fiveable AP PHYSICS 1 CRAM CHART // @thinkfiveable // http://fiveable.me

Kinematics Unit $1 \downarrow$	Dynamics Unit $2 \downarrow$	Uniform Circular Motion \& Gravitation Unit $3 \downarrow$	$\begin{aligned} & \text { Energy } \\ & \text { Unit } 4 \downarrow \end{aligned}$
- Vector vs. Scalar - Displacement vs. Distance - Velocity vs. Speed - Acceleration - Linearization - Big Four Equations $\begin{aligned} & V f=V o+a t \\ & \Delta x=V o t+1 / 2 a t^{2} \\ & V f^{2}=V o^{2}+2 a \Delta x \\ & \Delta x=1 / 2 t(V o+V f) \end{aligned}$ - Projectile Motion - Position-Time Graphs - Velocity-Time Graphs - Acceleration-Time Graphs - Acceleration due to Gravity ($g=9.8$ $\mathrm{m} / \mathrm{s} / \mathrm{s}$)	- Equilibrium: net force is equal to 0 - Newton's 1st Law Law of Inertia - Newton's 2nd Law - Force $=$ mass \times acceleration - Newton's $3 \leftarrow$ Especially $\Sigma F=$ ma - Third Law Force Pairs (equal and opposite) - Friction $F f=F n \mu$ - Ramps/Inclined Planes - Force Body Diagrams - Force and Net Force	- Centripetal Force: not a new force, just an expression for the net force pointing inwards of the circular path $\mathrm{Fc}=m v^{2} / r$ - Centripetal Acceleration $\therefore \quad \mathrm{Ac}=v^{2} / r$ - Universal Gravitation - Uniform Circular Motion: constant speed (magnitude of velocity is constant) - Combos with Forces, Energy, SHM, Rotation - Inertial mass vs. Gravitational mass - How do you find each one experimentally?	- Work (W = Fd) - Parallel: (+) Work - Antiparallel: (-) Work - Work = Change in Energy - PEg, PEs, 2 kinds of KE $\begin{array}{ll} \circ & \mathrm{PEg}=\mathrm{mgh} \\ \circ & \mathrm{PEs}=1 / 2 k x^{2} \\ \circ & \mathrm{KE}=1 / 2 m v^{2} \\ \circ & \mathrm{KEr}=1 / 2 \mathrm{I} \omega^{2} \end{array}$ - Mechanical Energy: the sum of a system's kinetic and potential energy - Power ($\mathrm{P}=\mathrm{W} / \mathrm{t}$) or ($\mathrm{P}=\mathrm{Fv}$) - Conservation of Energy - Bar Charts, Graphs \& Diagrams
Momentum Unit $5 \downarrow$	Simple Harmonic Motion Unit $6 \downarrow$	Torque \& Rotational Motion Unit $7 \downarrow$	Other Key Concepts
- Momentum ($p=m v$) - The direction of momentum is the same as the direction of motion - Impulse ($\mathrm{J}=\mathrm{Ft}$) - F vs t graphs (Impulse = Area) - Conservation of Momentum - Center of Mass - Combo with Energy, Rotational, Forces - Collisions (Inelastic vs. Elastic) - Elastic -> Kinetic Energy and Momentum are conserved - Inelastic -> Momentum is conserved - The velocity of the center of mass in a closed system is constant	- Spring \& Pendulum - Energy relationships - $\mathrm{F}, \mathrm{a}, \mathrm{v}, \mathrm{x} \leftarrow$ Diagrams \& Graphs - Combo with Forces, UCM, Energy, Rotational - Hooke's Law ($F=k x$) - Period Equations - What affects the period of a pendulum? - $T=2 \pi \frac{\sqrt{L}}{\sqrt{g}}$ - L is the length of a pendulum - g is the gravitational field - What affects the period of a mass on a spring? - $T=2 \pi \frac{\sqrt{m}}{\sqrt{k}}$ - m is the mass attached to the spring - k is the spring constant	- Rotational Kinematics (θ, ω, α) - Same as Unit 1 Big 4, but with new symbols - Remember $x=\theta R, v=\omega R, a=\alpha R$ - Torque \& Moment of Inertia ($\Sigma \tau=1 \alpha)$ - Torque: a force applied to a point on an object about the axis of rotation (not the center of mass) - Net Torque causes angular acceleration - Rotational KE and Conservation of Energy - Angular Momentum \& Conservation of Momentum - Angular "Impulse"	- Does this equation model the correct observations? - Are the variables showing a direct or indirect relationship? - Did the math lead to an answer with the correct units? - Writing Prompt TIps - Cite info from the problem - Bring in Basic Physics/Basic Equations - Describe how the info works with the Physics - Answer the question with a claim

