FLUOROPOLYMER SPEC CHART

Property Comparison of Various Fluoropolymers

Property
ASTM test PTFE
PFA
FEP
ETFE
CTFE method/test condition

Physical Properties

Thermal Properties

Thermal conductivity (cal/sec/cm)	C177	6×10^{-4}	-	6×10^{-4}	5.7×10^{-4}	$\begin{aligned} & 4.7 \sim 5.3 \\ & \times 10^{-4} \end{aligned}$
Coefficient of linear thermal expansion ($1 /{ }^{\circ} \mathrm{C}$)	D696/23 $\sim 0^{\circ} \mathrm{C}$	10×10^{-5}	12×10^{-5}	$\begin{aligned} & 8.3 \sim 10.5 \\ & \times 10^{-5} \end{aligned}$	$5 \sim 9 \times 10^{-5}$	$\begin{aligned} & 4.5 \sim 7.0 x \\ & 10^{-5} \end{aligned}$
Melting point $\left({ }^{\circ} \mathrm{C}\right)$		327	302~310	270	260	210~212
Melt viscosity (coise)		$\begin{aligned} & 10^{-11} \sim 10^{-13} \\ & \left(340-380^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{aligned} & 10^{-4} \sim 10^{-5} \\ & \left(380^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{aligned} & 4 \times 10^{-4} \\ & \sim 10^{-5} \\ & \left(380^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{aligned} & 10^{-4} \sim 10^{-5} \\ & \left(300-330^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{aligned} & 10^{-7} \\ & \left(23^{\circ} \mathrm{C}\right) \end{aligned}$
Maximum temp. for continuous use (${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$)		260/500	260/500	200/392	150/302	120/248

Mechanical Properties

| Tensile strength
 (kgf/cm2) | D638/23 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Impact strength (ft-lb/ln)	D256/23 ${ }^{\circ} \mathrm{C}$ Izod	3.0	-	No breakdown	No breakdown	2.5~2.7
Hardness (Shore)	Durometer	D50~D65	D60	D55	D75	D90
Deformation under load (\%)	D621/100 ${ }^{\circ} \mathrm{C}$ $70 \mathrm{kfg} / \mathrm{cm}^{2}$,	5.0	2.4	5.0	5.4	2.6
	$\begin{aligned} & 24 \mathrm{hrs} \\ & \mathrm{D} 621 / 25^{\circ} \mathrm{C} \\ & 140 \mathrm{kgf} / \mathrm{cm}^{2}, \\ & 24 \mathrm{hrs} \end{aligned}$	7.0	2.7	3.0	2.3	0.2
Static friction coefficient	Coated steel surface	0.20	0.50	0.50	0.60	0.80

Electrical Properties

Dielectric constant	$\begin{aligned} & \mathrm{D} 150 / 10^{3} \mathrm{~Hz} \\ & \mathrm{D} 150 / 10^{8} \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 2.1 \\ & 2.1 \end{aligned}$	$\begin{aligned} & 2.1 \\ & 2.1 \end{aligned}$	$\begin{aligned} & 2.1 \\ & 2.1 \end{aligned}$	$\begin{aligned} & 2.6 \\ & 2.6 \end{aligned}$	$\begin{aligned} & 2.3 \sim 2.7 \\ & 2.3 \sim 2.5 \end{aligned}$
Dielectric dissipation factor	$\begin{aligned} & \text { D150/10 }{ }^{3} \mathrm{HZ} \\ & \text { D150/10 } \end{aligned}$	$\begin{aligned} & <1 \times 10^{-5} \\ & 2 \times 10^{-5} \end{aligned}$	$\begin{aligned} & 1 \times 10^{-5} \\ & 3 \times 10^{-5} \end{aligned}$	$\begin{aligned} & 6 \times 10^{-5} \\ & 5 \times 10^{-5} \end{aligned}$	$\begin{aligned} & 8 \times 10^{-4} \\ & 5 \times 10^{-3} \end{aligned}$	$\begin{aligned} & (2.3 \sim 2.7) \\ & \times 10^{-2} \\ & 1 \times 10^{-2} \end{aligned}$
Dielectric breakdown strength (V / ml)	D149/Short time, $1 / 8$ in	480	500	500~600	400	500
Volume resistivity (ohmcm)	D257	$>10^{-18}$	$>10^{-18}$	$>10^{-18}$	$>10^{-18}$	$>10^{-18}$
Chemical resistance		Excellent	Excellent	Excellent	Excellent	Excellent
Weatherability Combustibility (\%)	D2863/Oxygen concentration index	Excellent >95	Excellent >95	Excellent >95	Excellent >31	Excellent >95

Typical Filler Properties

Filler	Physical Form	Amount (\% Weight)	Effect of Filler
Glass Fibers	Milled Fibers	up to 40% (also in combination with graphite, MoS2 and carbon)	- increased compressive strength - increased rigidity - increased wear resistance - reduced cold flow - resistant to organic solvent
Carbon	Powder	up to 25% (also in combination with graphite, bronze, and glass)	- increased comprehensive strength - increased hardness - increased wear resistance - improved thermal conductivity - good dry running
Carbon Fibers	Milled Fibers	up to 30\%	properties - electrically conductive at

			-	higher filler contents resistant to hydrofluoric acid
Graphite	Powder	up to 25\% (also in combination with glass, bronze, and carbon)	-	improved sliding properties reduced coefficient of friction improved thermal conductivity
Bronze	Powder	up to 60% (also in combination with carbon, graphite, and MoS2))	-	increased comprehensive strength increased hardness increased wear resistance improved thermal conductivity reduced cold flow
Molybdenum disulphide (MoS2)	Powder	```up to 5% (also in combination with glass and bronze)```	\bullet	improved sliding properties increased wear resistance
Stainless Steel	Powder	up to 60\%	\bullet	improved thermal conductivity reduced cold flow resistant to most chemicals
Pigments	Powder	up to 2%	\bullet	for coloring (identification)

