7(675(32570
) RU\&RP SDQ IT
 Beyond LED Technology

0 RGHDA19 15W 120V E26 ED G4 850$]$

5 HRLW \backslash SH]	 (1) 5 * < [67 \$ 5 [BURUP [5 HIXILP HVWIRU/ DP SV9 7 HKWLHSRUWRUIDP IQLSURGXFWZ IWK\&\&7 IYDIDNRQIIRU/ (' / DP SV
$\begin{aligned} & 3 \text { URNIFW } \\ & \text { (QJIQHETO } \end{aligned}$	+ I®1 IX]
5 HRLUM XP EHU0	5]. 6\%
7 HWW DMM	\%
5 HRUWV DMM	\%
5 HMELHG\% ${ }^{\text {a }}$	
5 HMUHG1 RM[
\$ FFUHMWNRQ	

TABLE OF CONTENTS

1. Product Description \# 3
2. Statement of Traceability 4
3. Summary of Test Results 5
4. Family Product Performance Comparison 6
5. Detailed Test Methods and Test Results 7
5.1. In situ Temperature Measurement Test 7
5.2. Initial Photometric and Electrical Measurements 10
5.3. Luminous Intensity Distribution 13
6. EUT Photo 17
6.1. Lamp Photo 17
6.2. LED Board Photo 17
Attachment A - Test Report \#R1KS200616103-10-6000-M1 18
Attachment B - Spectral Power Distribution 18

BACL

1. Product Description \#

General Information:

13PCS samples were received on 2021-02-20 and used for testing. Samples were numbered R1KS210220119-S01 through R1KS210220119-S13.

$$
\text { Model Tested: A19 15W 120V E26 ED G4 } 850
$$

Manufacturer: Beyond LED Technology
Brand Name: Red100
Lamp Shape: A19
Lamp Type: Omnidirectional LED Lamp
Lamp Base: E26
Dimming: Dimmable
Dimming Range: 20\%-100\%
Application Exceptions: None
Restricted Position: None.
Connectable: No
Color Tunable: No
CCT Range(2700K-6500K): N/A
Default Setting: N/A
The Most Consumptive Setting: N/A

Rated Values:

Rated Voltage/Frequency:	AC 120 V 60 Hz
Rated Power:	15 W
Nominal Light Output:	1600 lm
Nominal CCT:	5000 K
Rated Life:	25000 hours
Wattage Equivalency Claims:	100 W

LED Light Source Information:

LED Type: LED Package
LED Model Number: 9 V 100 mA
Number of LED Source: 34
LED Manufacturer: Shenzhen MTC Lighting Co., Ltd.

Declaration of Product Variations:

Model Number	Test report No.	Variation
A19 15W 120V E26 ED G4 850	R1KS200616103-10-6000-M1	2700 K
A19 15W 120V E26 ED G4 850	R1KS210220119-10-M1	5000 K

2. Statement of Traceability

Bay Area Compliance Laboratories Corp. (Dongguan) attested that all calibration has been performed using suitable standards traceable to National Primary Standards and International System of Units (SI).

3. Summary of Test Results

Criteria Item	Measured Value (Avg.)	Reported Value	Result	Reference Standard	Accreditation	Requirement
Efficacy (lm/W)	127.14	127.1	10/10 Pass	IES LM-79-08	YES	8 of the 10 lamps and reported value: $\geq 80 \mathrm{Im} / \mathrm{W}$
Light Output (Im)	1781.0	1780	10/10Pass	IES LM-79-08	YES	8 of the 10 lamps and reported value: 1600-1999 Im
Zonal Lumen Density	6.88\%	N/A	Pass	IES LM-79-08	YES	$\geq 5 \%$ in $130^{\circ}-180^{\circ}$ zone
Luminous Intensity Distribution	See tables	N/A	Pass	IES LM-79-08	YES	$\ln 0^{\circ}-130^{\circ}: 80 \%$ of candelas vary $\leq 35 \%$ from the average intensity; no candelas vary more than 60\%
CCT (K)	4964	5000	10/10 Pass	IES LM-79-08	YES	9 of the 10 lamps: fall within a 7 -step ANSI quadrangle
Ra_{a}	85.2	85	Pass	IES LM-79-08	YES	Average $R_{a} \geq 80$, less than 3 units $R \quad a<77$ and none lower than 75
R9	18	18	Pass	IES LM-79-08	YES	$\mathrm{Rg}_{9}>0$

4. Family Product Performance Comparison

| Criteria Item | Representative
 Model | Variant Model | Status | Requirement |
| :---: | :---: | :---: | :---: | :---: | :---: | Input Voltage(V)

Note:
i. A -5% tolerance was applied to the measured maximum overall length (MOL).

5. Detailed Test Methods and Test Results

5.1. In situ Temperature Measurement Test

Test Method:

ANSI/UL 1993-2012 Standard for Safety of Self-Ballasted Lamps and Lamp Adapters

Performance Requirements:

It is required for early interim certification to calculate the projected L_{70} life. The projected lumen maintenance life shall be greater than or equal to the lamp rated life value to be claimed on product packaging.

For family products, the average of up to five in situ temperatures of critical components shall be no greater than $2.5^{\circ} \mathrm{C}$ above the same average of in situ temperatures in a sample of up to five units of the tested representative model. Critical components include the highest temperature LED package/array/module measured at TMP ${ }_{\text {LED }}$, LED driver measured at TMP ${ }_{c}$, capacitors and fuses. The TMP ${ }_{\text {LED }}$ should not be greater than the maximum case temperature tested in the corresponding IES LM-80 report.

Test Procedure:

Tests were conducted at $25 \pm 5^{\circ} \mathrm{C}$. Thermocouples and hybrid recorder were used to test the temperature of highest temperature LED measured at TMP ${ }_{\text {LED }}$, LED driver measured at TMP ${ }_{c}$, capacitors and fuses. According to ANSI/UL 1993, the lamp was operated base up at rated voltage in temperature test box. The bottom of box shall be closed off with a $2.5 \mathrm{~mm}(0.1 \mathrm{in})$ thick piece of window glass of appropriate size, except lamps labeled "not for use in enclosed or recessed ÿxtures" or equivalent. The reported temperature value for each point should be the readings of the hybrid recorder after the temperature of each point is stabilized and constant. A temperature is considered constant if the test has been running for at least 3 hours; and three successive readings, taken at 15 -minute intervals, are within 1 degree C of one another and are not rising. Or the test was run for a minimum of 7.5 h . Ambient temperature variations above or below $25^{\circ} \mathrm{C}$ have been respectively subtracted from or added to temperatures recorded at points on the device.

The drive current of LED package/module/ array was calculated as the total output current of the driver measured by multimeter, divided by the number of branches in parallel of LEDs.

Test Equipment:

Device	Manufacturer	Model No	Serial No	Calibration dateCalibration due date	
Multimeter	FLUKE	$17 B$	15731328	$2020-10-30$	$2021-10-29$
Hybrid Recorder	YOKOGAWA	DR240	$10 \#$	$2021-02-24$	$2022-02-23$
AC POWER SUPPLY	HengPu	HPA 1103	0003394	$2021-01-04$	$2022-01-03$

Uncertainty:

The uncertainty of the temperature is $\mathrm{U}=0.8^{\circ} \mathrm{C}(\mathrm{K}=2)$, at the 95% confidence level.

Test Data:

Photo of test location:

TMP Led for Model: A19 15W 120V E26 ED G4 850

TMPc for Model: A19 15W 120V E26 ED G4 850

Tcapacitors f for Model: A19 15W 120V E26 ED G4 850

TMP ${ }_{\text {LEd }}$ for Model: A19 15W 120V E26 ED G4 827

TMPc for ModelA19 15W 120V E26 ED G4 850

Tcapacitors for Model: A19 15W 120V E26 ED G4 850

$\mathrm{T}_{\text {fuses }}$ for Model: A19 15W 120V E26 ED G4 850

Supply voltage: AC120V 60Hz
Type of thermocouples: T
Test Duration: ≥ 3.5 hours

Sample No.	$\operatorname{TMP}_{\text {Led }}\left({ }^{\circ} \mathrm{C}\right)$	$\mathrm{TMP}_{\mathrm{C}}\left({ }^{\circ} \mathrm{C}\right)$	$\mathrm{T}_{\text {capacitors }}\left({ }^{\circ} \mathrm{C}\right)$	$\mathrm{T}_{\text {fuses }}\left({ }^{\circ} \mathrm{C}\right)$
R1KS210220119-S12	88.8	87.4	98.0	102.1
R1KS200616103-S17	90.4	88.9	99.4	103.7

5.2. Initial Photometric and Electrical Measurements

Test Method:

IES LM-79-08: Electrical and Photometric Measurements of Solid-State Lighting Products
ANSI/ANSLG C78.377-2015: Specifications for the Chromaticity of Solid State Lighting Products
ANSI C82.77-10-2014 Harmonic Emission Limits-Related Power Quality Requirements for Lighting Equipment

Performance Requirements:

Luminous Efficacy: Reported values for each lamp model shall meet the applicable requirement in the ENERGY STAR specification. Additionally eight or more units individually shall meet the requirement.

Light Output: For omnidirectional and decorative lamps, Reported lamp initial light output (in lumens) shall fall within the range of the referenced incandescent lamp listed in the ENERGY STAR specification. For R, BR and ER lamps, reported lamp initial light output (in lumens) shall be greater than or equal to the incandescent lamp's rated wattage times the multiplier required in the ENERGY STAR specification. Additionally 8 or more units individually shall meet the requirement. No requirements for MR and PAR lamps.

CCT: Reported lamp model light color temperature shall correlate to one of the required nominal CCTs, additionally 9 out of 10 units shall fall within a 7-step ANSI quadrangle for the designated CCT.

CRI: The average $R_{a} \sim 80$ and $R_{9}>0$. No more than 3 units shall have $R_{a}<77$. No unit shall have $R_{a}<75$
Power Factor: ~ 0.7 for lamps $>5 \mathrm{~W}$. Omnidirectional lamps with rated/reported input power , 10 watts shall have a reported value ~ 0.6.

For family products, the varies of input current and input wattage between tested representative model and variants should be within 10%, and within 5% for power factor.

Test Procedure:

According to IES LM-79-08, LED lamps were tested at ambient temperature $25^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C}$ with no seasoning. Initial parameters including Total Light Output (luminous flux), Correlated Color Temperature (CCT), Color Rendering Index (CRI), Luminous Efficacy, Chromaticity Coordinate, Current, Power, and Power Factor, were measured 5 base-up and 5 base-down by integrating sphere system. This system including spectrophotometer, integrating sphere, digital power meter, DC power supply and AC power supply, was calibrated by standard light source before measurement. Spectral measurement was taken at no more than 5 nm intervals from 380 to 780 nm . The u^{\prime}, v' and Duv was calculated based on measured x, y in accordance with CIE Pub. No.15:2004 and ANSI C78.377-2015 and rounded to four decimal places. Other test results were derived by software of test equipment and were recorded with no rounding.

For spectral power distribution data, please see Attachment B

Test Equipment:

Device	Manufacturer	Model No	Serial No	Calibration dateCalibration due date	
1.5m integrating sphere	SENSING	$1.5 m$	NA	$2020-07-01$	$2021-06-30$
Digital power meter	EVERFINE	PF9811	G135717CN1361159	$2020-10-21$	$2021-10-20$
High-precision rapid spectral radiometer	EVERFINE	HAAS-2000	N/A	$2020-07-01$	$2021-06-30$

Device	Manufacturer	Model No	Serial No	Calibration dateCalibration due date	
Precision frequency power supply Standard Light Source	ALL Power	EVERFINE	DPW-105N	970663	$2021-01-04$
D204	N/A	$2022-01-03$			
thermometer	SENSING	NA	NA	$2020-03-13-20$	$2021-10-19$
Programmable Precision DC Power Supply	ITECH	IT6154	006104176471 001019	$2020-08-25$	$2021-08-24$

Uncertainty:

The uncertainty of the light output (luminous flux) measurements is $\mathrm{U}=2.1 \%(\mathrm{~K}=2)$, at the 95% confidence level. The uncertainty of the correlated color temperature measurements is $\mathrm{U}=21 \mathrm{~K}(\mathrm{~K}=2)$, at the 95% confidence level. The uncertainty of the CRI is $\mathrm{U}=2.1(\mathrm{~K}=2)$, at the 95% confidence level.

The uncertainty of power meter $A C$ current $\mathrm{U}=0.19$ \% of rdg, AC Voltage $\mathrm{U}=0.17 \%$ of rdg, Power $\mathrm{U}=0.48 \%(\mathrm{~K}=2)$, at the 95% confidence level.

Test Data:

$\left.\begin{array}{|c|c|c|c|c|c|c|c|c|}\hline \begin{array}{c}\text { Sample No. }\end{array} & \text { Orientation } & \text { Voltage (V) } & \text { Current (A) } & \text { Power (W) } & \begin{array}{c}\text { Power } \\ \text { Factor }\end{array} & \begin{array}{c}\text { Luminous } \\ \text { Flux (lm) }\end{array} & \begin{array}{c}\text { Efficacy } \\ \text { (Im/W) }\end{array} & \text { CCT (K) } \\ \hline \begin{array}{c}\text { R1KS21022 } \\ \text { 0119-S01 }\end{array} & \text { VBU } & 120.0 & 0.1465 & 14.05 & 0.7992 & 1764.6 & 125.56 & 4935 \\ \hline \begin{array}{c}\text { R1KS21022 } \\ \text { 0119-S02 } \\ \text { R1KS21022 } \\ \text { 0119-S03 }\end{array} & \text { VBU } & \text { VBU } & 120.0 & 0.1473 & 14.04 & 0.7938 & 1793.1 & 127.76\end{array}\right] 4947$.

Sample No.	Orientation	$\mathrm{Ra}_{\mathbf{a}}$	R9	$R_{\text {f }}$	R_{g}	x	y	Duv
$\begin{gathered} \text { R1KS21022 } \\ 0119-S 01 \end{gathered}$	VBU	85.1	17	85	94	0.3474	0.3578	0.00214
$\begin{gathered} \text { R1KS21022 } \\ 0119-S 02 \end{gathered}$	VBU	85.2	17	85	94	0.3471	0.3572	0.00202
$\begin{gathered} \text { R1KS21022 } \\ 0119-S 03 \end{gathered}$	VBU	85.2	18	85	94	0.3466	0.3568	0.00199
$\begin{gathered} \text { R1KS21022 } \\ 0119-S 04 \end{gathered}$	VBU	85.1	17	85	94	0.3460	0.3566	0.00213
$\begin{gathered} \text { R1KS21022 } \\ 0119-S 05 \end{gathered}$	VBU	85.1	17	85	94	0.3460	0.3567	0.00217
Average	VBU	85.1	17	85	94	0.3466	0.3570	0.00209
$\begin{gathered} \text { R1KS21022 } \\ 0119-S 06 \end{gathered}$	VBD	85.2	18	85	94	0.3462	0.3566	0.00201
$\begin{gathered} \text { R1KS21022 } \\ 0119-S 07 \end{gathered}$	VBD	85.3	18	85	94	0.3469	0.3568	0.00187
$\begin{gathered} \text { R1KS21022 } \\ 0119-S 08 \end{gathered}$	VBD	85.3	18	85	94	0.3466	0.3566	0.00191
$\begin{gathered} \text { R1KS21022 } \\ 0119-S 09 \end{gathered}$	VBD	85.2	18	85	95	0.3462	0.3568	0.00214
$\begin{gathered} \text { R1KS21022 } \\ 0119-S 10 \end{gathered}$	VBD	85.3	18	85	94	0.3464	0.3565	0.00191
Average	VBD	85.3	18	85	94	0.3465	0.3567	0.00197
Average	ALL	85.2	18	85	94	0.3465	0.3568	0.00203

7-step chromaticity quadrangles per ANSI/ANSLG C78.377-2015

5.3. Luminous Intensity Distribution

Test Method:

IES LM-79-08: Electrical and Photometric Measurements of Solid-State Lighting Products

Performance Requirements:

80% of the luminous intensity measured values (candelas) shall vary by no more than 35% from the average of all measured values in the 0° to 130° zone. All measured values (candelas) in the 0° to 130° zone shall vary by no more than 60% from the average of all measured values. No less than 5% of total flux (zonal lumens) shall be emitted in the 130° to 180° zone.

Test Procedure:

According to IES LM-79-08, LED lamps were tested at ambient temperature $25^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C}$ with no seasoning. Luminous Intensity distribution was measured by type C goniophotometer. One sample was measured and operated at base-up orientation. Sample was motionless and its position was unchanged during test. After measurement of a vertical plane sample was rotated 22.5° around the lamp polar axis. Sample was operated at rated voltage and was tested after stabilized according to IES LM-79-08. The center beam intensity is that the value of light flux intensity in candelas (cd) measured on the beam axis. According to ENERGY STAR specification, the beam angle in degrees is between the two opposite directions in which the average intensity is 50% of the center beam intensity as measured in two rotational planes, 90° from each other, around and through the beam axis.

Test Equipment:

Device	Manufacturer	Model No	Serial No	Calibration date	Calibration due date
AC POWER SUPPLY	EVERFINE	VPS1030 PWM	1012017	2021-01-04	2022-01-03
Digital CC\&CV DC Power Supply	EVERFINE	WY12010	1009009	2021-01-04	2022-01-03
Digital power meter	YOKOGAWA	WT-210	91 j 926132	2021-01-04	2022-01-03
full-field speed goniophotometer	EVERFINE	GO-R5000	YG108492N10120001	2020-03-13	2021-03-12
Wireless Remote Sensor	N/A	433 MHz	N/A	2020-03-12	2021-03-11
Standard Light Source	EVERFINE	D908	1012003	2020-10-20	2021-10-19

Uncertainty:

The uncertainty of the luminous intensity is $\mathrm{U}=2.00 \%(\mathrm{~K}=2)$, at the 95% confidence level.

Test Data:

Luminous Intensity Distribution Diagram

Sample No.	Orientation	Beam Angle (Deg)	CBCP (cd)
R1KS210220119-S11	VBU	234.2	207

Zonal Lumen Density

Deg	Flux (Im)	\%	Deg	Flux (Im)	\%
0-5	4.9	0.28	0-95	1252.4	70.82
0-10	19.7	1.11	0-100	1327.6	75.07
0-15	44.1	2.49	0-105	1396.9	78.99
0-20	78.0	4.41	0-110	1460.0	82.56
0-25	121.2	6.85	0-115	1516.5	85.75
0-30	173.2	9.79	0-120	1566.4	88.57
0-35	233.5	13.21	0-125	1609.8	91.03
0-40	301.6	17.05	0-130	1646.7	93.12
0-45	376.5	21.29	0-135	1677.7	94.87
0-50	457.1	25.85	0-140	1703.0	96.30
0-55	542.6	30.68	0-145	1723.2	97.44
0-60	631.6	35.71	0-150	1738.7	98.32
0-65	722.9	40.88	0-155	1750.4	98.98
0-70	815.3	46.10	0-160	1758.7	99.45
0-75	907.5	51.31	0-165	1764.2	99.76
0-80	998.4	56.45	0-170	1767.3	99.93
0-85	1086.8	61.46	0-175	1768.4	100.00
0-90	1171.8	66.26	0-180	1768.5	100.00

Luminous Intensity Distribution

Gamma	=0DEG		~ $=22.5 \mathrm{DEG}$		=45DEG		~ $=67.5 \mathrm{DEG}$	
	I. (cd)	$\left(1-I_{\text {AVG }}\right) I_{\text {AVG }}$	$1 \cdot(c d)$	$\left(10-I_{\text {AVG }}\right) /_{\text {AVG }}$	I. (cd)	$\left(10-I_{\text {AVG }}\right) / I_{\text {AVG }}$	I. (cd)	$\left(\mathrm{l}-\mathrm{I}_{\mathrm{AVG}}\right) / \mathrm{I}_{\text {AVG }}$
0	206	22.57\%	206	22.57\%	206	22.57\%	206	22.57\%
5	206	22.51\%	206	22.67\%	206	22.64\%	206	22.70\%
10	206	22.52\%	206	22.65\%	206	22.76\%	206	22.78\%
15	206	22.48\%	206	22.75\%	206	22.77\%	207	22.83\%
20	206	22.51\%	206	22.73\%	207	22.83\%	207	22.94\%
25	206	22.51\%	207	22.83\%	207	22.94\%	207	23.06\%
30	206	22.26\%	206	22.63\%	207	22.82\%	207	22.95\%
35	205	21.69\%	205	22.10\%	206	22.42\%	206	22.62\%
40	203	20.74\%	204	21.19\%	204	21.55\%	205	21.81\%
45	201	19.31\%	202	19.84\%	202	20.28\%	203	20.58\%
50	197	17.43\%	198	18.01\%	199	18.52\%	200	18.85\%
55	194	15.16\%	195	15.79\%	196	16.27\%	196	16.77\%
60	189	12.35\%	190	13.11\%	191	13.56\%	192	14.13\%
65	184	9.21\%	185	9.94\%	186	10.50\%	187	11.12\%
70	178	5.66\%	179	6.34\%	180	6.95\%	181	7.67\%
75	171	1.71\%	172	2.36\%	173	3.06\%	175	3.81\%
80	164	2.33\%	165	1.75\%	166	1.17\%	168	0.35\%
85	157	6.87\%	158	6.20\%	159	5.64\%	160	4.76\%
90	148	11.77\%	149	11.15\%	150	10.53\%	152	9.63\%
95	140	16.87\%	141	16.36\%	142	15.69\%	143	14.80\%
100	131	22.14\%	132	21.63\%	133	20.93\%	134	20.07\%
105	122	27.50\%	123	26.98\%	124	26.32\%	125	25.44\%
110	113	32.89\%	114	32.36\%	115	31.74\%	116	30.87\%
115	104	38.26\%	105	37.83\%	106	37.17\%	107	36.30\%
120	95	43.60\%	96	43.20\%	97	42.57\%	98	41.72\%
125	86	48.85\%	87	48.48\%	88	47.87\%	89	47.00\%
130	77	53.98\%	78	53.62\%	79	53.03\%	80	52.19\%
Gamma	~ =90DEG		~ =112.5DEG		~ $=135 \mathrm{DEG}$		~ =157.5DEG	
	I. (cd)	$\left(\mathrm{l}-\mathrm{I}_{\text {AVG }}\right) I_{\text {IVG }}$	$1 \cdot(\mathrm{~cd})$	$\left(10-I_{\text {AVG }}\right) I_{\text {AVG }}$	I. (cd)	$\left(10-I_{\text {AVG }}\right) / I_{\text {AVG }}$	I. (cd)	$\left(\mathrm{l}-\mathrm{I}_{\mathrm{AVG}}\right) / \mathrm{I}_{\text {AVG }}$
0	206	22.57\%	206	22.57\%	206	22.57\%	206	22.57\%
5	206	22.74\%	206	22.72\%	206	22.67\%	206	22.65\%
10	207	22.85\%	206	22.75\%	206	22.67\%	206	22.67\%
15	207	22.88\%	206	22.73\%	206	22.57\%	206	22.61\%
20	207	22.97\%	206	22.75\%	206	22.56\%	206	22.61\%
25	207	23.03\%	206	22.76\%	206	22.53\%	206	22.57\%
30	207	22.97\%	206	22.77\%	206	22.51\%	206	22.46\%
35	206	22.69\%	206	22.47\%	206	22.28\%	205	22.16\%
40	205	21.97\%	205	21.80\%	205	21.64\%	204	21.55\%
45	203	20.75\%	203	20.68\%	203	20.59\%	203	20.55\%
50	200	19.10\%	200	19.07\%	200	19.05\%	200	19.05\%
55	197	17.05\%	197	17.09\%	197	17.12\%	197	17.06\%
60	193	14.49\%	193	14.57\%	193	14.73\%	193	14.71\%
65	188	11.53\%	188	11.69\%	188	11.92\%	188	11.92\%
70	182	8.14\%	182	8.36\%	183	8.65\%	183	8.67\%
75	176	4.38\%	176	4.62\%	177	5.02\%	177	5.07\%
80	169	0.24\%	169	0.60\%	170	0.99\%	170	1.11\%
85	161	4.12\%	162	3.74\%	163	3.27\%	163	3.15\%
90	153	8.86\%	154	8.35\%	155	7.80\%	155	7.63\%
95	145	13.96\%	146	13.34\%	147	12.78\%	147	12.57\%
100	136	19.19\%	137	18.60\%	138	17.95\%	138	17.69\%
105	127	24.55\%	128	23.87\%	129	23.20\%	130	22.91\%
110	118	29.97\%	119	29.26\%	120	28.50\%	121	28.19\%
115	109	35.39\%	110	34.67\%	111	33.92\%	112	33.56\%
120	100	40.80\%	101	40.07\%	102	39.32\%	103	38.93\%
125	91	46.15\%	92	45.38\%	93	44.62\%	94	44.25\%
130	82	51.34\%	83	50.59\%	84	49.84\%	85	49.46\%

Gamma	~ $=180 \mathrm{DEG}$		~ $=202.5$ DEG		~ $=225$ DEG		~ $=247.5 \mathrm{DEG}$	
	I. (cd)	$\left(I_{0}-I_{\text {AVG }}\right) I_{\text {AVG }}$	I. (cd)	$\left(I_{0}-I_{\text {AVG }}\right) I_{\text {AVG }}$	I. (cd)	$\left(\mathrm{lo}-\mathrm{I}_{\text {AVG }}\right) / \mathrm{I}_{\text {AVG }}$	I. (cd)	$\left(10-I_{\text {AVG }}\right) / I_{\text {AVG }}$
0	206	22.57\%	206	22.57\%	206	22.57\%	206	22.57\%
5	206	22.50\%	206	22.48\%	206	22.40\%	206	22.40\%
10	206	22.38\%	206	22.32\%	205	22.18\%	205	22.12\%
15	205	22.20\%	205	22.08\%	205	21.97\%	205	21.92\%
20	205	22.04\%	205	21.92\%	205	21.80\%	205	21.78\%
25	205	21.96\%	205	21.82\%	205	21.61\%	204	21.52\%
30	205	21.80\%	205	21.62\%	204	21.39\%	204	21.29\%
35	204	21.50\%	204	21.29\%	203	20.93\%	203	20.74\%
40	203	20.81\%	203	20.51\%	202	20.14\%	202	19.89\%
45	201	19.69\%	201	19.40\%	200	18.85\%	199	18.59\%
50	199	18.23\%	198	17.80\%	197	17.26\%	197	16.89\%
55	195	16.18\%	195	15.81\%	194	15.25\%	193	14.76\%
60	191	13.82\%	191	13.46\%	190	12.83\%	189	12.24\%
65	187	10.99\%	186	10.61\%	185	9.95\%	184	9.31\%
70	181	7.78\%	181	7.42\%	179	6.69\%	178	5.98\%
75	175	4.19\%	175	3.84\%	173	3.01\%	172	2.31\%
80	169	0.22\%	168	0.13\%	167	0.88\%	165	1.64\%
85	162	3.92\%	161	4.32\%	160	5.09\%	158	5.98\%
90	154	8.42\%	153	8.83\%	152	9.67\%	151	10.48\%
95	146	13.24\%	145	13.64\%	144	14.43\%	142	15.33\%
100	138	18.23\%	137	18.62\%	136	19.38\%	134	20.25\%
105	128	23.86\%	127	24.29\%	126	25.02\%	125	25.88\%
110	119	29.07\%	119	29.49\%	117	30.22\%	116	31.07\%
115	110	34.36\%	110	34.77\%	109	35.46\%	107	36.31\%
120	101	39.71\%	101	40.04\%	100	40.66\%	98	41.47\%
125	93	44.96\%	92	45.25\%	91	45.84\%	90	46.66\%
130	84	50.11\%	83	50.39\%	82	50.94\%	81	51.73\%
Gamma			~ $=292.5 \mathrm{DEG}$		~ $=315 \mathrm{DEG}$		~ $=337.5 \mathrm{DEG}$	
	$\sim \sim 270$ DEG		I. (cd)	$\left(\mathrm{I}-I_{\text {AVG }}\right) / I_{\text {AVG }}$	I. (cd)	$\left(\mathrm{l}-\mathrm{I}_{\mathrm{AVG}}\right) / \mathrm{I}_{\text {AVG }}$	$1 \cdot(c d)$	$\left(10-I_{\text {AVG }}\right) / I_{\text {AVG }}$
0	206	22.57\%	206	22.57\%	206	22.57\%	206	22.57\%
5	206	22.37\%	206	22.42\%	206	22.40\%	206	22.55\%
10	205	22.20\%	205	22.16\%	206	22.27\%	206	22.41\%
15	205	22.03\%	205	21.96\%	205	22.16\%	206	22.39\%
20	205	21.76\%	205	21.77\%	205	22.00\%	206	22.27\%
25	205	21.61\%	205	21.66\%	205	21.92\%	205	22.15\%
30	204	21.30\%	204	21.31\%	204	21.56\%	205	21.83\%
35	203	20.74\%	203	20.70\%	203	20.92\%	204	21.21\%
40	201	19.75\%	201	19.72\%	202	19.85\%	202	20.15\%
45	199	18.39\%	199	18.23\%	199	18.40\%	200	18.68\%
50	196	16.64\%	196	16.38\%	196	16.48\%	196	16.79\%
55	192	14.43\%	192	14.11\%	192	14.21\%	192	14.41\%
60	188	11.81\%	187	11.47\%	187	11.48\%	188	11.64\%
65	183	8.82\%	182	8.34\%	182	8.28\%	182	8.48\%
70	177	5.38\%	176	4.82\%	176	4.76\%	176	4.91\%
75	171	1.67\%	170	1.06\%	170	0.90\%	170	1.02\%
80	164	2.37\%	163	3.08\%	163	3.25\%	163	3.10\%
85	157	6.68\%	156	7.39\%	155	7.64\%	155	7.60\%
90	149	11.33\%	148	12.07\%	147	12.38\%	147	12.46\%
95	141	16.19\%	140	17.02\%	139	17.40\%	139	17.51\%
100	132	21.34\%	131	22.33\%	130	22.83\%	129	23.00\%
105	123	26.81\%	122	27.68\%	121	28.19\%	120	28.38\%
110	114	32.01\%	113	32.89\%	112	33.45\%	112	33.68\%
115	106	37.25\%	104	38.18\%	103	38.71\%	103	38.98\%
120	97	42.46\%	95	43.40\%	94	43.94\%	94	44.26\%
125	88	47.63\%	87	48.52\%	86	49.10\%	85	49.44\%
130	80	52.71\%	78	53.55\%	77	54.15\%	77	54.49\%

IAvg	. $\max =\operatorname{Max} \mid\left(10-I_{\text {AVG }}\right) / / \mathrm{IVVG}$ \|	Number of Data	Failed Data Percent
168	54.49\%	432	13.66\%

BACI
6. EUT Photo
6.1. Lamp Photo

6.2. LED Board Photo

Attachment A - Test Report \#R1KS200616103-10-6000-M1

Attachment B - Spectral Power Distribution

Directions

1. The information marked "superscript \#" is provided by the applicant, the laboratory is not responsible for its authenticity and this information can affect the validity of the result in the test report.
2. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested.
3. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.
4. The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval.
5. This report cannot be reproduced except in full, without prior written approval of the Company.
6. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.
