

fiveable 💡 AP PHYSICS C: E&M CRAM CHART // <u>@thinkfiveable</u> // <u>http://fiveable.me</u>

Electrostatics Unit 1 ↓	Conductors, Capacitors, Dielectrics Unit 2 ↓	Electric Circuits Unit 3 ↓
 Law of conservation of charge Conductors Charge distributes evenly throughout, does not hold its charge Insulator: Charge will not distribute evenly, holds charge in one spot Grounded: object touches earth through conductor, electrons balance Ways to induce charge: friction, conduction, induction Coulomb's Law: Fe = kq1q2/r^2 Positive Fe: repel, Negative Fe: attract Electric fields: E = F/q, E = kQ/r^2 for a point charge Density of electric field lines proportional to magnitude of field, direction is direction of a positive charge Electric Field due to a continuous charge distribution: E = ∮ dE dE = k/r^2 dq Charge Densities: dE = k/r^2 dq Charge Densities: dE = k/r^2 dq Gauss' Law: Flux of an electric field: Φ = E*A cos θ = ∮ EdA = 4πkQenclosed Gauss' Law: Flux of an electric field: Φ = E*A cos θ = ∮ EdA = 4πkQenclosed Gaussi n Surfaces: Symmetries: planar, cylindrical, spherical Field needs to be tangent/perpendicular Electric Potential Energy: Electric rotential energy, gaining KE, losing U Must be a conservative force, Δ U = -Fd Electric Potential: electric potential energy per unit charge in an area of space, positive plate is always high potential Vo = Uo/q Potential Difference (voltage): ΔV = -W/q = ΔU/q = -∫EdX V = k j dq/r, V is a scalar! Equipotential Lines/Surfaces: perpendicular to electric field, regions of space at same electric potential Es = -dW/ds If two charges are the same, pulling them apart increases potential energy, pushing them together decreases potential energ	 Capacitor: device that stores electric charge and energy, made up of two conductors separated by an insulator Q = CΔV Parallel Plate Capacitor: C = Eo A/d Isolated Sphere: C = 4πEoa Multiple Capacitors: Parallel: Ceq = C1 + C2 + Series: 1/Ceq = 1/C1 +1/C2 + Energy Storage: ΔU = QV/2 = Q^2/2C = Cv²/2/2 U = ½ Eo E^2 Ad Stored energy density: μ = ½ Eo E^2 Dielectrics: nonconducting materials become ionized at dielectric breakdown 3*10^6 Since capacitors are limited by dielectric strength of air we introduce dielectrics to increase capacitance They increase the electric field strength or increase the charge on the plates if there is a battery C = K Cair E = kɛo = permittivity of material K > 1 for capacitor with a dielectric If grounded, constant charge 	 Current: I = dq/dt Current Density: J = I/A, I = ∮ J dA J = neVd Resistance: R = V/I, R= Lp/A p=E/J Ohm's Law: V = IR Power: describes brightness P = dW/dt = IV = I^2 R Electromotive force: = ɛ = dW/dq Kirchhoff's Loop Rule: ΔV = 0 for closed loops Kirchhoff's Junction Rule: In = Iout for any junction Emf= V=ɛ -ir, internal resistance of the source RC Circuits Resistor + Capacitor Charging: q = Cɛ(1- e^(-t/RC)) I = Ioe^(-t/RC) I = Ioe^(-t/RC) I = Ioe^(-t/RC) Capacitors in Circuits: Initial State: t = 0 Vc = 0 I = Vb/R Steady State: t = ∞ Q = CVb Vc =Vb I = 0
Magnetic Fields Unit 4 ↓	Electromagnetism Unit 5 ↓	Test Tips
 Magnetic Force: Fm = q(v xB) r=mv/qB when sinθ = 1 Magnetic fields do no work because velocity never changes, only direction Right Hand Rule: thumb is velocity, fingers are magnetic field, palm is direction of force Current Carrying Wires: dF = dq (dl/dt)xB Fµ = ∫I dl xB B = µol/2πr Biot-Savart's Law: when you can't use Ampere's law because the B-field is not constant dB = µoldlxr/4πr^2 Ampere's Law: basically Gauss's law, draw an amperian loop § B dl = µol Solenoids: bunch of tightly wound wires B = N µol/l = Bs = µol 	 Electromagnetic induction means generating electricity by using a magnetic field to produce a voltage Magnetic Flux: Φ = B*A cos θ = ∮BdA Can be changed in three ways: Changing magnetic field, loop area, angle Lenz's Law: fixes negative sign in Faraday by finding direction of induced current Faraday's Law: ε= -dΦ/dt = -N dΦ/d Inductors: typically a solenoid VI = 1/2Li²2, ε=-LdI/dt Act open at t=0 LC Circuit: cycle between charged for each at opposite times LR Circuit: same as RC but time constant is R/L Maxwell's equations: changing E-field induces magnetic field and vice versa Gauss' Law + Ampere's Law + Faraday's Law ∮B dl = µol+ µo ε (dΦe/dt) 	 Electrostatics is the most tested unit! Always list your givens at the start of the problem (m, v, a, F, etc.) If you are given a graph, do that problem first! Make sure you know how to integrate and differentiate (i.e. u-sub) Make relationships between variables clear Visualize, draw a picture, and draw your gaussian surfaces and amperian loops Apply all your laws!