

fiveable AP PHYSICS 1 CRAM CHART // <u>@thinkfiveable</u> // <u>http://fiveable.me</u>

Kinematics Unit 1 ↓	Dynamics Unit 2 ↓	Uniform Circular Motion & Gravitation Unit 3 ↓	Energy Unit 4 ↓
 Vector vs. Scalar Displacement vs. Distance Velocity vs. Speed Acceleration Linearization Big Four Equations Vf = Vo + at Δx = Vot + 1/2 at² Vf² = Vo² + 2aΔx Δx = 1/2 t(Vo + Vf) Projectile Motion Position-Time Graphs Velocity-Time Graphs Acceleration-Time Graphs Acceleration due to Gravity (g = 9.8 m/s/s) 	 Equilibrium: net force is equal to 0 Newton's 1st Law Law of Inertia Newton's 2nd Law Force = mass x acceleration Newton's 3 ← Especially ∑F=ma Third Law Force Pairs (equal and opposite) Friction Ff = Fn μ Ramps/Inclined Planes Force Body Diagrams Force and Net Force 	 Centripetal Force: not a new force, just an expression for the net force pointing inwards of the circular path Fc = mv²/r Centripetal Acceleration Ac = v²/r Universal Gravitation Uniform Circular Motion: constant speed (magnitude of velocity is constant) Combos with Forces, Energy, SHM, Rotation Inertial mass vs. Gravitational mass	 Work (W = Fd) Parallel: (+) Work Antiparallel: (-) Work Work = Change in Energy PEg, PEs, 2 kinds of KE PEg = mgh PEs = 1/2 kx² KE = 1/2 Iw² Mechanical Energy: the sum of a system's kinetic and potential energy Power (P = W/t) or (P = Fv) Conservation of Energy Bar Charts, Graphs & Diagrams
Momentum Unit 5 ↓	Simple Harmonic Motion Unit 6 ↓	Torque & Rotational Motion Unit 7 ↓	Other Key Concepts
 Momentum (p=mv) The direction of momentum is the same as the direction of motion Impulse (J = Ft) F vs t graphs (Impulse = Area) Conservation of Momentum Center of Mass Combo with Energy, Rotational, Forces Collisions (Inelastic vs. Elastic) Elastic -> Kinetic Energy and Momentum are conserved Inelastic -> Momentum is conserved The velocity of the center of mass in a closed system is constant 	 Spring & Pendulum Energy relationships F, a, v, x ← Diagrams & Graphs Combo with Forces, UCM, Energy, Rotational Hooke's Law (F = kx) Period Equations What affects the period of a pendulum? T = 2π √L/√g L is the length of a pendulum g is the gravitational field What affects the period of a mass on a spring? T = 2π √m/√k m is the mass attached to the spring k is the spring constant 	 Rotational Kinematics (θ,ω,α) Same as Unit 1 Big 4, but with new symbols Remember x = θR, v = ωR, a = αR Torque & Moment of Inertia (Στ = Iα) Torque: a force applied to a point on an object about the axis of rotation (not the center of mass) Net Torque causes angular acceleration Rotational KE and Conservation of Energy Angular Momentum & Conservation of Momentum Angular "Impulse" 	 Does this equation model the correct observations? Are the variables showing a direct or indirect relationship? Did the math lead to an answer with the correct units? Writing Prompt TIps Cite info from the problem Bring in Basic Physics/Basic Equations Describe how the info works with the Physics Answer the question with a claim