	63	98	141	_3)	_3)
	Steel, Property class 4.6 and 4.8	M ⁰ Rk,s	[Nm]	15 (13)	30 (27)	52	133	260	449	666	900
arm	Steel, Property class 5.6 and 5.8	M ⁰ Rk,s	[Nm]	19 (16)	37 (33)	65	166	324	560	833	1123
	Steel, Property class 8.8	M ⁰ Rk,s		30 (26)	60 (53)	105	266	519	896	1333	1797
With lever	Stainless steel A2, A4 and HCR, class 50	M ⁰ Rk.s	[Nm]	19	37	66	167	325	561	832	1125
×	Stainless steel A2, A4 and HCR, class 70	M ⁰ Rk,s	[Nm]	26	52	92	232	454	784	_3)	_3)
	Stainless steel A4 and HCR, class 80	M ⁰ _{Rk,s}	[Nm]	30	59	105	266	519	896	_3)	_3)
Cł	naracteristic shear resistance, Partial facto	r ²⁾									
Ste	eel, Property class 4.6 and 5.6	γ _{Ms,V}	[-]	1,67							
Ste	eel, Property class 4.8, 5.8 and 8.8	γ _{Ms,V}	[-]	1,25							
Sta	ainless steel A2, A4 and HCR, class 50	γ _{Ms,V}	[-]	2,38							
Sta	ainless steel A2, A4 and HCR, class 70	γ _{Ms,V}	[-]				1,5	6	·	·	
Stainless steel A4 and HCR, class 80			[-]				1,3	3			

¹⁾ Values are only valid for the given stress area As. Values in brackets are valid for undersized threaded rods with smaller stress area A_s for hot-dip galvanised threaded rods according to EN ISO 10684:2004+AC:2009.

in absence of national regulation

Anchor type not part of the ETA

B+BTec Injection System BIS-HY GEN2 for concrete	
Performances Characteristic values for steel tension resistance and steel shear resistance of threaded rods	Annex C 1

Table C2:	Characteristic values for Concrete cone failure and Splitting with all kind of
	action

Anchor size				All Anchor types and sizes
Concrete cone f	ailure		•	
Jncracked concr	ete	k _{ucr,N}	[-]	11,0
Cracked concrete)	k _{cr,N}	[-]	7,7
Edge distance		c _{cr,N}	[mm]	1,5 h _{ef}
Axial distance		s _{cr,N}	[mm]	2 c _{cr,N}
Splitting		•	•	
	h/h _{ef} ≥ 2,0			1,0 h _{ef}
dge distance	$2.0 > h/h_{ef} > 1.3$	C _{cr,sp}	[mm]	$2 \cdot h_{ef} \left(2,5 - \frac{h}{h_{ef}} \right)$
	h/h _{ef} ≤ 1,3			2,4 h _{ef}
xial distance		s _{cr,sp}	[mm]	2 c _{cr,sp}

B+BTec Injection System BIS-HY GEN2 for concrete

Performances

Characteristic values for Concrete cone failure and Splitting with all kind of action

Annex C 2

	or size threaded ro	d			М8	M10	M12	M16	M20	M24	M27	M30	
Steel f			T.N.	1			Λ .	/	- - -	1- 04)			
	cteristic tension resi	stance	N _{Rk,s}	[kN]	A _s • f _{uk} (or see Table C1)								
Partial			γMs,N	[-]	[-] see Table C1								
	ined pull-out and o		nd concrete C	20/25									
		ance in uncracke			17	17	10	4.5	4.4	10	10	10	
Temperature range	I: 40°C/24°C	Dry, wet	^τ Rk,ucr	[N/mm²]	17	17	16	15	14	13	13	13	
ature	II: 80°C/50°C	concrete and	^τ Rk,ucr	[N/mm ²]	17	17	16	15	14	13	13	13	
pera	III: 120°C/72°C	flooded bore hole	^τ Rk,ucr	[N/mm²]	15	14	14	13	12	12	11	11	
Ten	IV: 160°C/100°C		^τ Rk,ucr	[N/mm²]	12	11	11	10	9,5	9,0	9,0	9,0	
	cteristic bond resist	ance in cracked	concrete C20	/25		1							
ange	I: 40°C/24°C		^τ Rk,cr	[N/mm²]	7,0	7,5	8,0	9,0	8,5	7,0	7,0	7,0	
Femperature range	II: 80°C/50°C	Dry, wet concrete and	τ _{Rk,cr}	[N/mm²]	7,0	7,5	8,0	9,0	8,5	7,0	7,0	7,0	
oerati	III: 120°C/72°C	flooded bore hole	^τ Rk,cr	[N/mm²]	6,0	6,5	7,0	7,5	7,0	6,0	6,0	6,0	
Temp	IV: 160°C/100°C		τ _{Rk,cr}	[N/mm²]	5,5	5,5	6,0	6,5	6,0	5,5	5,5	5,5	
Reduktion factor ψ^0_{SUS} in cracked and uncracked concrete C20/25													
range	I: 40°C/24°C		Ψ ⁰ sus					0,9	90				
	II: 80°C/50°C	Dry, wet concrete and						0,	87				
eratu	III: 120°C/72°C	flooded bore hole		[-]	0,75								
Гетр	IV: 160°C/100°C	Tiole			0,66								
		1	C25/30	1,02									
			C30/37					1,0	04				
Increas	sing factors for cond	crete	C35/45					1,0	07				
Ψ_{C}			C40/50					1,0					
			C45/55					1,0					
Concr	ete cone failure		C50/60					1,	10				
Ooner		televant paramet	er					see Ta	ble C2				
Splitti		•											
		lelevant paramet	er					see Ta	ble C2				
ınstall	ation factor									No Per	formar	000	
for dry	for dry and wet concrete MAC CAC						1,2				essed	ice	
ior dry			γinst	[-]				1					
for floo	oded bore hole	HDB CAC						1,	<u>,2</u> ,4				
101 1100	ded bore flore	JOAO							, ,				
B+R1	Гес Injection Syst	em BIS-HV GF	N2 for conc	rete									
וטדטו	i co injection dyst	om bio-iii de	112 101 00110										

for flooded bore hole

CAC

1,4

Table C4: Charac	cteristic value		on loads (unde	r stat	ic an	d qua	ısi-sta	atic a	ction		
Anchor size threaded ro		- roo years		M8	M10	M12	M16	M20	M24	M27	M30	
Steel failure						•						
Characteristic tension res	sistance	N _{Rk,s}	[kN]	A _s ⋅ f _{uk} (or see Table C1)								
Partial factor		γ _{Ms,N}	[-]	see Table C1								
Combined pull-out and	concrete failure											
Characteristic bond resis	tance in uncracke	ed concrete C2	0/25									
Temperature range C.05/0.08 :I. C.05/0.0	Dry, wet concrete and	^τ Rk,ucr,100	[N/mm²]	17	17	16	15	14	13	13	13	
Tempe range II: 80°C/50°C	C/50°C flooded bore hole hole flooded bore	^τ Rk,ucr,100	[N/mm²]	17	17	16	15	14	13	13	13	
Characteristic bond resis	tance in cracked	concrete C20/2	25									
oge I: 40°C/24°C	Dry, wet concrete and	^τ Rk,cr,100	[N/mm²]	5,5	6,0	6,5	6,5	6,5	6,5	6,5	6,5	
olt oo	flooded bore hole	^τ Rk,cr,100	[N/mm²]	5,5	6,0	6,5	6,5	6,5	6,5	6,5	6,5	
		C25/30	1,02									
		C30/37		1,04								
Increasing factors for cor	crete	C35/45		1,07								
ψ c		C40/50		1,08								
		C45/55						,09				
		C50/60					1,	,10				
Concrete cone failure	2-1						_	-1-1- 00	`			
	Relevant paramet	er					see 1	able C2	<u>'</u>			
Splitting	Polovant paramet	or					000 T	able C2)			
Installation factor	Relevant paramet	C I					see 1	able 02	-			
	MAC			1 12 1						erformance ssessed		
for dry and wet concrete	CAC	γ_{inst}	[-]									
	HDB						1	,2				
	0.4.0		1									

B+BTec Injection System BIS-HY GEN2 for concrete	
Performances Characteristic values of tension loads under static and quasi-static action	Annex C 4

Anchor size threaded rod			M8	M10	M12	M16	M20	M24	M27	M30
Steel failure without lever arm		,				•				•
Characteristic shear resistance Steel, strength class 4.6, 4.8 and 5.6, 5.8	V ⁰ _{Rk,s}	[kN]			0,6 •	A _s ·f _{uk}	(or see	Table C	1)	
Characteristic shear resistance Steel, strength class 8.8 Stainless Steel A2, A4 and HCR, all strength classes	V ⁰ Rk,s	[kN]			0,5 •	A _s ∙ f _{uk}	(or see	Table C	1)	
Partial factor	$\gamma_{Ms,V}$	[-]				see	Table C	1		
Ductility factor	k ₇	[-]					1,0			
Steel failure with lever arm	1									
Characteristic bending moment	M ⁰ Rk,s	[Nm]	1,2 • W _{el} • f _{uk} (or see Table C1)							
Elastic section modulus	W _{el}	[mm³]						1387	1874	
Partial factor	γ _{Ms,V}	[-]				see	Table C	:1		
Concrete pry-out failure										
Factor	k ₈	[-]					2,0			
Installation factor	γ_{inst}	[-]					1,0			
Concrete edge failure										
Effective length of fastener	If	[mm]		n	nin(h _{ef} ; 1	2 · d _{nor}	n)		min(h _{ef} ;	300mm)
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	16	20	24	27	30
Installation factor	γinst	[-]					1,0			

B+BTec Injection System BIS-HY GEN2 for concrete	
Performances Characteristic values of shear loads under static and quasi-static action	Annex C 5

		aded anchor rods			IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20		
Steel fai	ilure ¹⁾											
Characte	eristic tension resi	stance, 5.8	N _{Rk,s}	[kN]	10	17	29	42	76	123		
Steel, st	rength class	8.8	N _{Rk,s}	[kN]	16	27	46	67	121	196		
Partial fa	actor, strength clas	ss 5.8 and 8.8	γ _{Ms,N}	[-]			1	,5				
	racteristic tension resistance, Stainle el A4 and HCR, Strength class 70 2) rial factor Inbined pull-out and concrete cone racteristic bond resistance in uncrack I: 40°C/24°C IV: 160°C/100°C III: 80°C/50°C III: 80°C/50°C III: 80°C/50°C III: 120°C/72°C III: 80°C/50°C III: 120°C/72°C III: 120°C/72°C IV: 160°C/100°C IV: 160°C/100°C IV: 160°C/100°C IV: 160°C/100°C IV: 160°C/100°C		N _{Rk,s}	[kN]	14	26	41	59	59 110 1			
Partial fa	actor		γ _{Ms,N}	[-]			1,87			2,86		
	eristic bond resista	ance in uncracked co	oncrete C	20/25		Г	1	Т	Г			
nre -	I: 40°C/24°C		^τ Rk,ucr	[N/mm ²]	17	16	15	14	13	13		
erat Ige	II: 80°C/50°C	Dry, wet concrete	^τ Rk,ucr	[N/mm ²]	17	16	15	14	13	13		
mpe rar	III: 120°C/72°C	flooded bore hole	^τ Rk,ucr	[N/mm ²]	14	14	13	12	12	11		
He L	IV: 160°C/100°C		τ _{Rk,ucr}	[N/mm²]	11	11	10	9,5	9,0	9,0		
Characte	eristic bond resista	nce in cracked cond	rete C20)/25								
a Le	I: 40°C/24°C		^τ Rk,cr	[N/mm ²]	7,5	8,0	9,0	8,5	7,0	7,0		
ratı ige	II: 80°C/50°C	Dry, wet concrete	τ _{Rk,cr}	[N/mm ²]	7,5	8,0	9,0	8,5	7,0	7,0		
npe ran	III: 120°C/72°C	flooded bore hole	τ _{Rk,cr}	[N/mm ²]	6,5	7,0	7,5	7,0	6,0	6,0		
TeT _	ailure¹) cteristic tension resistance, 5. strength class 5.8 and 8.8 factor, strength class 5.8 and 8.8 factor, strength class 5.8 and 8.8 factor resistance, Stainle 4 and HCR, Strength class 70 ²) factor factor factor fined pull-out and concrete cone 5. feristic bond resistance in uncrace for flooded bore for flooded bore flood		τ _{Rk,cr}	[N/mm ²]	5,5	6,0	6,5	6,0	5,5	5,5		
Reduktio	on factor ψ ⁰ sus in	cracked and uncracl	ked conc	rete C20/2	5		1					
							0.	90				
atu Je	UI: 80°C/50°C Dry, wet concluded	Dry, wet concrete	Ψ ⁰ sus				<u>_</u>	87				
Temberature Lemberature Lembe				[-]	0,75							
L L		I llooded bore flole			0,66							
	10. 100 0, 100 0		Ca	L 25/30	1,02							
				30/37				04				
Increasir	ng factors for cond	crete	C3	35/45			1,	07				
$\Psi_{\mathbf{c}}$				10/50				08				
			-	15/55				09				
Concret	te cone failure		l Ce	50/60			1,	10				
							see Ta	able C2				
	•						000 10					
-	-						see Ta	ible C2				
Installat	ion factor											
_			1			1,2			ormance a	ıssessed		
for dry a	nd wet concrete		γ _{inst}	[-]				,0				
for flood	ed hore hole		1					<u>,2</u> ,4				
1) Faster The cl	nings (incl. nut and haracteristic tension	washer) must comply n resistance for steel					rty class of	f the intern		d rod.		
Perform	nances	em BIS-HY GEN2						 	Annex (C 6		

1,4

Anahai	r size internal thro	orking life o				IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20
Steel fa		eaded anchor	ious			IG-IVIO	IG-IVIO	IG-WITO	IG-WIZ	IG-IVI IO	IG-IVIZU
	teristic tension res	istance. 5.	3	N _{Rk,s}	[kN]	10	17	29	42	76	123
	strength class	8.5	_	N _{Rk,s}	[kN]	16	27	46	67	121	196
Partial 1	factor, strength cla	ss 5.8 and 8.8		γ _{Ms,N}	[-]			1	,5	1	l
Charac	teristic tension res 4 and HCR, Streng	istance, Stainle		N _{Rk,s}	[kN]	14				110	124
Partial	· · · · · · · · · · · · · · · · · · ·			γMs,N	[-]		•	1,87	•	•	2,86
Combi	ned pull-out and	concrete cone		,							l
	teristic bond resist	ance in uncrac	ked c	oncrete C2	20/25			_			
Temperature range	I: 40°C/24°C	Dry, wet conc	rete	^τ Rk,ucr,100	[N/mm²]	17	16	15	14	13	13
Tempe rar	II: 80°C/50°C	flooded bore h	nole	^τ Rk,ucr,100	[N/mm²]	17	16	15	14	13	13
	teristic bond resist	ance in cracke	d con	crete C20/	25						
Temperature range	I: 40°C/24°C	Dry, wet conc	rete	^τ Rk,cr,100	[N/mm²]	6,0	6,5	6,5	6,5	6,5	6,5
Tempe rar	II: 80°C/50°C	flooded bore h	nole	^τ Rk,cr,100	[N/mm²]	6,0	6,5	6,5	6,5	6,5	6,5
				C25/					,02		
				C30/					,04		
	sing factors for con-	crete	-	C35/					,07		
Ψ_{C}			ŀ	C45/					,08 ,09		
			ŀ	C50/					,10		
Concre	ete cone failure					ı			•		
Releva	nt parameter							see Ta	able C2		
Splittin	ng failure										
Releva	nt parameter							see Ta	able C2		
Installa	ation factor										
		MAC					1,2			ormance a	assessed
for dry	and wet concrete	CAC		γ_{inst}	[-]				,0		
		HDB		11131	''			1	,2		

¹⁾ Fastenings (incl. nut and washer) must comply with the appropriate material and property class of the internal threaded rod. The characteristic tension resistance for steel failure is valid for the internal threaded rod and the fastening element.

2) For IG-M20 strength class 50 is valid

for flooded bore hole

CAC

B+BTec Injection System BIS-HY GEN2 for concrete	
Performances Characteristic values of tension loads under static and quasi-static action	Annex C 7

tic val	ues of	shear	loads	under s	tatic an	d quas	i-static	action		
ed anch	or rods		IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20		
5.8	V ⁰ Rk,s	[kN]	5	9	15	21	38	61		
8.8	V ⁰ _{Rk,s}	[kN]	8	14	23	34	60	98		
nd 8.8	γ _{Ms,V}	[-]				1,25				
	V ⁰ Rk,s	[kN]	7 13 20 30			30	55	40		
	γMs,V	[-]	1,56 2,38							
	k ₇	[-]	1,0							
5.8	М ⁰ Rk,s	[Nm]	8	19	37	66	167	325		
8.8	М ⁰ _{Rk,s}	[Nm]	12	30	60	105	267	519		
nd 8.8	γ _{Ms,V}	[-]	1,25							
	М ⁰ _{Rk,s}	[Nm]	11	26	52	92	233	456		
	γ _{Ms,V}	[-]			1,56			2,38		
	k ₈	[-]				2,0				
	γinst	[-]				1,0				
	I _f	[mm]		min	(h _{ef} ; 12 • c	I _{nom})		min(h _{ef} ; 300mm		
	d _{nom}	[mm]	10	12	16	20	24	30		
	γinst	[-]			•	1,0				
	5.8 8.8 nd 8.8 5.8 8.8	5.8 V ⁰ _{Rk,s} 8.8 V ⁰ _{Rk,s} nd 8.8 V ⁰ _{Rk,s} nd 8.8 V ⁰ _{Rk,s} V ⁰ _{Rk,s} No N	5.8 V ⁰ _{Rk,s} [kN] 8.8 V ⁰ _{Rk,s} [kN] nd 8.8 Y _{Ms,V} [-] V ⁰ _{Rk,s} [kN] Y _{Ms,V} [-] 5.8 M ⁰ _{Rk,s} [Nm] 8.8 M ⁰ _{Rk,s} [Nm] nd 8.8 Y _{Ms,V} [-] M ⁰ _{Rk,s} [Nm] Y _{Ms,V} [-] K ₈ [-] Y _{inst} [-]	Section Sect	Section IG-M6 IG-M8 I	IG-M6 IG-M8 IG-M10	Section IG-M6 IG-M8 IG-M10 IG-M12	5.8 V ⁰ _{Rk,s} [kN] 5 9 15 21 38 8.8 V ⁰ _{Rk,s} [kN] 8 14 23 34 60 nd 8.8 γ _{Ms,V} [-] 1,25 V ⁰ _{Rk,s} [kN] 7 13 20 30 55 γ _{Ms,V} [-] 1,56 1,0 1,0 5.8 M ⁰ _{Rk,s} [Nm] 8 19 37 66 167 8.8 M ⁰ _{Rk,s} [Nm] 12 30 60 105 267 nd 8.8 γ _{Ms,V} [-] 1,25 1,25 92 233 γ _{Ms,V} [-] 1,56 1,56 1,56 k ₈ [-] 1,56 1,0 k ₈ [-] 1,0 1,0 l _f [mm] 10 12 16 20 24		

¹⁾ Fastenings (incl. nut and washer) must comply with the appropriate material and property class of the internal threaded rod. The characteristic tension resistance for steel failure is valid for the internal threaded rod and the fastening element.
2) For IG-M20 strength class 50 is valid

B+BTec Injection System BIS-HY GEN2 for concrete	
Performances Characteristic values of shear loads under static and quasi-static action	Annex C 8

Ancho	r size reinforcing	bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Steel fa	ailure									•				
Charac	teristic tension resi	stance	N _{Rk,s}	[kN]					A _s ·	f _{uk} 1)				
Cross	section area		A _s	[mm²]	50	79	113	154	201	314	452	491	616	804
Partial	factor		γ _{Ms,N}	[-]					1,	4 ²⁾				
	ned pull-out and o													
	teristic bond resist	ance in uncra	cked concre				1							
:ure	I: 40°C/24°C	Dry, wet	^τ Rk,ucr	[N/mm ²]	14	14	14	14	13	13	13	13	13	13
Temperature range	II: 80°C/50°C	concrete and	^τ Rk,ucr	[N/mm²]	14	14	14	14	13	13	13	13	13	13
an rai	III: 120°C/72°C	flooded	^τ Rk,ucr	[N/mm ²]	13	12	12	12	12	11	11	11	11	11
•	IV: 160°C/100°C	bore hole	^τ Rk,ucr	[N/mm²]	9,5	9,5	9,5	9,0	9,0	9,0	9,0	9,0	8,5	8,5
Charac	teristic bond resista	ance in crack	ed concrete	C20/25										
пe	I: 40°C/24°C	Dry, wet	^τ Rk,cr	[N/mm²]	5,5	5,5	6,0	6,5	6,5	6,5	6,5	7,0	7,0	7,0
nperatu range	II: 80°C/50°C	concrete and	^τ Rk,cr	[N/mm ²]	5,5	5,5	6,0	6,5	6,5	6,5	6,5	7,0	7,0	7,0
Temperature range	III: 120°C/72°C	flooded	^τ Rk,cr	[N/mm ²]	4,5	5,0	5,0	5,5	5,5	5,5	5,5	6,0	6,0	6,0
<u>–</u>	IV: 160°C/100°C	bore hole	^τ Rk,cr	[N/mm ²]	4,0	4,5	4,5	5,0	5,0	5,0	5,0	5,0	5,0	5,0
Redukt	tion factor ψ ⁰ sus in	cracked and	uncracked o	concrete C	20/25	•				•				
	I: 40°C/24°C								0,	90				
ıre ra	II: 80°C/50°C	Dry, wet concrete	Ψ ⁰ sus	.,					0,	87				
emperature range	III: 120°C/72°C	and flooded bore hole		[-]					0,	75				
Tem	IV: 160°C/100°C	pore noie							0,	66				
			C25							02				
lness =	sing footsus for	avata.	C30							04				
Increas Ψ _c	sing factors for cond	rete	C35		1,07 1,08									
r C			C45		1,08									
			C50		1,10									
Concre	ete cone failure		•						·					
Releva	nt parameter							:	see Ta	able C2	2			
Splittir														
	nt parameter								see Ta	able C2	2			
Installa	ation factor	144.0					4.5				<u> </u>			,
for day	and wet concrete	MAC CAC	4				1,2		- 1		Perfor	mance	asses	sed
ioi dry	and wet concrete	HDB	γ _{inst}	[-]						,0 ,2				
for floo	ded bore hole	CAC	1							<u>, </u>				
1) fuk sl	hall be taken from the	e specification	ns of reinforc	ing bars					<u> </u>	, .				
B+BT	ec Injection Syst	em BIS-HY	GEN2 for c	oncrete										
	mances									-		nnex	. ^ ^	

Tabl	e C10: Chara for a w	cteristic va			oads	und	er sta	atic a	and c	uasi	-stat	ic ac	tion	
Ancho	r size reinforcing	bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Steel f	ailure													
Charac	teristic tension re	sistance	$N_{Rk,s}$	[kN]					A_s •	f _{uk} 1)				
Cross	section area		A _s	[mm²]	50 79 113 154 201 314 452 491 616 804									
Partial	factor		γ _{Ms,N}	[-]	1,42)									
	ned pull-out and													
Charac	teristic bond resis	tance in uncra	acked concre	te C20/25										
emperature range	I: 40°C/24°C	[N/mm ²]	14	14	14	14	13	13	13	13	13	13		
Tempe	II: 80°C/50°C	^τ Rk,ucr,100	[N/mm²]	14	14	14	14	13	13	13	13	13	13	
Characteristic bond resistance in cracked concrete C20/25														
Temperature range	Dry, wet concrete			[N/mm²]	4,5	4,5	4,5	4,5	4,5	4,0	4,0	4,0	4,0	4,0
Tempe	II: 80°C/50°C	and flooded bore hole	^τ Rk,cr,100	[N/mm²]	4,5	4,5	4,5	4,5	4,5	4,0	4,0	4,0	4,0	4,0
		•	C25	/30	1,02									
			C30	/37	1,04									
	sing factors for cor	ncrete	C35		1,07									
ψС			C40		1,08									
			C45							09				
Conor	ete cone failure		C50.	/60					1,	10				
	int parameter								SAA T	able C	2			
Splittir	<u>'</u>				<u> </u>				355 16	JUIC O	<u>_</u>			
	nt parameter						see Ta	able C	 2					
	ation factor									40.0				
	MAC						1,2			No	Perfor	mance	asses	ssed
for dry	and wet concrete		,	1,0										
		γ _{inst} [-]		1,2										
for floo	ded bore hole		1,4											

 $^{^{1)}}$ f_{uk} shall be taken from the specifications of reinforcing bars $^{2)}$ in absence of national regulation

B+BTec Injection System BIS-HY GEN2 for concrete	
Performances Characteristic values of tension loads under static and quasi-static action	Annex C 10

Anchor size reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Steel failure without lever arm				•		•	•	•	•		•	
Characteristic shear resistance	V ⁰ Rk,s	[kN]					0,50	· A _s ·	f _{uk} 1)			
Cross section area	A _s	[mm²]	50	79	113	154	201	314	452	491	616	804
Partial factor	γ _{Ms,V}	[-]		•		•	•	1,5 ²⁾			•	
Ductility factor	k ₇	[-]						1,0				
Steel failure with lever arm		•	•									
Characteristic bending moment	M ⁰ Rk,s	[Nm]					1.2	w _{el} •	f _{uk} 1)			
Elastic section modulus	W _{el}	[mm³]	50	98	170	269	402	785	1357	1534	2155	3217
Partial factor	γ _{Ms,V}	[-]		•		•	•	1,5 ²⁾	•		•	
Concrete pry-out failure	•	•	•									
Factor	k ₈	[-]						2,0				
Installation factor	γinst	[-]						1,0				
Concrete edge failure		•										
Effective length of fastener	I _f	[mm]		ı	min(h _e	_{ef} ; 12 ·	· d _{nom})		min(h _{ef} ; 300	mm)
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	14	16	20	24	25	28	32
Installation factor	γ _{inst}	[-]		•		•		1,0			•	

 $^{^{1)}\} f_{uk}$ shall be taken from the specifications of reinforcing bars $^{2)}$ in absence of national regulation

B+BTec Injection System BIS-HY GEN2 for concrete	
Performances Characteristic values of shear loads under static and quasi-static action	Annex C 11

Anchor size threaded i	rod		М8	M10	M12	M16	M20	M24	M27	M30
Jncracked concrete C	20/25 under s	tatic and quasi-s	tatic acti	on for a	working	g life of	50 and 1	00 year	s	
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,031	0,032	0,034	0,037	0,039	0,042	0,044	0,046
I: 40°C/24°C II: 80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,040	0,042	0,044	0,047	0,051	0,054	0,057	0,060
Temperature range	[mm/(N/mm²)]	0,032	0,034	0,035	0,038	0,041	0,044	0,046	0,048	
III: 120°C/72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,042	0,044	0,045	0,049	0,053	0,056	0,059	0,062
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,121	0,126	0,131	0,142	0,153	0,163	0,171	0,179
IV: 160°C/100°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,124	0,129	0,135	0,146	0,157	0,168	0,176	0,184
Cracked concrete und	er static and o	quasi-static actio	n for a w	orking l	ife of 50	and 100) years			
Temperature range I: 40°C/24°C	δ _{N0} -factor	[mm/(N/mm²)]	0,081	0,083	0,085	0,090	0,095	0,099	0,103	0,10
II: 80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,104	0,107	0,110	0,116	0,122	0,128	0,133	0,137
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,084	0,086	0,088	0,093	0,098	0,103	0,107	0,110
III: 120°C/72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,108	0,111	0,114	0,121	0,127	0,133	0,138	0,143
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,312	0,321	0,330	0,349	0,367	0,385	0,399	0,412
IV: 160°C/100°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,321	0,330	0,340	0,358	0,377	0,396	0,410	0,424

¹⁾ Calculation of the displacement

 τ : action bond stress for tension $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-factor} \ \cdot \tau;$

 $\delta_{N\infty} = \delta_{N\infty}$ -factor $\cdot \tau$;

Table C13: Displacements under shear load¹⁾ (threaded rod)

Anchor size threa	Anchor size threaded rod					M16	M20	M24	M27	M30
Uncracked and cra	acked concrete und	er static and qua	asi-stati	c action						
All temperature	δ_{V0} -factor	[mm/kN]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03
ranges	$\delta_{V\infty}$ -factor	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05

¹⁾ Calculation of the displacement

V: action shear load

 $\begin{array}{l} \delta_{V0} = \delta_{V0}\text{-factor} ~\cdot V; \\ \delta_{V\infty} = \delta_{V\infty}\text{-factor} ~\cdot V; \end{array}$

B+BTec Injection System BIS-HY GEN2 for concrete	
Performances Displacements under static and quasi-static action (threaded rods)	Annex C 12

Table C14: Displa	acements u	nder tension	load¹) (lı	nternal t	hreaded	rod)						
Anchor size Internal thr	eaded rod		IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20				
Uncracked concrete un	der static and	quasi-static actio	n for a wo	rking life	of 50 and 1	00 years						
Temperature range	Temperature range I: $40^{\circ}\text{C}/24^{\circ}\text{C}$ δ_{N0} -factor $[\text{mm/(N/mm}^2)]$ 0,032 0,034 0,037 0,039 0,042 0,046											
II: 80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,042	0,044	0,047	0,051	0,054	0,060				
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,034	0,035	0,038	0,041	0,044	0,048				
III: 120°C/72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,044	0,045	0,049	0,053	0,056	0,062				
Temperature range	δ _{N0} -factor	[mm/(N/mm²)]	0,126	0,131	0,142	0,153	0,163	0,179				
IV: 160°C/100°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,129	0,135	0,146	0,157	0,168	0,184				
Cracked concrete under	r static and qua	asi-static action	for a work	ing life of	50 and 100	years						
Temperature range I: 40°C/24°C	δ_{N0} -factor	[mm/(N/mm²)]	0,083	0,085	0,090	0,095	0,099	0,106				
II: 80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,170	0,110	0,116	0,122	0,128	0,137				
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,086	0,088	0,093	0,098	0,103	0,110				
III: 120°C/72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,111	0,114	0,121	0,127	0,133	0,143				
Temperature range δ_{N0} -factor		[mm/(N/mm²)]	0,321	0,330	0,349	0,367	0,385	0,412				
IV: 160°C/100°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,330	0,340	0,358	0,377	0,396	0,424				

¹⁾ Calculation of the displacement

$$\begin{split} \delta_{\text{N0}} &= \delta_{\text{N0}}\text{-factor} \ \cdot \tau; \\ \delta_{\text{N}\infty} &= \delta_{\text{N}\infty}\text{-factor} \ \cdot \tau; \end{split}$$

 τ : action bond stress for tension

Table C15: Displacements under shear load¹⁾ (Internal threaded rod)

Anchor size Inter	nal threaded ro	t	IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20		
Uncracked and cracked concrete under static and quasi-static action										
All temperature	δ_{V0} -factor	[mm/kN]	0,07	0,06	0,06	0,05	0,04	0,04		
ranges	$\delta_{V\infty}$ -factor	[mm/kN]	0,10	0,09	0,08	0,08	0,06	0,06		

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}$ -factor · V;

V: action shear load

 $\delta_{V\infty} = \delta_{V\infty}\text{-factor} \cdot V;$

B+BTec Injection System BIS-HY GEN2 for concrete	
Performances Displacements under static and quasi-static action (Internal threaded anchor rod)	Annex C 13

Table C16: D	Table C16: Displacements under tension load ¹⁾ (rebar)												
Anchor size reinfo	orcing bar		Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32	
Uncracked concre	ete under sta	atic and quasi-s	tatic ac	tion for	a work	ing life	of 50 a	nd 100	years				
Temperature range δ_{N0} -factor [mm/(N/mm²)] 0,031 0,032 0,034 0,035 0,037 0,039 0,042 0,043 0,045 0,048													
I: 40°C/24°C II: 80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,040	0,042	0,044	0,045	0,047	0,051	0,054	0,055	0,058	0,063	
Temperature	δ_{N0} -factor	[mm/(N/mm²)]	0,032	0,034	0,035	0,036	0,038	0,041	0,044	0,045	0,047	0,050	
range III: 120°C/72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,042	0,044	0,045	0,047	0,049	0,053	0,056	0,057	0,060	0,065	
Temperature	δ_{N0} -factor	[mm/(N/mm²)]	0,121	0,126	0,131	0,137	0,142	0,153	0,163	0,164	0,172	0,186	
range IV: 160°C/100°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,124	0,129	0,135	0,141	0,146	0,157	0,168	0,169	0,177	0,192	
Cracked concrete	under statio	and quasi-stat	ic actio	n for a	workin	g life of	50 and	l 100 ye	ears				
Temperature range	δ _{N0} -factor	[mm/(N/mm²)]	0,081	0,083	0,085	0,087	0,090	0,095	0,099	0,099	0,103	0,108	
I: 40°C/24°C II: 80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,104	0,107	0,110	0,113	0,116	0,122	0,128	0,128	0,133	0,141	
Temperature	δ_{N0} -factor	[mm/(N/mm²)]	0,084	0,086	0,088	0,090	0,093	0,098	0,103	0,103	0,107	0,113	
range III: 120°C/72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,108	0,111	0,114	0,118	0,121	0,127	0,133	0,133	0,138	0,148	
Temperature	δ_{N0} -factor	[mm/(N/mm²)]	0,312	0,321	0,330	0,340	0,349	0,367	0,385	0,385	0,399	0,425	
range IV: 160°C/100°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,321	0,330	0,340	0,349	0,358	0,377	0,396	0,396	0,410	0,449	

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-factor} \ \cdot \tau; \qquad \qquad \tau\text{: action bond stress for tension}$

 $\delta_{N\infty} = \delta_{N\infty}\text{-factor} \ \cdot \tau;$

Table C17: Displacements under shear load¹⁾ (rebar)

Anchor size rein	Anchor size reinforcing bar			Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Uncracked and	cracked cond	tic and	quasi-s	tatic ac	tion							
All temperature	δ_{V0} -factor	[mm/kN]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03	0,03
ranges	$\delta_{V\infty}$ -factor	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05	0,04	0,04

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}\text{-factor } \cdot V; \qquad \qquad V\text{: action shear load}$

 $\delta_{V\infty} = \delta_{V\infty}\text{-factor} \quad V;$

B+BTec Injection System BIS-HY GEN2 for concrete	
Performances Displacements under static and quasi-static action (rebar)	Annex C 14

Table C18: Characteristic values of tension loads under seismic action (performance category C1) for a working life of 50 and 100 years

A I					840	8440	8440	8440	1100	1404	1407	1100
Ancho	r size threaded rod				M8	M10	M12	M16	M20	M24	M27	M30
Steel f	ailure											
Charac	teristic tension resist	N _{Rk,s,eq,C1}	[kN]				1,0 •	$N_{Rk,s}$				
Partial factor			γ _{Ms,N}	[-]				see Ta	able C1			
Combi	ned pull-out and co	ncrete failure										
Charac	Characteristic bond resistance in cracked and uncracked concrete C20/25											
ıre	I: 40°C/24°C	Dry, wet concrete and flooded bore	^τ Rk,eq,C1	[N/mm ²]	7,0	7,5	8,0	9,0	8,5	7,0	7,0	7,0
nperaturange	II: 80°C/50°C		^τ Rk,eq,C1	[N/mm ²]	7,0	7,5	8,0	9,0	8,5	7,0	7,0	7,0
Temperature range	III: 120°C/72°C		^τ Rk,eq,C1	[N/mm ²]	6,0	6,5	7,0	7,5	7,0	6,0	6,0	6,0
Te	IV: 160°C/100°C	hole	^τ Rk,eq,C1	[N/mm ²]	5,5	5,5	6,0	6,5	6,0	5,5	5,5	5,5
Increas	sing factors for concre	ete ψ _C	C25/30 to	C50/60	1,0							
Installa	ation factor											
for dry	for dry and wet concrete				1,0							
lior dry	and wel concrete	HDB	γ_{inst}	[-]				1	,2			
for floo	ded bore hole	CAC						1	,4			

Table C19: Characteristic values of shear loads under seismic action (performance category C1)

Anchor size threaded rod	M8	M10	M12	M16	M20	M24	M27	M30	
Steel failure									
Characteristic shear resistance (Seismic C1)	V _{Rk,s,eq,C1}	[kN]	0,70 • V ⁰ _{Rk,s}						
Partial factor	γ _{Ms,V}	[-]	see Table C1						
Factor for annular gap	$\alpha_{\sf gap}$	[-]	0,5 (1,0)1)						

¹⁾ Value in brackets valid for filled annular gab between anchor and clearance hole in the fixture. Use of special filling washer Annex A 3 is recommended

B+BTec Injection System BIS-HY GEN2 for concrete	
Performances Characteristic values of tension and shear loads under seismic action (performance category C1) for a working life of 50 and 100 years (threaded rod)	Annex C 15

Tabl	Table C20: Characteristic values of tension loads under seismic action (performance category C1) for a working life of 50 and 100 years													
Ancho	or size reinforcing	bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Steel f	failure				•	•					•		•	
Characteristic tension resistance N _{Rk,s,eq,C1} [kN]								1,0 • A	s • f _{uk}	1)				
Cross	section area		A _s	[mm²]	50	79	113	154	201	314	452	491	616	804
Partial factor Y _{Ms,N} [-]									1,	4 ²⁾				
Comb	Combined pull-out and concrete failure													
Charac	cteristic bond resist	acked cond	crete C	20/25										
ange	I: 40°C/24°C	Dry wet	^τ Rk,eq,C1	[N/mm ²]	5,5	5,5	6,0	6,5	6,5	6,5	6,5	7,0	7,0	7,0
ure ra	II: 80°C/50°C	Dry, wet concrete	^τ Rk,eq,C1	[N/mm ²]	5,5	5,5	6,0	6,5	6,5	6,5	6,5	7,0	7,0	7,0
Femperature range	III: 120°C/72°C	flooded	^τ Rk,eq,C1	[N/mm²]	4,5	5,0	5,0	5,5	5,5	5,5	5,5	6,0	6,0	6,0
Tem	IV: 160°C/100°C	bore hole	τ _{Rk,eq,C1}	[N/mm²]	4,0	4,5	4,5	5,0	5,0	5,0	5,0	5,0	5,0	5,0
Increa	sing factors for con-	crete ψ _C	C25/30 to	C50/60	1,0									
Install	ation factor		1											
for day	and wat concrete	CAC							1	,0				
Lior dry	and wet concrete	HDB	γ_{inst}	[-]					1	,2				
for floo	oded hore hole	CAC							1	4				

¹⁾ fuk shall be taken from the specifications of reinforcing bars

Table C21: Characteristic values of shear loads under seismic action (performance category C1)

Anchor size reinforcing bar	Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32		
Steel failure												
Characteristic shear resistance	V _{Rk,s,eq}	[kN]		0,35 • A _s • f _{uk} ¹⁾								
Cross section area	A _s	[mm²]	50	79	113	154	201	314	452	491	616	804
Partial factor	γ _{Ms,V}	[-]	1,5 ²⁾									
Factor for annular gap	$\alpha_{\sf gap}$	[-]	0,5 (1,0) ³⁾									

¹⁾ fuk shall be taken from the specifications of reinforcing bars

B+BTec Injection System BIS-HY GEN2 for concrete	
Performances Characteristic values of tension and shear loads under seismic action (performance category C1) for a working life of 50 and 100 years (rebar)	Annex C 16

²⁾ in absence of national regulation

²⁾ in absence of national regulation

³⁾ Value in brackets valid for filled annular gab between anchor and clearance hole in the fixture. Use of special filling washer Annex A 3 is recommended

Table C22: Characteristic values of tension loads under seismic action (performance category C2) for a working life of 50 and 100 years

Ancho	r size threaded rod				M12	M16	M20	M24	
Steel fa	ailure								
Steel, s Stainle:	Characteristic tension resistance, Steel, strength class 8.8 Stainless Steel A4 and HCR, Strength class ≥70			[kN]	1,0 • N _{Rk,s}				
Partial	artial factor Y _{Ms,N} [-] see Table C1								
Combi	ned pull-out and co	ncrete failure							
Charac	teristic bond resistar	nce in cracked a	nd uncracked	concrete C2	0/25				
<u>e</u>	I: 40°C/24°C	Dry, wet	^τ Rk,eq,C2	[N/mm ²]	3,6	3,5	3,3	2,3	
nperatu range	II: 80°C/50°C		τ _{Rk,eq,C2}	[N/mm ²]	3,6	3,5	3,3	2,3	
Temperature range	III: 120°C/72°C	flooded bore	τ _{Rk,eq,C2}	[N/mm ²]	3,1	3,0	2,8	2,0	
_ _ _	IV: 160°C/100°C	hole	τ _{Rk,eq,C2}	[N/mm ²]	2,5	2,7	2,5	1,8	
Increas	sing factors for concr	ete ψ_{c}	C25/30 to	C50/60	1,0				
Installa	ation factor		-						
for dry and wet concrete CAC		γ _{inst}	[-]	1,0 1,2					
for floo	ded bore hole	CAC				1	,4		

Table C23: Characteristic values of shear loads under seismic action (performance category C2)

Anchor size threaded rod			M12	M16	M20	M24				
Steel failure	Steel failure									
Characteristic shear resistance Steel, strength class 8.8 Stainless Steel A4 and HCR, Strength class ≥70	V _{Rk,s,eq,C2}	[kN]	0,70 • V ⁰ _{Rk,s}							
Partial factor	γ _{Ms,V}	[-]	see Table C1							
Factor for annular gap	α _{gap}	[-]	0,5 (1,0)1)							

¹⁾ Value in brackets valid for filled annular gab between anchor and clearance hole in the fixture. Use of special filling washer Annex A 3 is recommended

B+BTec Injection System BIS-HY GEN2 for concrete	
Performances Characteristic values of tension and shear loads under seismic action (performance category C2) for a working life of 50 and 100 years (threaded rod)	Annex C 17

Table C24: Displacements under tension load ¹⁾ (threaded rod)										
Anchor size threaded rod M12 M16 M20 M24										
Cracked concrete under seismic action (performance category C2)										
All temperature ranges	δ N,eq,C2(DLS)	[mm]	0,24	0,27	0,29	0,27				
	δ N,eq,C2(ULS)	[mm]	0,55	0,51	0,50	0,58				

Table C25: Displacements under shear load (threaded rod)

Anchor size threa	ded rod		M12	M16	M20	M24				
Cracked concrete under seismic action (performance category C2)										
All temperature ranges	$\delta_{V,eq,C2(DLS)}$	[mm]	3,6	3,0	3,1	3,5				
	$\delta_{V,eq,C2(ULS)}$	[mm]	7,0	6,6	7,0	9,3				

B+BTec Injection System BIS-HY GEN2 for concrete	
Performances Displacements under seismic action (performance category C2) (threaded rods)	Annex C 18