Table of Contents

SECTION A: SET-UP \& INSTALLATION
Hopper Error Codes _$\quad 2$
Uncrating \& Setup
Mounting instructions ___ 3-4
Filling the Hoppers 4
Using the Dump Mode ___ 4
DIP Switches _ 4+6
Hopper Pay out Table __ 5
Bonus Pay Out Table __ 6
Payout sub modes $\quad 7$
Fuse $\quad 7$
Wiring definitions $\quad 7$
Indicator Lights __ 7
About the Hopper/Coin sizes ___8
Functional Descriptions \qquad
SECTION B: VALIDATOR INFO
CoinCo to Mars Setup __ 10
CoinCo Validator information __12-16
Mars Validator information _17-22
SECTION C:
HOPPER INFORMATION \qquad 23-29

SECTION D:

TROUBLESHOOTING INFO
Troubleshooting Guide \qquad 30
Technical Flow Diagram \qquad 31-32

SECTION E: PARTS LISTS

Cabinet Parts Breakdown ___ 33
Parts Hopper MKIV 34
Parts CoinCo Bill Validator 35-38
Parts MARS Bill Validator 39-41

Mars Service Centers 42-44
CoinCo Service Centers ___ 45

Specifications

Operating voltage
120 VAC +10/-15 \%
Power consumpt.(controller only, add hopper and validator)10w
Operating temperature 32-130 degrees Fahrenheit
Interface to Hoppers $\quad 24 \mathrm{vdc} \& 12 \mathrm{vdc} 1.5 \mathrm{amps}$ max.
Interface to Validators 120 vac .5 amps max.
Warranty
CoinCo MAGPRO 00 B \& MARS AE2601 Validator is warranted for two years from date of purchase.

COVERED

$¥$ Defect in workmanship or material.
NOT COVERED
$¥$ Damage caused by physical abuse.
$¥$ Misapplication
$¥$ Vandalism
$¥$ End users attempt, on his own to repair item
$¥$ Cleaning maintenance
It is the End User's responsibility to follow cleaning maintenance procedure outline on page 15. Any unit coming in for repair requiring only a cleaning will be charged a flat rate of $\$ 65.00$ plus shipping and handling.

Dispensing System and Logic Board
The dispenser and logic board is warranted for one year from date of purchase.
COVERED
$¥$ Defects caused by material or workmanship.
NOT COVERED
$¥$ Damage caused by physical abuse.
$¥$ Misapplication
$¥$ Vandalism
$¥$ End Users attempt, on his own to repair.

> A Return material authorization number (RMA \#) must be obtained before returning a unit for repair. A copy of invoices must accompany any and all warrantee work

Attention Please:

American Changer is now building in a Surge Suppressor on every main logic board made after September $1^{\text {st }}, 1998$. This will help eliminate power related noise problems for our customers. It will not protect you from large voltage spikes or lightning strikes over 150VAC.

If this is a concern for your area of business, we recommend purchasing a surge protector locally NOTE: A POWER STRIP IS NOT A SURGE PROTECTOR.

Thank You, American Changer Corp.
(888) 741-9840

Press the "DUMP" Button before turning off changer. Match the code to samples below to find out why the hopper(s) were shut down

LEFT HOPPER ERRORS

NO ERRORS
LOW COIN
EXIT WINDOW JAM
BAD HOPPER BOARD

- JAMMED
- JACKPOT PREVENTED

RIGHT HOPPER ERRORS

0	0	0	0	0	- - NO ERRORS
0	0	0	0	1	- LOW COIN
0	0	0	0	2	- EXIT WINDOW JAM
0	0	0	0	3	- - BAD HOPPER BOARD
0	0	0	$\mathbf{0}$	$\mathbf{4}$	- JAMMED
0	0	0	$\mathbf{1}$	$\mathbf{0}$	- JACKPOT PREVENTED

[^0]
UNCRATING AND SET-UP

Remove your Series 2000 changer from the shipping box. Open the door. (The T-handle is a screw-in type and therefor, must be turned at least 10 times counter-clockwise until it opens.) Inspect for any connectors or components that may have been dislodged during shipping. The lock and keys for your changer will be inside the manila envelope along with this manual. To install the lock, insert the cylinder into the round hole in the middle of the T-handle and push until it stops. Now turn the key and lock until you hear it "snap." Turn the key counterclockwise $1 / 4$ turn and remove the keys.

NOTE: The only way to get a duplicate set of keys made is to save the red tag that comes between the keys. This ID \# starts with "ACC \#\#\#\#".
Write your Key \# here "ACC \qquad $"$. ALL KEY ORDERS TAKE 4-6 WEEKS!!!

NOTE: THE METER ON THE MAIN LOGIC BOARD CANNOT BE RESET TO ZERO!!!

TEST:

Before permanently installing the changer, do a functional test to verify that there is no shipping damage to your new changer(s).

Extend the power cord through the hole in the back of the changer or the bottom and plug it into a grounded 120vac outlet. The dip switches are already set for a 4 coin per dollar payout of the hoppers, and the Bill validator is ready to accept \$1-\$5-\$10-\$20 dollar bills.

Fill the each hopper with at least 100 coins. On the main logic board turn the switch on the bottom right corner "ON". (SEE FIG. 1 ON PG.3) The rocker switch has a " 1 " and " 0 " printed on it. When the " 1 " is pressed down the changer is "ON".

MOUNTING THE AC2001 TO A WALL

If YOU ARE UNSURE IN ANY WAY IN PROCEEDING WITH THE FOLLOWING STEPS, PLEASE HIRE A LOCAL PROFESSIONAL ELECTRICIAN TO MOUNT YOUR CHANGER FOR YOU!

1. Disconnect any and all AC power going to the series 2001 changer. (See fig. 1)
A. Unplug the AC line cord from the bottom of the board.
B. Unplug the validator connectors on the right side of the board.
C. Unplug the hoppers harness connectors on the left side of the board.
D. Unbolt the ground wire from the right side of the cabinet.
E. Remove the main logic board and hoppers from the inside of the changer.
F. Put the nuts back on the studs to avoid losing the brass spacers on the studs.
2. Slide the hoppers out of the cabinet.
3. Note: You will need to verify with the building code that it is allowable to plug the changer into a 3 prong grounded outlet. If it is not, there must be 120 VAC run through conduit to the changer. If it is not required, proceed to step \#6.
4. Let the electrician run the conduit, install the new breaker, wire and help decide how the wiring will enter the changer
(from the back or the bottom). This will affect the mounting location.
5. After the conduit has been installed, proceed with the mounting.
6. Locate the 4 punch-outs on the back wall of the changer. Using a screwdriver and hammer knock the punch-outs out by hitting them from the inside of the changer.
7. Using a stud locator, find a location to hang the changer by locating the wall studs.
8. Find an appropriate wall to bolt the changer into. The wall should have studs or be constructed of concrete. Consult a professional with any questions you may have.
9. NOTE: HANGING THE CHANGER FROM LESS THAN ALL 4 HOLES MAY BE DANGEROUS. EACH HOLE NEEDS A BOLT THROUGH EACH ONE MOUNTED SECURELY TO THE WALL. MOUNTING THE CHANGER IN ANY OTHER WAY MAY RESULT IN THE CHANGER BEING TORN ofF OR FALLING OFF THE WALL RESULTING IN PERSONAL OR CUSTOMER INJURY ALONG WITH ELECTRICAL SHOCK.
10. Choose a height to mount the changer keeping in mind that a handicapped person in a wheelchair should still be able to insert a bill into the bill validator. (We recommend no higher than 4 feet above the ground.)
11. Have someone hold the changer against the wall while someone else marks the holes. CAUTION: THE CHANGER WEIGHS 85 POUNDS DO NOT EXERT yourself so that you may cause an INJURY.
12. BEFORE DRILLING THE FOUR MARKED HOLES ENSURE THAT THERE ARE NO ELECTRICAL WIRES, TELEPHONE LINES, GAS, OR WATER LINES BEHIND THE WALL WHICH DISRUPTING MAY CAUSE A LOSS OF LIFE OR PERSONAL INJURY!
13. Hold the changer back up to the wall. Thread and tighten bolts.
14. Verify that the machine is securely mounted.
15. Reinstall the main logic board.
A. Before installing the main logic board, verify that the plastic safety-insulating sheet is still against the back wall where the board will be mounted and that there is a $3 / 8$ " spacer on each stud.
B. Install the main logic board and properly tighten the nuts.
C. Re-bolt the ground wire into the right side of the cabinet.
D. Plug the validator connector into the right side of the board.
E. Plug the hoppers harness connectors into the left side of the board
16. If the changer is permanently connected through a conduit, proceed to step \#18.
17. Feed the AC line cord out the bottom or the back of the changer then perform the following.
A. Connect the AC line cord into the bottom of the main logic board.
B. Plug the male end into the AC wall outlet. Do not use an extension cord unless allowed by the building electrical code.
C. Important: Attach the line cord clamp to the line cord. Verify it is at the right length and that the line
cord is not rubbing against any sharp edges or is being strained in any way. Then mount the line cord clamp to the studs at the hole. Tighten securely. Installation is finished and you can proceed to the "Filling the Hopper" section.
18. In order to continue you will need to purchase electrical cable conduit, a standard 3-prong AC wall outlet and 12gauge wire. We highly recommend HIRING a qualified electrician to perform the following!
A. Install the conduit box on the conduit entering the cabinet in the lower right side of the cabinet.
B. Secure the 3 wires (hot, neutral, and ground) to the AC wall outlet and the ground wire should also be directly attached to the cabinet ground terminal.
C. Connect the AC line cord into the bottom of the main logic board.
D. Plug the male end into the AC outlet just installed.
E. Properly fold the line cord to avoid sharp corners and any other damage.

Proceed to the "Filling the Hoppers" section.

When each hoppers has less than $80-100$ coins left the red "Empty" LED will light on the front of the changer. If you have disconnected your LED make sure the orange wire is going to the terminal on the LED that has the red wired terminal. Whenever the "Empty" LED is "ON" the validator is disabled and it will no longer accept bills.

1. Turn OFF the power on the main logic board.
2. Slide the hoppers out from the cabinet and insert the coins through the opening on the top. There must be at least enough coins to cover the two gold plates at the bottom of the hoppers. (Somewhere between 160 and 1600 coins minimum to maximum.)
3. Slide the hoppers back into the hopper plate. Do not use excessive force!
4. Turn "ON" the power switch. The "Empty" LED is now off and the bill validator is ready to accept bills.

USING THE DUMP MODE TO EMPTY THE HOPPERS

1. Open the cabinet door.
2. Turn OFF the POWER switch.
3. Place a suitable container in front of the hoppers to catch the coins.
4. Press and hold the "DUMP" button on the upper right corner of the Main Logic Board. Turn ON the Power switch. The red LED numbers on the main logic board will come on all " 00000 's". Once the red " 00000 's" lights up the SECOND time, release the "DUMP" button. If it is not released within one second, the "DUMP" mode is canceled as a security feature.
5. The hoppers will dispense coins until the POWER switch is turned OFF. If the red LED numbers are not counting up rapidly on the Main Logic Board's display the dump mode was not accessed. Please try again.

THE DIP SWITCHES

The 2000/2001 series changer is capable of dispensing coins in many different pay out modes. Setting the coins out per dollar is controlled by which Dipswitches turned "ON." (Refer to figure 1 for their location.) For example, switch \#2 is "ON" on both dipswitches; therefor the payout equals 4 coins per dollar. Two coins per hopper for one dollar.

FIGURE 2
(THIS IS NOT THE DIPSWITCH BANK FOR SETTING THE BILL DENOMINATIONS.
(For those dip switches go to page 13-14.)

ALL CALCULATIONS ARE BASED ON THE TOTAL COINS YOU SET FOR THE \$1.00 BILL
For Mode \#8, disregard the $\$$ sign. (I.e. $\$ 2=2$ tokens not $\$ 2$ in tokens.)
THE FOLLOWING BONUS OPTIONS ARE CONTROLLED BY THE RIGHT DIP SWITCH ONLY!!
"NO" MEANS "NO BONUS" FOR THIS BILL.

RIGHT				RIGHT					RIGHT				RIGHT			
$\begin{aligned} & \text { SWT } \\ & \text { "ON" } \\ & \hline \end{aligned}$	Bon $\$ 5$	us T $\$ 10$	otal $\$ 20$	$\begin{aligned} & \text { SWT } \\ & \text { "ON" } \\ & \hline \end{aligned}$	Bonus Total				$\begin{aligned} & \text { SWT } \\ & \text { "ON" } \\ & \hline \hline \end{aligned}$		us T $\$ 10$	$\begin{array}{r}\text { Total } \\ \$ 20 \\ \hline\end{array}$	$\begin{aligned} & \text { SWT } \\ & \text { "ON" } \\ & \hline \end{aligned}$	Bon $\$ 5$	us T $\$ 10$	otal $\$ 20$
5	NO	NO	\$1	1-5	\$1	\$2	\$5		2-6	\$2	\$4	\$10	1-2-6	\$3	\$6	\$14
6	NO	NO	\$2	1-6	\$1	\$2	\$6		2-5-6	\$2	\$4	\$11	1-2-5-6	\$3	\$6	\$15
5-6	NO	NO	\$3	1-5-6	\$1	\$2	\$7		$2-7$	\$2	\$4	\$12	1-2-7	\$3	\$6	\$16
7	NO	NO	\$4	$1-7$	\$1	\$2	\$8		2-5-7	\$2	\$4	\$13	1-2-5-7	\$3	\$6	\$17
5-7	NO	NO	\$5	1-5-7	\$1	\$2	\$9		2-6-7	\$2	\$4	\$14	1-2-6-7	\$3	\$6	\$18
6-7	NO	NO	\$6	1-6-7	\$1	\$2	\$10		2-5-6-7	\$2	\$4	\$15	1-2-5-6-7	\$3	\$6	\$19
5-6-7	NO	NO	\$7	1-5-6-7	\$1	\$2	\$11		2-3	\$2	\$5	\$10	1-2-3	\$3	\$7	\$14
3	NO	\$1	\$2	1-3	\$1	\$3	\$6		2-3-5	\$2	\$5	\$11	1-2-3-5	\$3	\$7	\$15
$3-5$	NO	\$1	\$3	1-3-5	\$1	\$3	\$7		2-3-6	\$2	\$5	\$12	1-2-3-6	\$3	\$7	\$16
3-6	NO	\$1	\$4	1-3-6	\$1	\$3	\$8		2-3-5-6	\$2	\$5	\$13	1-2-3-5-6	\$3	\$7	\$17
3-5-6	NO	\$1	\$5	1-3-5-6	\$1	\$3	\$9		2-3-7	\$2	\$5	\$14	1-2-3-7	\$3	\$7	\$18
3-7	NO	\$1	\$6	1-3-7	\$1	\$3	\$10		2-3-5-7	\$2	\$5	\$15	1-2-3-5-7	\$3	\$7	\$19
3-5-7	NO	\$1	\$7	1-3-5-7	\$1	\$3	\$11		2-3-6-7	\$2	\$5	\$16	1-2-3-6-7	\$3	\$7	\$20
3-6-7	NO	\$1	\$8	1-3-5-6-7	\$1	\$3	\$12		2-3-5-6-7	\$2	\$5	\$17	1-2-3-5-6-7	\$3	\$7	\$21
3-5-6-7	NO	\$1	\$9	1-4	\$1	\$4	\$8		2-4	\$2	\$6	\$12	1-2-4	\$3	\$8	\$16
4	NO	\$2	\$4	1-4-5	\$1	\$4	\$9		2-4-5	\$2	\$6	\$13	1-2-4-5	\$3	\$8	\$17
4-5	NO	\$2	\$5	1-4-6	\$1	\$4	\$10		2-4-6	\$2	\$6	\$14	1-2-4-6	\$3	\$8	\$18
4-6	NO	\$2	\$6	1-4-5-6	\$1	\$4	\$11		2-4-5-6	\$2	\$6	\$15	1-2-4-5-6	\$3	\$8	\$19
4-5-6	NO	\$2	\$7	1-4-7	\$1	\$4	\$12		2-4-7	\$2	\$6	\$16	1-2-4-7	\$3	\$8	\$20
4-7	NO	\$2	\$8	1-4-5-7	\$1	\$4	\$13		2-4-5-7	\$2	\$6	\$17	1-2-4-5-7	\$3	\$8	\$21
4-5-7	NO	\$2	\$9	1-4-6-7	\$1	\$4	\$14		2-4-6-7	\$2	\$6	\$18	1-2-4-6-7	\$3	\$8	\$22
4-6-7	NO	\$2	\$10	1-4-5-6-7	\$1	\$4	\$15		2-4-5-6-7	\$2	\$6	\$19	1-2-4-5-6-7	\$3	\$8	\$23
4-5-6-7	NO	\$2	\$11	1-3-4	\$1	\$5	\$10		2-3-4	\$2	\$7	\$14	1-2-3-4	\$3	\$9	\$18
3-4	NO	\$3	\$6	1-3-4-5	\$1	\$5	\$11		2-3-4-5	\$2	\$7	\$15	1-2-3-4-5	\$3	\$9	\$19
3-4-5	NO	\$3	\$7	1-3-4-6	\$1	\$5	\$12		2-3-4-6	\$2	\$7	\$16	1-2-3-4-6	\$3	\$9	\$20
3-4-6	NO	\$3	\$8	1-3-4-5-6	\$1	\$5	\$13		2-3-4-5-6	\$2	\$7	\$17	1-2-3-4-5-6	\$3	\$9	\$21
3-4-5-6	NO	\$3	\$9	1-3-4-7	\$1	\$5	\$14		2-3-4-7	\$2	\$7	\$18	1-2-3-4-7	\$3	\$9	\$22
3-4-7	NO	\$3	\$10	1-3-4-5-7	\$1	\$5	\$15		2-3-4-5-7	\$2	\$7	\$19	1-2-3-4-5-7	\$3	\$9	\$23
3-4-5-7	NO	\$3	\$11	1-3-4-6-7	\$1	\$5	\$16		2-3-4-6-7	\$2	\$7	\$20	1-2-3-4-6-7	\$3	\$9	\$24
3-4-6-7	NO	\$3	\$12	1-3-4-5-6-7	\$1	\$5	\$17		2-3-4-5-6-7	\$2	\$7	\$21	1-2-3-4-5-6-7	\$3	\$9	\$25
3-4-5-6-7	NO	\$3	\$13	2	\$2	\$4	\$8		1-2	\$3	\$6	\$12				
1	\$1	\$2	\$4	2-5	\$2	\$4	\$9		1-2-5	\$3	\$6	\$13				

DIPSWITCH OPTION SETTINGS

Left Dip Switch

Mode	I Want My Coin Hoppers to Dispense........	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$
\#0	4 Quarters per dollar	O	O	C	O	C	O	O	O
\#1	4 Tokens with a bonus payback in \$1 incr.	O	O	C	O	C	O	O	O
	(Bill Meter counts in \$1's.)	\mid							
\#2	$\$ 1.00$ SBA's, Luni's or Tokens and quarters.	O	O	O	O	O	C	O	O
\#3	5 nickles then the balance in quarters.	O	O	C	O	C	C	O	O
\#4	Tokens valued between $\$ 1.25-\$ 15.75$ the balance paid in quarters	O	O	O	O	O	O	C	O

Right Dip Switch

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$									
O	O	O	O	O	O	O	O	See bonus table.	C	C	0	0	0	0	0	0
:---	:---	:---	:---	:---	:---	:---	:---		0	0	0	0	0	0	0	
:---	:---	:---	:---	:---	:---	:---										

Set by $\$.25$ increments

C IS DIPSWITCH "ON"

HOW TO USE THE BONUS TABLE

Think of the bonus table as the total amount of EXTRA tokens after the regular payout, that you wish to receive:
EXAMPLE: PAYOUT: 4 tokens for $\$ 1,24$ for a $\$ 5,52$ for a $\$ 10$, 120 for a $\$ 20$.
24 tokens $=\$ 1$ extra in tokens
52 tokens $=\$ 3$ extra in tokens
120 tkns $=\$ 10$ extra in tokens.
Now go to the bonus table, find where the $\$ 5$ column $=\$ 1$
Look over to the $\$ 10$ and go down until you see $\$ 3$.
Finally go to the $\$ 20$ column to where $=\$ 10$.
You should be at 1-3-7; Turn "ON" your right dipswitches 1-3-7 to set this payout.

DIPSWITCHES

The following table shows how to set the dip switches to your desired payout.

"ON"	COINS PER DOLLAR
$\# 1$	1
$\# 2$	2
$\# 3$	4
$\# 4$	8

The left DipSwitch controls the left hopper's pay out and the right DipSwitch controls the right hopper's pay out.
Refer to the next table to set up your changer for the settings you need.

MODE DESCRIPTIONS

Some of the modes are self-explanatory while others have sub modes built into the chip. Here is a list of the modes and sub modes when applicable.

MODE 2-\$1 coins the balance in quarters:

The quarters for each bill are controlled by the sub mode settings of the right dipswitches \#1 \& \#2.
Neither "ON" - 16 Quarters balance in $\$ 1$ coins.
\#1 "ON" only - 8 Quarters balance in $\$ 1$ coins.
\#2 "ON" only - 12 Quarters balance in $\$ 1$ coins.
\#1 \& \#2 'ON" - 4 Quarters balance in $\$ 1$ coins.
MODES' \#5 \& \#11 - Setting right dips in "\$1 increments":
Refer to Page 6 Under "Dipswitches Cont.". But instead of counting up in coins, think of it as dollars.

MODE \#14 - Canadian \$1 \& $\mathbf{2}$ coin payout:
The right dipswitches \#1 \& \#2 can alter the amount of \$1 coins given to each denomination.

Luni’s per \$	$\mathbf{\$ 5}$	$\mathbf{\$ 1 0}$	$\mathbf{\$ 2 0}$
Neither"ON" -	1L	0 L	0L
\#1 "ON"	3L	2L	2L
\#2 "ON"	3L	4L	4L

The machine will always give 2 Luni’s for a Tuni.

FUSE
High voltage fuse: This is the primary transformer AC fuse for the main logic board and the validator. Any direct short of the Transformer or validator will cause this fuse to blow. Replace this fuse with a $2-1 / 2$ amp AS fuse only. replacing this fuse with anything other THAN A 2 ½ AMP "GDC" MAY RESULT IN A FIRE OR AN UNSAFE WORKING CONDITION!! (See fig. 1 for location of this fuse.)

Indicator Lights

Main Logic Board:

1. Green LED on: AC power applied to the logic board, all fuses are good.
2. Decimal Point \& Red LED:
A. Heartbeat -5 and 12 vdc present. The changer is in standby waiting for a bill pulse.
B. On Steady - Out of service, Hopper error detected.

Validator logic board:

1. Red LED
A. On Steady - Standby Mode, waiting for bill insertion.
B. Flashing - Error mode, go to page for error code information.
C. Off - The changer "Empty" LED is lit.

WIRE HARNESS COLOR AND DEFINITIONS

Validator harness:

Red - Switched Hot 120VAC
White - Neutral 120VAC
Black - 120VAC Low current validator enable
Yellow - +5 vdc credit pulse line
Blue - $\quad-5 v d c$ credit pulse line
Orange - +12vdc Empty LED
Brown - -12vdc Empty LED

Hopper Harness

Gray - Coin counting optic status line
White - Low coin sense (+5 vdc)
Green - Coin counting optic pay out feedback line
Yellow - Raw sensor output line
Purple - Hopper pay out line from main logic board (+)
Brown - Hopper pay out line from main logic board (-)
Red - $\quad+12 \mathrm{vdc}$ logic board supply voltage
Black(s) -12 v , 24v low coin sense ground
Orange - +24vdc Motor supply voltage

Coin/Token Sizes

The hoppers will automatically adjust to dispense coins/tokens in size from $20-30 \mathrm{~mm}$ in diameter and $1.25-3.5 \mathrm{~mm}$ in thickness.

There is an option available to dispense smaller coins.
A nickel is approximately 21 mm , a quarter is approximately 25 mm . A Susan B. Anthony is 28 mm

Coin Control Hopper MKIV

Three green LED indicators are fitted on the hoppers and are visible in the section where the coins exit the hoppers. From left to right these are designated as follows:

1. Logic power supply on ($12 \& 24 \mathrm{vdc}$ present).
2. Security optical obstruction indicator -. Should be "on" when unit is OK.
3. Output indicator, indicates coin passing photo-sensor. This is the optical sensor the coin will obstruct on its way out of the hoppers. For normal operation LED \# 3 will be off until coins are dispensed.

[^1]HOPPER ERROR CODE DEFINITIONS

The DBCG-1 EPROM chips allow for the hoppers to run in a one-hopper mode if one hopper goes down and the ability to explain why that hopper was shut down. To access this mode press the DUMP button while in the normal operating mode. The meter display will disappear and be replaced by the error readout. You will know if you are in the one-hopper mode if only one hopper is dispensing coins, one hopper is full and the other is empty, or that your far-left decimal point on the light-up display is lit instead of the far-right. The most left display (\#1) is not used. The \#2 \& \#3 display are for the left hopper and \#4 \& \#5 display are for the right hopper. Here are the error code definitions:

01=Low coin.

$02=$ Object stuck in optic window.
$04=$ Did not pay enough coins.
$10=$ Paid too many coins (2 max) Jackpot protection!

An error read-out of " $\mathbf{0 0 1 0 0}$ " states the left hopper was shut down due to low coins. A read-out of " $\mathbf{0 0 0 0 3}$ " states an optic window failure and low coin was detected. I.e. $01+02=03$.

Functional Description of the Series AC2000 Changer

To follow along with this walk-through of your changer, fill the hoppers with coins and turn the changer on.

1. When power is applied the validator will cycle twice, the out-of-service LED flashes then goes out, the green LED on the main logic board comes on steady, and the decimal point on the main logic board number display will flicker on once per second in the standby mode.
2. During the power-up mode the main logic board relay clicks twice enabling power (120 vac) to the validator. When this relay is not enabled it routes 12 vdc ground to the out-ofservice LED. Without power to the validator the changer cannot accept bills. Since we are not in the error mode, the red LED on the validator logic board is on steady.
3. When a bill is inserted into the validator bill slot, the bill will be pulled inside. The validator then compares what the bill looks like to its memory. After the bill is validated it grounds the 5 vdc lines causing a pulse along the yellow and blue validator harness wires to pins 5 and 15 of the main logic board. Each pulse stands for the amount of the denomination validated. (i.e. 1 pulse for $\$ 1,5$ pulses for $\$ 5$).
4. The 5 vdc pulse then travels from pins 5 and 15 to the EPROM chip (ver. DBCG-1") pin \#25. The EPROM sends a 12 vdc pulse to the meter chip (U5) out pins \#21
5. \& 22 (one pulse per denomination validated). The EPROM also multiplies the bill pulse by the DipSwitch settings (The EPROM reads the DipSwitch settings during the power up mode and stores them into memory.)
6. The EPROM then sends the hopper pulses out pin \#23 to pins 6 and 7 of the red 12 pin hopper plugs. These pulses travel through the purple and brown wires of the hoppers wire harness to the hoppers pins 8 and 12 .
7. The hopper turns itself on with the first hopper pulse. The hoppers counts the hoppers pulses sent from the EPROM chip on IN3 (pin 12) while dispensing the coins at the same time. When the amount of hoppers pulses in equals the coins dispensed through the coin counting optical sensor the hopper turns itself off.
8. The Changer returns to the standby mode with the decimal point flashing once per second until another bill is inserted.

Functional Descriptions of Out-of-Service Conditions

Out-of-Service conditions occur for the Series 2000 changer for the following reasons; low coins, hopper fault error, validator fault, or a blown fuse.

1. Blown Fuse: an AC power spike in line voltage or a bad transformer on the main logic board can cause A blown fuse on the main logic board. If either fuse blows the indication is the green LED on the main logic board will not light.
A. Replace the fuse. If the green LED now lights then there was a spike.
B. If it does not and the fuse blows again the power transformer is shorted. To test the transformer use a voltmeter set for ohms and measure across the primary (40 ohms) and the secondary (1.5 ohms).
2. Hopper Fault: A hopper fault can either be a jammed hopper, a blocked coin counting optic or a bad hopper logic board.
A. Indications for a jammed hopper are the changer accepts bills, the meter counts up, but nothing or not enough coins are paid out.
3. After 2 minutes the EPROM shuts off the validator if the coins are not paid out correctly. The "Empty" LED will flash once per second.
4. At this point the three options open are to attempt repair on your own, call your distributor, or return the defective hopper to American Changer.
B. Indications for a blocked coin optic or bad hopper logic board are the out-of-service LED on the outside of the changer is lit and the red LED on the main logic board is lit and flickers off once per second.
5. If two of the 3 green LED's on hopper logic board are lit then the hopper logic board is bad.
6. If there is a coin or foreign object caught in the coin exit window LED's \#1 and \#3 will be lit on the hopper logic board instead of LED's \#1 and \#2.
a. Take off the side of the hopper with the 5 Philips screws. Pull up on the exit window logic board and look for the jammed item.
b. Ensure you have the pins aligned before reconnecting logic board.
7. Validator Fault: When a validator fault occurs the validator's EPROM shuts down the validator and flashes an error code via the red LED on the validator logic board. When there is no error this LED is on steady. The validator only gives bill pulses to the main logic board so the main board never knows if the validator isn't functioning. Therefore the out-of-service-LED will not light. (Seepage 10 for validator error codes.)
8. Low Coins: The low coin condition is probably the most common fault. The EPROM on the main logic board is constantly checking for low coins in the hoppers. This is done with a low current 5 vdc signal on pin \#3 of the hopper's output connector. The voltage then travels down the hopper's wire harness on the white wire to pin \#7 of hopper's plug. The signal is applied to one of the gold low contact plates at the bottom of the hoppers. The 5 v travels through the coins through the other contact gold plate to hopper's pin \#2. It then goes through the black wire in the hopper's harness to pin \#10 on the main logic board. Any interruption of more than $1 / 2$ a second will cause an out-of-service condition.
A. Clean the bottom gold plates of the hoppers with steel wool or fine sandpaper. Refill the hoppers and try again.
B. Check continuity, (0 ohms) resistance, from pins 3 (white) and 10 (black) of the red hopper harnesses. Make sure both hoppers are full and the changer is turned off.
9. If the continuity is 0 ohms, replace the main logic board.
C. Pull the hoppers out of the changer, then look at the 12 pin black male connector that sticks out of the hoppers. Place the continuity checker's leads on pins $2 \& 7$.
10. If the continuity is 0 ohms, replace that hopper's plate or adjust the hopper's plate female socket's pins so that they are not so spread out.
11. If the continuity is infinity, then replace that hopper.

VALIDATOR INTERFACES 18 PIN INTERFACE CONNECTOR DETAILS

Interfacing the Mars 2501/2511 Series with the ValiChanger 8-Position Switch

1	off
2	on
3	off
4	on
5	off
6	on
7	off
8	off

No change is required to the 18-pin connector..
Ensure the black \& yellow wires go to a wire nut and the green \& white go to the other wire nut

Interfacing the Maka NB-10 with the ValiChanger
To interface the Maka NB-10 validator with the ValiChanger the following settings should be used for the " $\$ 1=$ one pulse" configuration. See the validator manual for full details. The 18-pin interface connector should not be used.

Interfacing the Maka NB/NBE-20 with the ValiChanger

To interface the Maka NB/NBE-20 validator with the ValiChanger the following settings should be used for the " $\$ 1=$ one pulse" configuration. See the validator manual for full details. The DipSwitch settings should be:
6-Position Switch

1	on
2	on
3	off
4	off
5	off
6	off

The 18 -pin interface connector supplied with the ValiChanger should have pins $3,4,14,15 \& 18$ connected and pins 7,9,12 connected.

Interfacing the CoinCo BA30SA with the ValiChanger

Connect wires $4 \& 12$ (Black \& Red) to gather on the 18-pin connector to enable the Validator.

CoinCo MAGPRO Series Flash Codes

Flash codes 1-18 may appear during normal servicing of the BA30. If more than one error or condition exists, the lower number flash code will appear until its respective error or condition is corrected. The left and right sensors referenced below are given viewing the BA30 from the front. \# of Flashes Description of Flash Codes
1 Bill box full

N/A
Check bill path
All bill accept switches are off
Bill jam or sensor error
Stacker motor/home sensor
Transport motor/encoder sensor
N/A
EPROM Has Failed
EPROM Has Failed
Center Optic Failed
Right Optic Failed
Left Optic Failed
Bill Position Sensor Error
Right Bill Position Sensor Error
Left Bill Position Sensor Error
Lower Anti-Stringing Armature out of place
Upper Anti-Stringing Armature out of place

MAG BILL ACCEPTOR

Operation and Service Manual

COI NCO MAG50B VALI DATOR SECTI ON

PAGE

Removing the Bill Box 12
Clearing a bill jam 12
Setting the bill types accepted 13-14
Cleaning the sensors 14-15
Cleaning a salted unit 15
Replacing the belts 16

Removing the bill box.

To remove the 1000 bill stacker from the CoinCo validator follow the picture below.

REMOVING A BILL JAM

From time to time a foreign object or ripped bill will become caught in the validator. Follow the picture below to remove the item.

SETTI NG THE BI LL ACCEPT DI P SWITCHES

SWITCH	ON	OFF
1	High Security	Standard A.ceeptance
2	Accepts bills in one	Accepts bills in both
	directions only (face up, green seal first)	directions (face up)
3	Standard credit pulse	Short credit pulse
	150 ms on 150 ms off	50 ms on 50 ms off
4	\$20 Accept	\$20 Reject
5	\$10 Accept	\$10 Reject
6	\$5 Accept	\$5 Reject
7	\$2 Accept	\$2 Reject
8	\$1 Accept	\$1 Reject

CLEANI NG THE BI LL VALI DATOR

Refer to the pictures and the procedure on the next page to clean the bill validator every 4-6 months.

MAGPRO CLEANI NG: IF ANY OF THESE PROCEDURES ARE PERFORMED TO YOUR VALI DATOR AFTER IT IS RETURNED UNDER A WARRANTY REPLACEMENT, YOU WILL BE SUBJ ECTED TO A \$65.00 LABOR FEE. CLEANING AND MAINTENANCE:
Note: Petroleum-based cleaners and freon-based propellants can damage plastic and some electronic components. Scouring pads and stiff brushes may harm the protective conformal coating on the circuit boards and can mar the plastic. These items should never be used when cleaning the MAGPRO bill acceptor. 5. Remove the bottom cover from the lower housing.
The MAGPRO should be cleaned every $\mathbf{7 , 0 0 0}$ bills or every 4-6 months (or as needed, depending on the environmental conditions of the location). Dust can be removed with a soft brush or cloth or it can be blown out using compressed air.

Procedure:

1. Disconnect power from the bill acceptor.
2. Remove the bill box and use a soft cloth to wipe the dust from around the intermediate frame and stacker plate.
3. Remove the lower track.
4. Using compressed air or a soft brush, blow or brush the dust off of the optic sensors and out of the recessed sensor openings.
5. Remove dust from around the belts and wheels on the lower housing and the sensors on the upper sensor board. The upper sensors are located directly above the lower housing sensor when the lower housing is installed.
6 . The bill path can be cleaned to remove further dirt and oil using a soft cloth moistened with a mild soap and water solution.
6. Clean the magnetic head using a swab and isopropyl alcohol.
7. Once the lower housing is dry, place it back into the mainframe so that the tab on the bottom locks into place.
8. Blow the dust out of the encoder wheel and its sensors. (It may be necessary to extend the stacker plate to access the encoder wheel. Supplying power to the unit momentarily can do this, so that the stacker plate extends.)
9. Remove dust from the transport belt areas and from any other places of build up.
10. Remount the bill box.
11. Apply power and insert bills to verify that the unit is functions property.

MAGPRO CLEANING PROCEDURE FOR SALT WATER POLLUTED UNITS:

Note: Petroleum-based cleaners and freon-based propellants can damage plastic and some electronic components. Scouring pads and stiff brushes may harm the protective conformal coating on the circuit boards and can mar the plastic. These items should never be used when cleaning the BA30 bill acceptor.

Procedure:

1. Remove power from the bill acceptor.
2. Remove the bill acceptor from the vending machine.
3. Open the bill box lid and verify that the stacker plate is in the stand-by/home position. If it is not in the home position, apply power and observe that the stacker plate returns home.
Warning: If moisture is present, allow the unit to dry thoroughly before applying power to avoid possible shock hazard. If the stacker plate does not return to the home position, remove power and carefully remove the bill box to avoid damaging the bill box and/or stacker plate.
4. Remove the lower housing.

REPLACI NG THE BELTS

Every 2-3 years the belts on the CoinCo will wear out. To replace them, remove the validator components down to the picture show. Refer to the parts diagram at the end of the manual for help getting to this point.

MARS AE2601

MEI MARS AE2601 VALI DATOR SECTI ON

PAGE
Removing the Bill Box
18
Clearing a bill jam
..... 18
Setting the bill types accepted
..... 19
Cleaning the Validator
..... 20
Coupon Programming (Dip Switch) 21-22
Trouble Shooting \& Trouble Codes 23
In order to use the Mars type VN2611 type validator the hopper extensions must be removed in order for the machine door to shut.

This is not a problem when using the Mars VN2601 style validator!

BI LL ACCEPTOR 120VDC \$1-\$20

Removing the bill box

Clearing A Bill Jam

Setting the Dip Switches

Cleaning \& Maintenance

Cleaning

You can clean the bill acceptor while it is still mounted in the machine.

1. Remove power from the machine.
2. Unlatch the magazine by pushing the blue latch (located on the top of the unit) toward the front of the unit.
3. Unhook and remove the magazine by holding the latch and lifting up and then back on the magazine.
4. Unlatch the LED Housing by lifting up on the metal bar (located below the Status LED).
5. Remove the LED Housing by holding the metal bar and pulling back on the LED Housing.
6. Clean the bill path with a soft cloth. You may use mild, non-abrasive, non-petroleum based cleaners if sprayed on the cloth.

Coupon Configuration

The AE2601 may be configured using a coupon. The coupon is included in the AE2601 Series Installation Guide. Carefully cut the coupon along
the dotted-line edge to remove it from the installation guide. Copies of the original coupon may be produced with a standard, carbonbased,
non-color copier. Cut copies to match the size of the original coupon.

All option switches must be in the OFF position for the coupon selections to be active.

The coupon selection will remain with the AE2601 until the unit is reprogrammed, even if power is removed.
When filling out the coupon, note the following:
Use only a \#2 pencil to fill in the blocks
Fill in the entire block
Do not mark the coupon outside the blocks or on the back of the coupon
Fill in ONE block for EVERY line

Coupon Programming

1. Fill out the coupon using the table below.
2. Locate the service button on the back of the unit (refer to Figure 2).
3. Press the button once to enter the coupon setup mode. Pressing again will exit the mode. The unit will automatically exit coupon setup mode upon acceptance of the coupon configuration.
The LED Status indicator (located to the left of the service button) will flash rapidly indicating that the unit is in coupon setup mode.
4. Insert the coupon marked-side up.

The AE2601 will pull the coupon in, read it, and then return it to the user.
A good coupon will be returned immediately.
After the coupon is pulled from the bill acceptor mouth, the unit will flash the Status
LED ten times to confirm a good configuration.
A bad coupon will be held for ten seconds before being returned. This delay is to make you aware that there is a problem with the coupon. When the coupon is pulled from the bill acceptor mouth, the unit will flash the Status LED the number of times corresponding to the section of the coupon wherein a problem lies. For example, if

THIS IS NOT A USABLE COUPON! DO NOT COPY!!!

FIGURE 1

FIGURE 2

the problem is in section five, the LED will flash five times. Section numbers are located to the far right of each section on the coupon.
5. If the configuration is rejected, check the coupon and repeat the process.

Signal	Meaning	Solution
LED ON	Indicates that the unit is enabled and ready to accept a bill.	No action necessary.
LED OFF	Indicates that no power has been applied to the unit.	Check to ensure that power is applied. 1 Flash Indicates that something is obstructing the bill path.Remove the magazine and LED housing; inspect for foreign material.
2 Flashes	Indicates that the unit is not enabled.	Verify configuration. Check the coin tube levels in the coin changer. Check the option switches in the coin changer. Note: Many machines disable the bill acceptor if the machine door is open and the door switch is not activated or if the machine is out of product.
3 Flashes	Indicates that the bill path needs cleaning for optimum performance.	Remove the magazine and LED housing and follow cleaning instructions (page 22) to clean the bill path.
4 Flashes	Indicates that something is obstructing the bill path.	Remove the LED housing and look at the bill path on the housing and inside the unit for foreign material; clean as necessary.
5 Flashes	Indicates that the magazine is removed (the unit will not accept without the magazine attached).	Reinstall the magazine. Continuous Slow Unit is defective. Fantinuous The magazine is full of money. Remove the money from the magazine.

Trouble Codes

Status LED

A Status LED provides assistance in diagnosing the condition of the Series AE2600. The following is a description of the LED codes, their meanings, and suggested remedial actions.

LED ON - Indicates that the unit is enabled and ready to accept a bill.
No action is necessary.
LED OFF - Indicates that no power has been applied to the unit.
Check to ensure that power is applied.
1 Flash - Indicates that something is obstructing the bill path.
Remove the magazine and LED housing.
Inspect for foreign material.
2 Flashes - Indicates that the unit is not enabled.
Verify configuration. Check the dipswitches.

3 Flashes - Indicates that the bill path needs cleaning for optimum performance.
Remove the magazine and LED housing and follow cleaning instructions (page 29) to clean the bill path.

4 Flashes - Indicates that something is obstructing the bill path.
Remove the LED housing and look at the bill path on the housing and inside the unit for foreign material; clean as necessary.

5 Flashes - Indicates that the magazine is removed (the unit will not accept without the magazine attached).
Reinstall the magazine.
Continuous Slow - Unit is defective. Replace the unit.

Continuous Fast - The magazine is full of money.
Remove the money from the magazine.

MKIV UNIVERSAL HOPPER

INDEX

PAGE

1. Coin box removal \& reassemble 24-26

SERVICE MANUAL

1. COIN BOX REMOVAL

1. Place the hopper in front of you as shown, (looking at the outside of the 'coin box').

Refer to FIG 1.

2. Remove the 2 locking nuts, which hold the 'low level sense plate' wires to the studs.
3. Remove the crimp \& wire from the studs.

Refer to FIG 1a.
4. Remove the 5 screws indicated (B), which hold the 'coin box' to the 'center plate'.

FIG $1 a$.

Refer to FIG 1b.
6. Gently lift the 'coin box' away from the rest of the hopper.

NOTE:- The 'logic board' \& 'stirrer' are located in the 'coin box'.
7. As the 'coin box' is being removed, carefully slide the 'logic board' out. The stirrer may stay with the 'coin box' or fall onto the center plate.

FIG 1b.

ACCESS IS NOW AVAILABLE TO THE 'LOW LEVEL' SENSE PLATES, THE MAIN PCB, THE EXIT WINDOW, THE MOTOR TERMINALS \& PART OF THE WIRING LOOM.

1a. COIN BOX ASSEMBLY

1. Firstly, locate the 'stirrer in the 'coin box as shown in FIG 12.

FIG 12.

COIN BOX ASSEMBLY (cont.)

2. Line up the 'centre plate' \& 'coin box' as shown below. FIG 12a.
3. Route the ribbon cable as shown below.
4. Fit the 'logic board' into slots shown below.
5. Feed the level sense wires through the slot shown below.

6. Lift the 'centre plate' to meet the 'coin box'. FIG 12 b \& c.

3. LOGIC BOARD REPLACEMENT

1. First, remove the 'coin box', section 1 .

This will then enable access to the 'logic board'.

FIG 5.

10-way ribbon IDC socket (CONN 1).
2. Move the two ejector arms at right angles to \& away from the connector, if fitted.
3. This should release the socket from the header.
4. Clasping the connector between thumb \& forefinger, pull away from pin header.

14-way crimp socket (CONN 2).
5. Gently, unclip the "friction lock" from the connector housing.
6. Clasping the connector between thumb \& forefinger, pull away from pin header.
7. The Logic Board is now released.
8. To re-assemble, follow the above steps in reverse.

4. END PLATE REMOVAL

1. Place the hopper in front of you as shown, (looking at the outside of the 'end plate').

Refer to FIG 6.

2. Remove the 9 screws indicated (B), which hold the 'end plate' to the 'center plate'.
3. Locate the position of the 'connector blanking piece'.
4. Holding the 'connector blanking plate' gently lift the 'end plate' away from the rest of the hopper.

5. To re-assemble, follow the above steps in reverse.

5. TRACK PLATE REMOVAL

1. 2. First, remove the 'end plate', section 6.

See FIG 7.

2. The 'elevator track' \& 'final drive gear' can now be removed by lifting up \& away from the 'center plate'.

5a. TRACK PLATE ASSEMBLY

The following 3 sketches show how to take the 'track plate' apart.

The following 3 sketches show how to assemble the 'track plate'

5b. TRACK PLATE REPLACEMENT

1. The gray shaded area, in FIG 7b, is the 'track plate' guide path.

FIG 7b.

2. Once the 'track plate' is in position, turn the track through 720° to ensure it is seated in the guide path correctly.

5c. FINAL DRIVE GEAR REPLACEMENT

1. Once the 'elevator track' is in place, the 'final drive gear' can be fitted by placing the gear over its mounting spindle, while lining the teeth up with the secondary drive gear, adjust the 'elevator track' so that the gear falls into place. FIG 7c.
2. The end plate can now be re-fitted. See section 6.

FIG 7c.

6．GEAR BOX ASSEMBLY

1．Remove the end plate．Section 6.

2．Remove the＇elevator track＇\＆＇final drive gear＇． Section 7.

FIG 9.

4．Remove the＇track plate＇\＆final drive gear． Section 7.

5．Remove the gearbox cover．Section 8 ．
6．Disassemble the gearbox．Section 9 ．
7．Unscrew the 2 motor fixing screws．FIG 10.

3．Remove the gearbox cover．Section 8 ．
4．Remove the gears in the order as shown in FIG 9.

Access to the motor fixing screws is now possible．

5．To re－assemble，follow the above steps in reverse．

3．Remove the＇end plate＇．Section 6.

7．MOTOR REPLACEMENT

1．Remove the＇coin box＇．Section 1.
2．Unsolder the red \＆black wires from the motor．
NOTE：The black wire connects to the terminal marked with a RED dot．

8．To re－assemble，follow the above steps in reverse

TECHNICAL FLOW DIAGRAM FOR THE AC2000
NOTE: Before starting this procedure ensure the changer is plugged in, the ON/OFF switch is on, the hoppers are full of coins, and all wire harnesses are connected securely and correctly.

The wires exiting the red connectors should point away from the board!!

For a more detailed trouble shooting information proceed to the next section!

> FOR TECHNICAL SERVICE OR TO OBTAIN A RETURN AUTHORIZATION NUMBER CALL (888) 741-9840
> ANY REPAIR RETURNED WITHOUT A RETURN AUTH. \# WILL BE REFUSED!!

Solution:

1. Ensure the changer is plugged in.
2. Ensure the on/off switch is rocked to the (1) position (down).
3. Unplug the female end of the line cord from the main logic board AC connector and plug it in again tightly.

A. The changer is completely dead. (The green LED on the main logic board is not lit.)

B. The "Empty LED is lit. BOTH HOPPERS ARE OUT OF SERVICE.
4. Measure the AC voltage at the outlet or check the breaker/fuse box. You can also plug another item into the AC wall outlet to ensure there is power present at the outlet.
5. Inspect the AC line cord for cuts or abrasions.
6. Check both fuses on the Main Logic Board.
7. Replace the main logic board.
8. Replace the line cord.

1. Ensure the hoppers are not out of coins. (There should be enough coins in the hoppers to cover the gold low level contact plates approximately $\$ 30-\$ 40$. These plates are located at the bottom of the hoppers where you pour the coins.)
2. Check the hoppers wire harness that extends from the back of the plate that the hoppers slide in and out on for chipped pieces or other damage. (Pay close attention to pins \# 2 \& 7.)
3. Clean the gold contact plates with steel wool.
4. Perform the following steps:
A. Turn the changer off.
B. Ensure the left hopper plate red connector on the left side of the main logic board (MLB) is plugged into the bottom connector, and the right is plugged into the top connector.
C. On the MLB slide all the dipswitches left to the "off" position.
D. On the left DipSwitch slide \#3 "ON" enabling a 4 coin per dollar payout.
E. On the right Dip switch slide \#8 "ON" disabling the top hopper connector and enabling the changer into the "One Hopper Mode"
F. Turn the changer on.
G. If the "Empty" LED on the front of the changer is now off, remove the right hopper and service this hopper. The changer will function in this mode until the hopper is fixed.
H. If the "Empty" LED is still "on", turn the changer off and switch the hoppers, and turn the changer back on.
I. If the "Empty" LED on the front of the changer is now off, remove the right hopper and service this hopper. The changer will function in this mode until the hopper is fixed. Remember to remove the coin chute from the hopper or the coins will fall into the changer instead of into the coin cup!
J. If the "Empty" LED is still "ON", turn off the changer.
K. Reverse the hopper's plate connections, (top to bottom, bottom to top), and repeat steps F thru I. Keep in mind that you are trouble shooting the Hopper Plates instead of the hoppers
5. Replace the Main Logic Board.
6. Replace both hoppers.
7. Replace both hopper plates with the harnesses.
8. Ensure the hoppers are pushed into the hopper's harness on the back of hopper plate tightly.

C. The "Empty LED is lit.

The decimal point on the light-up number display is "on" more than it is "off".
2. Ensure that left and center green hoppers LED's are lit only. Not the left and right LED's. If this is the case go to pg. 20 to un-jam the hopper exit window.
3. Replace the hopper.
4. Replace the hopper's plate and harness.

Problem:		Solution:
D. The green LED on the Main	1. Logic Board is lit but the Light- up display does not.	Bad 5 or 12vdc regulator on the main logic board. 3. The hoppers are shorted. Replace main logic board. 4.
Replace hoppers.		

1. AC2010 - CABINET COMPLETE W/ COIN CUP (\#2) \& LOCK BRACKET (\#3).
2. AC1010-01 - COIN CUP
3. AC2010-40-LOCK BRACKET ASSY. COMPLETE.
4. AC1041 - COIN CONTROLS MKIV COIN HOPPER.
5. AC1040.3 - COIN CONTROLS HOPPER PLATE W/ FEMALE PLUG \& HARNESS.
6. AC2061 - MAIN LOGIC BOARD.
7. AC2081 - FULL FACE LEXAN FRONT.
8. AC5080 - SCREW-IN T-HANDLE.
9. AC9000 - COINCO BILL VALIDATOR.
10. AC1042 -HOPPER EXTENSION (1) 1200 COINS EACH
11. 2900 -MANUAL PACKET
12. 2010-103 -LEFT CHROME COIN DIVERTER ONLY!
13. 2010-104 -RIGHT CHROME COIN DIVERTER ONLY!
14. AC1044 -METAL 1000 BILL STACKER (USE AC1044-L FOR LOCKING VERSION)

AC2000/2001 OPTIONAL PARTS LIST
 (ITEMS NOT SHOWN.)

AC2070 - BASE (PEDESTAL)
AC2075 - HEADER
AC1090 - DOOR/TILT ALARM
AC1091 - TILT ALARM ONLY
AC1093 - LOCK AND KEY

1093-01 - Extra Keys (Need the ACC key number)
AC9003 - MEI Mars AE2601 Validator
AC1045.1 - Mars 700 Bill Stacker
AC1045.2 - Mars 1000 Bill Stacker

Motor.
\#2 - 1041-24-02
Motor Side Cover.
\#3 - 1041-24-03

Center Plate.
\#4 - 1041-24-04 End Plate.
\#5A- 1041-24-05 Coin Counting Optic Board.
\#5B-1041-24-06
Optic board ribbon cable.
\#6 - 1041-24-07
Red Track Belt
\#7 - 1041-24-08
MK4 Wire Harness
\#8 - 1040-24-113
Male 12-pin connector
\#9 - 1040-24-112

(Not Shown)

Female 12-pin
connector
(On the hopper

plate.)

\#10-1041-24-10
Idler gear
\#11-1041-24-11
Gear Box.
\#12-1041-24-12
Gear Shaft.
\#13-1041-24-13
Black plastic Gear \#1
\#14-1041-24-14
Gear \#3 \& 4.
\#15-1041-24-15
Output gear.
\#16-1041-24-16
Idler Gear \#4
\#17-1040-24-22
Blanking Plate.

\#22-1040-24-291
Low level contact plate
\#23-1041-27-373
Mark IV PC logic board
\#18-1040-24-25
Fixing screw.
\#19-1041-24-19
Cam Shaft.

Agitator

1041-24-20
Cam shaft bearing
\#20-1041-24-21

Cam Agitator
\#21-1041-24-22

COI NCO PARTS LIST

MOUNTI NG ASSEMBLY PARTS BREAKDOWN

PICTURE \#		PART \#
\#1		MP90-1-1
\#2		MP90-1-2
\#3		MP90-1-3
\#4		MP90-1-4
\#5	MP91-1-5	
\#6	MP90-1-6	
\#7	MP91-1-7	

DESCRIPTION

Machine Screw
"Snack Mask" Black Plastic
Machine Screw
Main Frame, Plastic
Mask Gold Mounting Bracket
Bill grounding spring
Machine Nut

COINCO PARTS BREAKDOWN

| PICTURE \# | | PART \# |
| :---: | :--- | :--- |\quad| DESCRI PTI ON |
| :--- |
| \#1 |

PICTURE \#	PART \#	DESCRIPTION
\#1	MP90-3-1	Dust Cover
\#2	MP90-3-2	Upper Transport \& Hub Assembly, Complete
\#3	MP91-3-3	Motor, Transport \& Gear Assembly Complete
\#4	MP90-3-4	Wheel, Encoder
\#5	MP90-3-5	Stacker, Push-Plate Assembly
\#8	MP90-3-8	Spring, Belt Tension
\#9	MP90-3-9	Motor, Stacker Assembly Complete
\#10	MP90-3-10	Pulley, Idler
\#11	MP90-3-11	Lower Transport Pulley \& Hub Assembly
\#13	MP90-3-13	Belt, Upper Housing
\#14	MP90-3-14	Frame, Upper Housing
\#15	MP91-3-15	Sensor Board, Upper Housing
\#16	MP90-3-16	Upper Board Clip
\#17	MP90-3-17	Wire Clip
\#18	MP90-3-18	Shaft, Pulley
\#19	MP90-3-19	Shaft, Wheel
\#21	MP90-3-21	Board, Stacker

COINCO PARTS BREAKDOWN

PICTURE \#
\#1
\#2
\#3
\#4
\#5

PART \# DESCRIPTION
MP90-4-1 Lid, Logic board Box
MP91-4-2 Body, Logic board Box
MP90-4-3 Main Logic Board
MP90-4-4 Sticker, Serial Number / Warranty
MP90-4-IF Intermediate Frame with Bearings

MARS AE2600 SERIES 24VDC PARTS BREAKDOWN

CONTI NUED

PICTURE \# PART \#
 \#1
 AE93-2-1
 DESCRIPTION
 Gearbox Assy

\#2 AE93-2-2
\#2 AE93-2-2
AE93-2-3
AE93-2-4
\#5 AE93-2-5
\#3
\#4
\#6 AE93-2-6
\#7 AE93-2-7
Tension Assy
Tension spring
Tire/ Wheel Assy
Belt, Timing, (1 of 2)-143 Teeth

AE93-2-8
Pulley, Compound
\#8
Shaft, Pulley
Belt, Timing, (1 of 2)-56 Teeth

CONTI NUED

PICTURE \# PART \#

\#1
\#2
\#3
4 AE93-3-3
\#4 AE93-3-3

DESCRIPTION
Main Chassis, Plastic
Stacker Latch, Blue
Spring, Stacker Latch Lower Housing Lift Spring

[^0]: IF THE "EMPTY" LED IS LIT, LOOK FOR CODES FOR BOTH HOPPERS TO BE DISPLAYED!

[^1]: The right \& left hoppers have a removable coin chute installed. Replacement hoppers are not sent with this coin chute. Left chute (P\# AC2010-104) Right chute (P\# AC2010-114

