
Preventing Respiratory Infections & Indoor Allergies

Presented to
Rio Hondo/Vernon Rotary Club
9 March 2023

Anu Sood, PE CPP Founder & CEO LUV Systems, Inc.

anu@luvsystems.com

+1 310-803-7280 mobile

Respiratory infections

We are vulnerable to respiratory infections and allergens when we are indoors

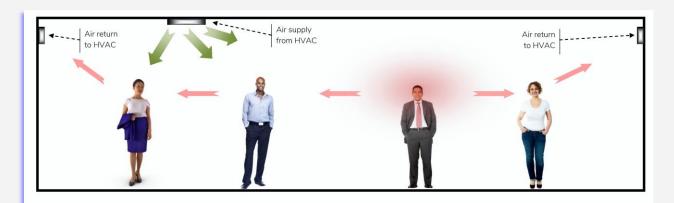
Masks

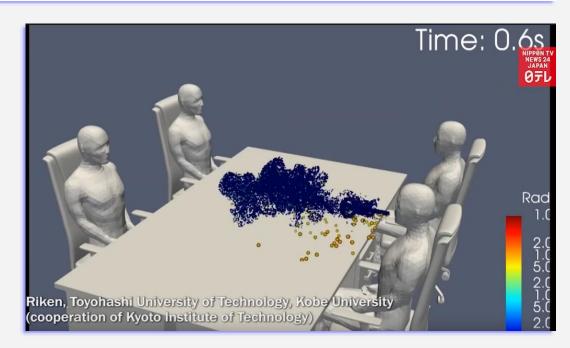
Vaccines + Testing

Distancing

Current approaches are *defensive*

Proactive and permanent solutions are urgently needed


Respiratory infections, continued


- The problem: We share the air indoors and generally without any air disinfection
- One breath every few seconds
- We each breath ~30 pounds of air every day
- We ensure our food and water are germ-free
- No regulations for indoor air except for comfort-based standards

Two airborne infection mechanisms

- Studied over 150 scientific references and academic papers
- Two components of airborne pathogen spread (well-mixed and localized hybrid):
 - Pathogen fog (buildup; long-term risk)
 - Proximal respiratory jet (short-term risk)
- Clean outside air "dilutes" the pathogen fog
 - One air change/hour (ACH) → removes 63% of pathogens in the fog
 - Surgical rooms achieve ~12 ACH
 - Energy-intensive
- Strategic, directional airflow to both break up proximal respiratory jets & eliminate pathogen fog

IAQ strategies

High ventilation

(Air Changes)

- Energy intensive
- Does not address proximal exposures
- May aggravate downwind channeling exposure (Taiwan restaurant study with window A/C)

Chemicals

O₃, Ionization, PCO

- May expose people and pets to hazardous chemicals/ions
- Can damage surface/materials indoors

Filters in HVAC

Charcoal, MERV/HEPA

- Does not address proximal exposures
- Performance diminishes over time
- Solid waste generation

UVC light

200 – 280 nm (germicidal)

- 254 nm Low-UVC can be shielded to protect people and pets
- Dust mites, animal- and insect-based allergens, mold, asthma
- Efficacy may be achieved with effective directional airflow
- Bulbs are recycled, low energy consumption

Comprehensive dose model

 $U_{\mathsf{INF}} = (1 - f_{\mathsf{M-I}}) \dot{\mathsf{v}}_{\mathsf{I}} \mathsf{n}_{\mathsf{B}} \cdot \{ (1/\mathsf{V}) (1/\beta) f_{\mathsf{Z-I}} [\alpha \mathsf{t}_{\mathsf{INF}} + (\mathsf{N}_{\mathsf{0}} - (\alpha/\beta)) (1 - \exp(-\beta \mathsf{t}_{\mathsf{INF}}))] + (1 - s) (1 - f_{\mathsf{M-E}}) (g/\mathsf{V}_{\mathsf{x}}) \mathsf{t}_{\mathsf{INF}} \}$

Quantitative IAQ risk assessment tool

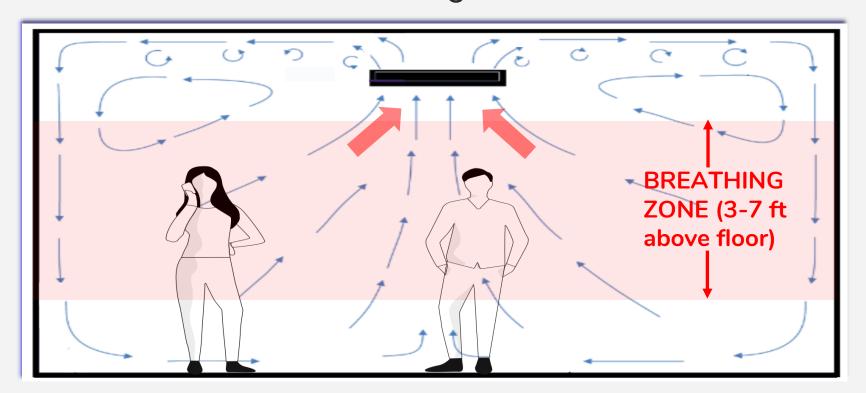
- How safe is your indoor air?
- Time to infectious dose

Comprehensive dose model

- Source (α) and sink (β)
- Breathing zone and respiratory jets
- Shedding rate, infective load
- Aerosol dynamics, transport and fate
- Localized proximal/downwind effects
- Masks, social distancing, partitions
- Ventilation/windows/doors
- HVAC treatment/filtration
- Stand-alone air purifiers
- Ceiling-mounted air disinfection
- https://www.luvsystems.com/pages/pri-scientific-paper

IAQ risk assessment tool

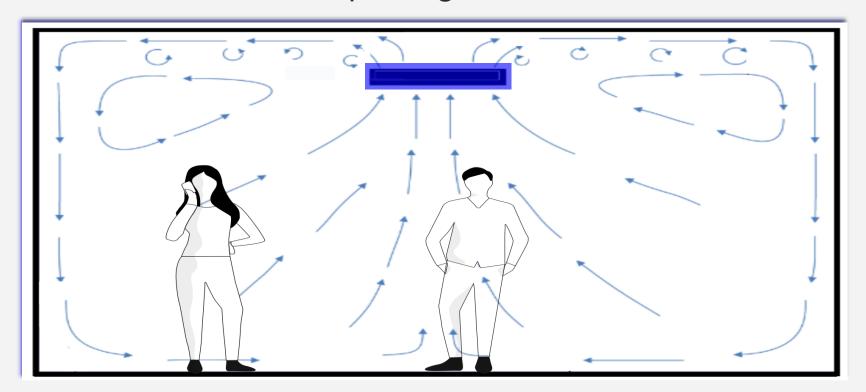
- Comprehensive dose model provides a quantitative IAQ risk assessment tool to
 - Generate Airborne Pathogen Mitigation Index (APMI)
 - Guide public policy and standards for healthy indoor air
 - Inform about airborne risks in buildings
 - Compare mitigation strategies
- Results validated with
 - CDC's 15-minute close contact guideline
 - N95 masks in health-care settings
 - Documented super-spreader events


PARAMETER ¹	SCENARIO @ 3 FT DISTANCING			
	Current baseline		With the halō	
	no masks	masks	no masks	masks
Room size, ft² [A]	1,167	1,167	1,167	1,167
Ceiling height, ft [H _{evg}]	11.2	11.2	11.2	11.2
Ventilation flowrate (makeup air), CFM [$\dot{\mathbf{v}}_{E}$]	602	602	602	602
HVAC air flowrate, CFM [v̂F]²	N/A	N/A	N/A	N/A
HVAC filtration/treatment	None	None	None	None
Lateral air velocity, ft/min [v _{HA}]	49	49	10	10
Maximum occupancy, people [p]	10	10	10	10
Minimum distancing, ft [x] ³	3	3	3	3
Mask efficiency, % [f _{M-E} or f _{M-I}]	N/A	50	N/A	50
Other mitigation	None	None	the halō	the halo
esults				
Equivalent air changes per hour (ACH _e), hr ⁻¹	3.1	3.1	29	29
Source/sink ratio, PPQ [$lpha/eta$]	22,000	12,000	3,100	1,600
API, dimensionless	<< 1	1	4	9.5
D C 1 2 3	e halo B B 4 5 PROTECTION	6 7	8 9	halō*

Proximal jets + pathogen fog

STEP 1. CAPTURE

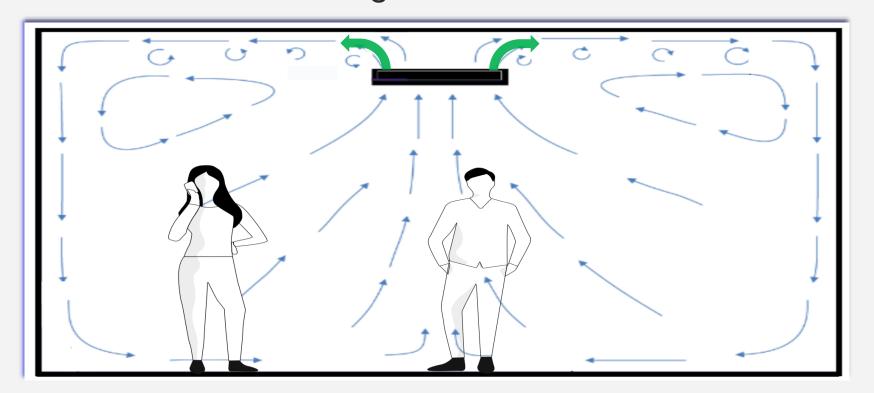
Lift as much air as possible, quickly & unobtrusively, up and away from the breathing zone



Proximal jets + pathogen fog, continued

STEP 2. CONTROL

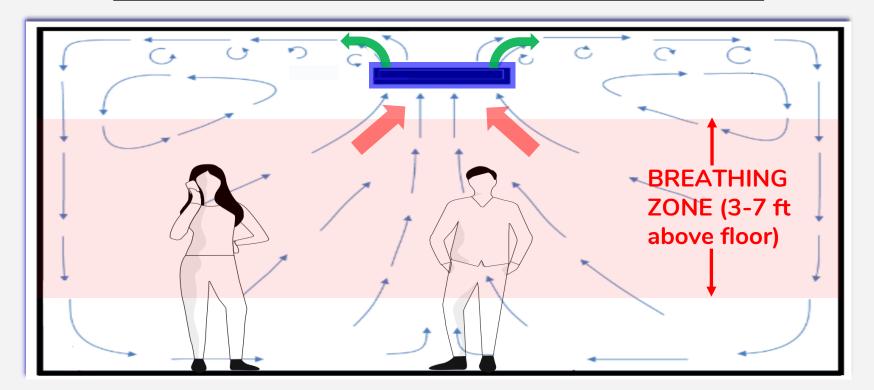
Safely & uniformly treat captured air with the needed UV-C dose for 99.9% pathogen inactivation



Proximal jets + pathogen fog, continued

STEP 3. RETURN

Return treated air with directed airflow, without mixing it with untreated air rising into the fan

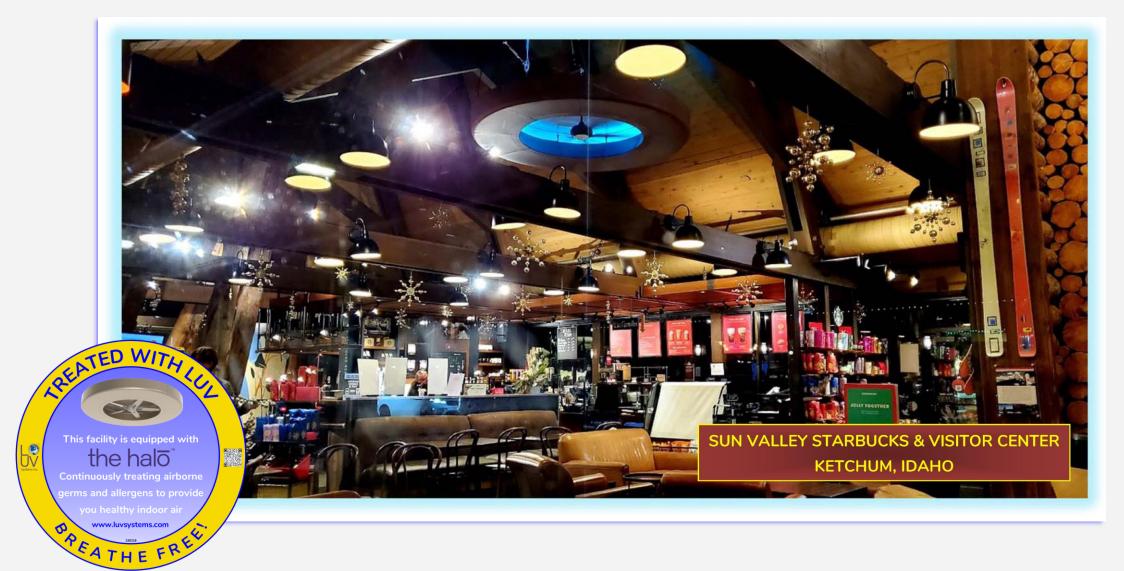


Proximal jets + pathogen fog, continued

STEP 4. OPTIMIZE

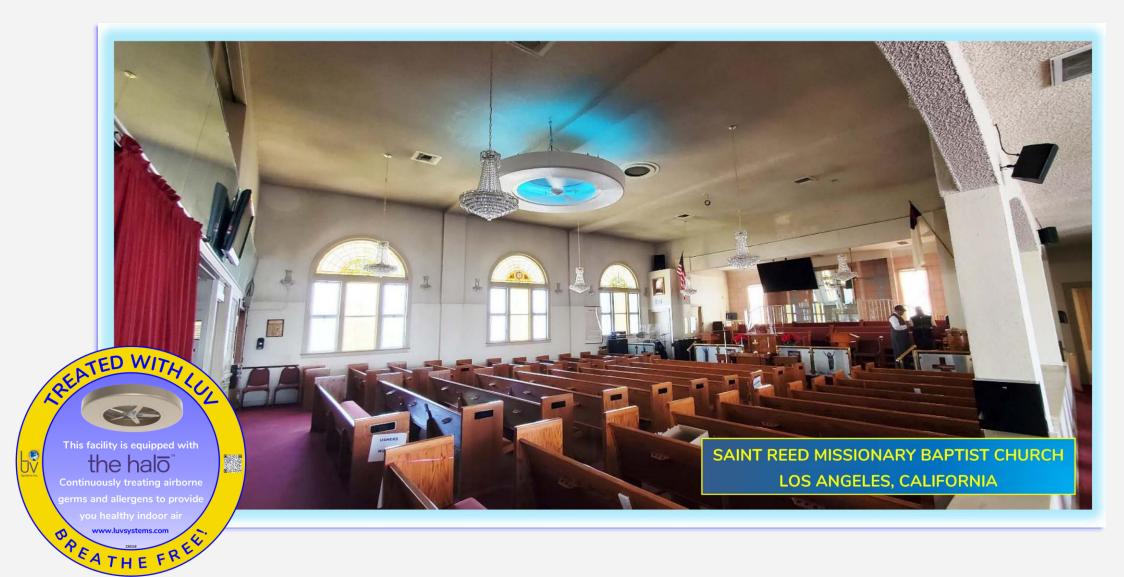
Complete Steps 1-3 in a safe, effective, inclusive, and sustainable manner in compliance with benchmark ESG principles

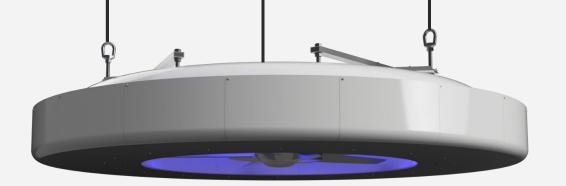
Our solution



- **✓** Cowling encircles fan and contains low-UVC
- ✓ Clean, disinfected air exits the cowling
- ✓ Over 20 ACH_e (hospital-grade air) for up to 4,500 ft²
- ✓ Electricity cost under US \$1.00/shift (US \$0.20/kWh)
- ✓ Improves year-round HVAC energy efficiency
- √ Whisper-quiet and almost imperceptible breeze
- ✓ Operating continuously in our office since 4 Nov 2021;
 2,500+ visitors with zero cases of cross-transmission

Installations




Installations, continued

Installations, continued

Thank You!

LUV Systems, Inc.

EPC Western Plaza 18726 South Western Avenue, Suite 407 Gardena, CA 90248

844-THE-HALŌ

backtobusiness@luvsystems.com

www.luvsystems.com

