fiveable AP PHYSICS C: MECHANICS CRAM CHART // @thinkfiveable // http://fiveable.me | Kinematics
Unit 1 ↓ | Newton's Laws of Motion
Unit 2 ↓ | Work, Energy, and Power Unit 3 ψ | Systems of Particles and Linear
Momentum
Unit 4 ↓ | |--|--|--|--| | Scalar vs. vector 1-D motion Four kinematic equations Free-fall motion (gravity is only force) Cross product and vector addition x(t), v(t), a(t) graphs Derivatives and integrals 2-D motion x and y components (like 2 1-D motions) Special projectile motion formulas (symmetric) t = v/sinθ / 2g max height R = v/sin2θ / 2g g range | Newton's 1st law: inertia Newton's 2nd law: F_{net} = ma Newton's 3rd law: Action and reaction force pair Equal in magnitude, opposite in direction Free-body diagrams Equilibrium (F_{net} = 0) when at rest OR constant velocity Friction is fun! f = µN | • $W = F \Delta r \cos\theta$ and $W = \int_{x_l}^{x_f} F_x dx$ • Conservative vs. nonconservative forces • Stable vs. unstable equilibrium • $W_{conservative} = -\Delta U$ • Gravity = conservative • PE includes both gravitational and elastic • Work-Kinetic Energy Theorem • $\Sigma W = \Delta KE$ • Hooke's Law (force law for springs) • $F_s = -kx$ • Conservation of energy • $E_{mech} = \Delta K + \Delta U$ • Conservation of energy (including work and heat) • $\Delta K + \Delta U = W + Q$ • Average power $P = \frac{w}{\Delta t}$ | • Center of mass • Conservation of linear momentum • Conserved when $F_{net} = 0$ • Momentum is a vector • $\Sigma F = \frac{dp}{dt}$ • Impulse $I = \int\limits_{t_i}^{t_f} \Sigma F \ dt$ • Elastic collisions \Rightarrow KE and momentum conserved • Objects bounce off each other • Inelastic collisions \Rightarrow KE is NOT conserved, momentum conserved • Perfectly inelastic = stick together • Special elastic collision formulas • $v_{1f} = (\frac{m_1 - m_2}{m_1 + m_2})v_{1i} + (\frac{2m_2}{m_1 + m_2})v_{2i}$ • $v_{2f} = (\frac{2m_1}{m_1 + m_2})v_{2i} + (\frac{m_2 - m_1}{m_1 + m_2})v_{2i}$ | | Rotation
Unit 5 ↓ | Oscillations
Unit 6 ↓ | Gravitation
Unit 7 ↓ | FRQ Tips | | • Same kinematic equations as Unit 1 but with θ , α , ω • Angular and translational • $v = r\omega$ tangential speed • $a = r\alpha$ tangential acceleration • Torque $\tau = rF sin\theta$ is a vector • Net torque $\Sigma \tau = I\alpha$ • Clockwise - • Counterclockwise + • Moment of inertia • Single particle $I = mr^2$ • Hoop, cylinder, rod, sphere • KE includes both translational and rotational • Rotational $KE = \frac{1}{2}I\omega^2$ • Angular momentum $L = rmvsin\theta$ • And $L = I\omega$ • Conserved when $\tau_{net} = 0$ • Parallel-axis theorem • $I_o = I_{CM} + MD^2$ | Hooke's Law F_s = restoring force Negative when F_s and x in opposite directions Simple Harmonic Motion (sin/cos functions) x(t) = Acos(ωt + θ_i) v(t) = -ωAsin(ωt + θ_i) a(t) = -ω²Acos(ωt + θ_i) v_{max} = ωA and a_{max} = ω²A A is max displacement from equilibrium Energy conservation ½kA² = ½mv² + ½kx² | Orbital speed v = √(GM)/R M is mass of thing being orbited Gravity g = GM/R² Add h to R if there is an altitude Minimum escape velocity v = √(2GM)/R Orbital period T² = (4π²/GM) r³ Kepler's 3rd law Time it takes for a revolution around something Circular vs. elliptical orbits | Always list your givens at the start of the problem (m, v, a, F, etc.) If you are given a graph, use it! Make sure you know how to integrate and differentiate (i.e. u-sub) Relationships between variables (i.e. F_{net} = ma, and a = dv/dt) Find keywords (constant speed means a=0, terminal speed means t=infinity) Visualize, draw a picture or FBD! Use conservation of energy, especially when heights and movement are involved Fundamental concepts in units reappear in other units! (FBDs, kinematic equations, etc.) |