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Introduction: Behavioral traits are influenced by gene by environment

interactions. To study the genetic and epigenetic components of behavior,

we analyzed whether dog behavioral traits could be predicted by their DNA

methylation and genotypes.

Methods: We conducted an analysis on dog behaviors such as sociability,

trainability and energy as measured by Canine Behavioral and Research

Assessment Questionnaire (C-BARQ) behavioral surveys paired with buccal

swabs from 46 dogs. Previously we used targeted bisulfite sequencing to

analyze DNA methylation and collected genotype data from over 1,500 single

nucleotide polymorphisms (SNPs). Owner-reported C-BARQ responses were

used to quantify 14 behavioral trait values.

Results: Using Partial Least Squares (PLS) Regression analysis we found

behavioral traits such as energy, attachment/attention-seeking, non-social

fear, and stranger-directed fear to be significantly associated with DNA

methylation across 3,059 loci. After we adjusted for age as a confounding

variable, energy and stranger-directed fear remained significantly associated

with methylation. We found that most behavioral traits were not predictable

by our limited set of SNPs.

Discussion: By identifying individual genes whose methylation is significantly

associated with behavioral traits, we generate hypotheses about possible

mechanisms involved in behavioral regulation. Overall, our study extends

previous work in behavioral epigenetics, shows that canine behaviors are

predictable by DNA methylation, and serves as a proof of concept for future

studies in behavioral epigenetics.
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Introduction

Behavioral traits are influenced by gene by environment
interactions. Genes influence an organism’s morphology and
physiology, creating the innate framework for its learning,
memory, and cognition (Breed and Sanchez, 2010). The
environment interacts with an organism’s phenotype and
can impact how it develops. Together, these genetic and
environmental influences shape behavior (Breed and Sanchez,
2010). Gene by environment interactions have been studied
across species to understand genetic influences on behavior. For
example, Hunt et al. (2003) studied gene by environment
interactions in honeybees to understand how animals
can specialize within their communities to exhibit unique
behaviors. They found that differences in honeybee guarding
behaviors between 36 colonies were attributed to partial
genetic dominance and environment interaction. Adaptive
behaviors are also thought to be highly impacted by gene
by environment interactions. For example, Madrid et al.
(2018) found that the s-allele of 5-HTTLPR grants greater
behavioral plasticity in rhesus macaques when combined
with the environmental stimulus of high maternal protection.
In addition, environmental and genetic influences impact
aggressive behaviors. Sokolowski et al. (1997) found that in
Drosophila certain alleles of cyclic guanosine monophosphate-
dependent protein kinase, the foraging gene, influenced whether
the fruit fly exhibited passive or aggressive foraging behavior.
Wang et al. (2008) also noted that, in Drosophila, Cyp6a20 is a
negative regulator of aggressiveness that is upregulated by high
social interaction and this gene by environment interaction
influences the level of aggressive behavior exhibited. Gene by
environment interactions have also been explored in rodent
models. One study in mice found that Cntnap2 heterozygotes
exposed to prenatal stress displayed altered sociability similar
to Cntnap2 knockouts, indicating a gene by environment
interaction in neurodevelopment disorders (Papale et al., 2022).
Another study examined genetic and environmental factors in
impaired social and communication skills in mice, showing
that the Nlgn3/Cyfip1 pathway plays a role in shaping behavior
and is influenced by the social environment (Sledziowska et al.,
2020). Thus across species, gene by environment interactions
have been shown to modulate varied behaviors.

The genetic influence on behavior stems from two
factors: genotype and gene expression. Gene expression
can be influenced by the environment, therefore it is an
important factor in behavioral development. DNA methylation
is frequently studied to analyze differences in gene expression.
Champagne et al. (2006) noted that in rats, lack of maternal
care by a parent is associated with increased methylation of
estrogen receptors in the offspring and this methylation is
associated with lack of maternal care by these offspring at
reproductive age. Previous work in rodent models has also

explored associations between DNA methylation and fear-
related behaviors. Levenson et al. (2004) found that, in mice
histone acetylation of histone H3 in the region CA1 of the
hippocampus was regulated in fear conditioning and could
be involved in long-term memory formation. Later, Bredy
et al. (2007) found that histone deacetylation of brain-derived
neurotrophic factor (BDNF) was associated with lessoning of
conditioned fear response behavior in mice and Miller and
Sweatt (2007) noted similar results in rat models, finding that
contextual fear conditioning regulates DNA methylation levels
in the hippocampus and upregulates expression of de novo
methyltransferases DNMT3A and DNMT3B. Zovkic and Sweatt
(2013) used DNMT activity findings to conclude that DNA
methylation works with histone acetylation to regulate the
storage of fear-based memory formations. Predator-induced
fear has also been associated with changes in DNA methylation.
Chertkow-Deutsher et al. (2010) found that higher Dlgap2
methylation was associated with predator odor exposed rodents.
St-Cyr and McGowan (2015) documented multigenerational
DNA methylation associations, finding that the female offspring
of mice exposed to predator odor during pregnancy have
decreased methylation of BDNF in the hippocampus.

In the current study, we chose to focus on the domesticated
dog to further our understanding of the relationship between
epigenetics, genetics and behavior. Dogs are an excellent
model system to examine behavioral epigenetics due to their
unique population structure. The domestication of dogs is
best understood under the lens of selective breeding and
inbreeding. Dog breeding selects for specific physical and
behavioral traits such as obedience for guide dogs, intelligence
for herding, or trainability for police service. Artificial selection
for desirable characteristics has often occurred through line
breeding (inbreeding). In fact, one study analyzed 49,378 dogs
across 227 different breeds and found a large inbreeding
coefficient of Fadj = 0.249 (Bannasch et al., 2021). In extreme
cases in which one male is used to continue a purebred line,
inbreeding effective sizes have been as low as 50 individuals
per breed (Calboli et al., 2008). Because inbreeding can
simultaneously sustain a desirable purebred line, but also
increase the likelihood of disease, dog breed pedigrees are
often carefully maintained. Information regarding ancestry,
relatedness, and inbreeding coefficients can provide insight
on the selection of samples allowing researchers to better
understand certain behaviors (Shearman and Wilton, 2011). In
addition, dog breed demography has led to reduced genomic
noise for trait mapping. Previous studies have found that
dogs have large regions of the genome with linked alleles
in strong linkage disequilibrium (Wall and Pritchard, 2003).
These haplotype blocks have been found to be up to an order
of magnitude larger than haplotype blocks found in humans
(Gray et al., 2009). This enables the study of common social
behaviors with fewer dogs and fewer genetic markers relative to
human studies (Shearman and Wilton, 2011). The lack of genetic
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diversity in dogs makes them ideal candidates for behavioral
mapping in a model organism.

Previous work has developed systematic methods to
measure dog behaviors. One common approach to assess the
behavioral characteristics of a dog is the Canine Behavioral and
Research Assessment Questionnaire (C-BARQ) survey. This is
a standardized tool for quantifying behavioral phenotypes in
dogs and contains 101 behavioral questions which synthesize to
quantify multiple behavioral axes (van den Berg et al., 2010).
Survey details, tests of its reliability, and predictability have
previously been described (Hsu and Serpell, 2003). Several
studies have analyzed the predictability and reliability of the
C-BARQ test for analyzing dog phenotypes. One such study
used C-BARQ to characterize the behaviors of dogs relinquished
to shelters (Duffy et al., 2014). Their analysis revealed that
the C-BARQ assessment tool is a reliable and valid method
for collecting behavioral data and screening dogs surrendered
to shelters. Within the field, C-BARQ has proved to be an
extremely useful tool used to quantify and study dog behavior.

Previous work has also examined the genetic basis of dog
behaviors. Separation anxiety, touch sensitivity, owner-directed
aggression, rivalry, and human-directed sociability have been
found to have genetic components (Persson et al., 2015; Zapata
et al., 2016). In a 2017 study researchers used the C-BARQ to
investigate genetic characterizations of common dog traits in
Labrador Retrievers (Ilska et al., 2017). The researchers studied
single breed behavioral heritability and found “fetching” to
have the highest heritability, h2 = 0.38, and six other traits to
have heritabilities larger than 0.2 (Ilska et al., 2017). They also
suggested that the traits they studied are polygenic and further
research would require larger datasets to identify specific genes
that influence behavior (Ilska et al., 2017). Previous research has
also focused on interbreed behavioral heritability. One study
analyzed 100,000 loci in the dog genome and compared 4,000
dogs with representation from 101 breeds (MacLean et al.,
2019). They determined that the mean interbreed heritability
for all 14 tested traits was 0.51, suggesting that the genome
contributes a significant portion to behavioral variation across
breed as well as within breeds. More recently, focus has shifted
to understanding how environmental factors modulate the
genome. The association between specific gene’s methylation
and dog sociability has been studied previously, revealing that
the methylation of the oxytocin receptor (OXTR) gene promoter
was associated with dog social behavior (Cimarelli et al., 2017).
While this finding is significant and demonstrates that gene
regulation influences dog behavior, the focus was limited to a
specific gene region. A broader analysis of associations between
DNA methylation and social dog behaviors could uncover
new information regarding how epigenetics can impact dog
behaviors.

We hypothesized that a broad analysis of chromosome
locations will reveal yet to be discovered associations
between DNA methylation, genotype, and dog behaviors.

Further, we sought to analyze the respective associations of
DNA methylation and genotype on behavior to compare
their relative influence on behavioral trait development. To
address this hypothesis, we measured the association between
behavioral phenotypes with genetic and epigenetic data.
We collected and examined 14 behavioral traits including
energy, attachment/attention-seeking, non-social fear, and
stranger-directed fear in 46 dogs (Supplementary Table 1).
We selected these 14 behaviors as they are defined by the
C-BARQ questionnaire. We used the survey questions and
behavior trait formulas provided by the C-BARQ to measure
each behavioral trait. The DNA methylation and genotypes
were obtained from a previous study that utilized targeted
bisulfite sequencing (Rubbi et al., 2022). The targeted bisulfite
sequencing methods utilized in Rubbi et al. (2022) are an
advantageous approach for analyzing dog DNA methylation
because bisulfite sequencing can be used on animals for which
there is not an array and provides genotype information. The
Rubbi et al. (2022) study produces several key findings that
serve as the motivation for our current research. They found
that DNA methylomes are significantly associated with dog
age and can be used to create epigenetic clocks. In addition,
they identify an association between methylomes and dog sex,
body mass, and sterilization status. The study demonstrates that
epigenetics can significantly predict physical characteristics.
We aim to extend this analysis to the realm of non-physical
characteristics, such as dog behaviors. Due to the small number
of subjects involved and other limitations, our study can be
considered a proof-of-concept study that begins to explore how
future research can exploit the high power of dog genetics and
epigenetics to understand the biology and environmental effects
on behavior.

Materials and methods

Study design

Our work extended previous research in Rubbi et al. (2022),
using their DNA samples to test associations between dogs’
DNA methylation, genotype, and behavioral traits. The 46 dogs
included in our study were a subset of the 217 subjects analyzed
by Rubbi et al. for which behavioral data could be collected.
A request for behavior data was sent out to all owners, and
collected for a subset of the previous subjects, and we cannot
therefore exclude selection bias in our study design. For each
of these 46 dogs, we administered behavior questionnaires to
their owners to collect behavioral data. Then, our dog behavioral
data were paired with the DNA methylation and genotype data
collected in Rubbi et al. (2022).

In total we analyzed three datasets: methylation, genotype,
and behavioral trait values. There were 46 dogs with complete
epigenetic, genetic, and behavioral trait data. The dogs
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represented in the study came from 32 different dog owners.
Dog ages ranged from 1 to 16 years with a median of
7 years. There were 31 unique breeds represented in the
dataset and “Australian Shepherd” was the most common breed,
representing 12 dogs. There were 27 female dogs in the study
and 19 male dogs. All dogs had both genotype and methylation
data as these were generated from the same buccal swab samples.

The dataset for behavioral trait values contained responses
to the 42 questions in the C-BARQ questionnaire and calculated
values for each of the 14 behavioral traits for each dog. The
methylation dataset contained methylation values for 5,610
sites before filtering. After removing sites with missing data,
we kept 3,059 sites. The genotype dataset contained 1,656
single nucleotide polymorphisms (SNPs) prior to filtering.
After removing SNPs with missing data, the genotype data
contained 930 loci.

Quantitative behavioral traits

We collected behavioral data from 46 dog owners in the
United States using the C-BARQ dog behavior questionnaire.
We administered an abridged version of the traditional C-BARQ
survey with 42 behavioral questions about common responses to
stimuli as detailed in Supplementary File 1 (Duffy et al., 2014).
The C-BARQ assesses each behavioral phenotype through
situational questions. For example, “How often does the dog bark
persistently when alarmed or excited?” and the owner responds
on a scale of 1 to 4 (never to always). There are 14 standardized
equations for calculating quantitative behavioral values based
on individual question responses and these can be found in
Supplementary File 2. For example, the “excitability” score is
estimated as the average from responses to questions 1 and
2. Additionally, data were collected on breed, age, birth date,
sex, weight, diet, and sterilization status (spayed/neutered). All
sample collection procedures have been previously described
(Rubbi et al., 2022).

Targeted DNA methylation sequencing
and single nucleotide polymorphism
annotation

All DNA methylation and genotype data were obtained from
Rubbi et al. (2022) where researchers generated dogs’ DNA
methylation profiles, SNP genotyping, and SNP annotations. In
that study, DNA from buccal swabs was extracted to generate
DNA methylation profiles using targeted bisulfite sequencing
(TBS-seq). Buccal study consisted of 70% epithelial cells and
30% immune cells (Rubbi et al., 2022). The complete bisulfite
sequencing process utilized in Rubbi et al. (2022) is described
in Supplementary File 3, Farrell et al. (2020), and Martin
(2011). After bisulfite conversion, samples were aggregated into
a methylation matrix (Morselli et al., 2021). Captured probes

were selected to include loci whose methylation was associated
with age (Thompson et al., 2017) or that were hyper conserved
across mammals (Colwell et al., 2018). We overlapped the
5,608 probes used in our analysis with the CanFam4 genome
and found 1,126 probes to be located on CpG islands (Kent
et al., 2002). SNP annotation and genotyping procedures were
also reported previously in Rubbi et al. (2022) and detailed in
Supplementary File 3.

Behavior clusters

We utilized the Python Seaborn Clustermap package to
create a hierarchical clustered heatmap to show behavioral
trait-breed correlations (Waskom, 2021). To analyze variation
between dogs of the same breed and of different breeds, each dog
was given a unique breed identifier such as “Australian Shepherd
4.” We also utilized Python Seaborn Clustermap package to
create a second cluster map to show trait-trait correlations
(Waskom, 2021). After creating a correlation matrix to capture
correlation between traits, we used Seaborn Clustermap to group
traits on both the x and y-axes.

Predictability of behavior

We used Partial Least Squares (PLS) Regression from the
Python Cross Composition Module in the scikit-learn package
to analyze the relationship between each behavioral trait and
the methylation/genotype data (Pedregosa et al., 2011). PLS is
a widely used machine learning method used to determine a
linear regression model by projecting both the predicted and
observable variables to a new space.

Using PLS, we designated the methylation or genotype
data as the predictors of behavioral phenotypes. Ultimately, we
developed a supervised model for each behavioral trait that
was trained using a Leave-One Out-Cross-Validation (LOOCV)
method from the Python scikit-learn package (Pedregosa et al.,
2011). For each trait, we aimed to avoid overfitting by
creating a model with the highest predictive power that used
a limited number of components. We created 12 models for
each behavioral trait, varying the number of components, and
therefore the number of predictor variables used. Components
ranged from 1 to 12. We determined the optimal number of
components by selecting the model with the highest correlation
coefficient. The model with the optimal number of components
was then utilized to calculate the correlation coefficient and
p-value for that behavioral trait. We adjusted the p-values by
applying a Benjamini Hochberg correction with the following
formula:

Padj = p-value ∗
numTraits

rank

Where Padj is the Benjamini Hochberg correction, p-value is
the uncorrected p-value of the correlation coefficient, numTraits
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is the number of behavioral traits tested (14), and rank is the
rank of the p-value (smallest to largest) out of all traits tested.

We used pyplot from Python’s Matplotlib and the top two
components from the aforementioned PLS analysis to create a
plot displaying how each component contributes to predicting a
trait (Hunter, 2007). The x-axis represents the predictive power
of component 1 while the y-axis represents the predictive power
of component 2.

Age as a predictor of behavior

We addressed possible behavioral age dependencies using
two methods. In the first, we computed the association between
age and behavioral traits. We used corrcoef from Python
NumPy Library to compute the correlation between dog age
and behavioral trait values (Harris et al., 2020). To evaluate age
as a confound, we compared the r-squared values of age and
the methylation model. If the methylation model’s r-squared
value was greater, we determined that methylation contributed
additional information for predicting dog behavior.

In the second approach, we regressed age out of the PLS
methylation model. First, we used Ordinary Least Squares (OLS)
Regression from Python StatsModels to find the behavioral
trait values predicted by age (Seabold and Perktold, 2010). We
generated four OLS models each with age as the predictor for
one of the four methylation-predicted behavioral traits. Then,
we calculated residual behavioral trait values by subtracting the
observed behavioral trait values from the behavioral trait values
predicted by the OLS age model. We used PLS regression to test
if methylation values were predictive of the residual behavior
values. The methods of the age-adjusted PLS models followed
the methods for the unadjusted methylation models described
in the previous section. For each behavioral trait, we calculated
correlation coefficients, and p-values as summary statistics.

Manhattan plots

We visualized results using Manhattan plots to display the
relationship between a locus’ statistical significance in predicting
behavior using DNA methylation as -log(p-value) in the y-axis
against its position in the genome in the x-axis. The p-value
was calculated using OLS Regression from StatsModel (Seabold
and Perktold, 2010). Though age and methylation were modeled
as predictors of behavior, only the p-value associated with
methylation was plotted on the Manhattan plots. A Bonferroni
threshold value was determined using a false discovery rate of
0.05 and sample size of 3057. Points with a -log(p-value) greater
than the threshold value were labeled on all Manhattan plots. We
adjusted the p-values by applying a Bonferroni correction with
the following formula:

Padj =
p− value
numTraits

Where Padj is the Bonferroni correction, p-value is the
uncorrected p-value of the correlation coefficient, and numTests
is the number of tests performed (3057).

Statistical corrections

We used the Benjamini Hochberg Procedure to address
the low power of the study and to correct for multiple
testing. The derivation and justification for the Benjamini
Hochberg Procedure to correct for multiple testing is described
in Benjamini and Hochberg (1995). Correcting for multiple
testing reduces the likelihood of Type 1 errors in our study.
We used the Benjamini Hochberg equation explained in section
“Predictability of behavior” to calculate the adjusted p-values
and used 0.05 as the significance threshold.

Results

Quantitative behavioral traits

Behavioral trait values were computed across our cohort and
compared against dogs’ breed (Figure 1). Though unexpected,
Figure 1 revealed no clear clustering between dogs of the
same breed regarding their behavioral phenotype scores. For
example, there were 12 Australian Shepherds in our analysis
and they did not cluster together and their scores (rmean = 1.39,
variance = 1.76) did not differ from that of the entire population
(rmean = 1.48, variance = 1.64). In the comparison of the
12 Australian Shepherds to all other breeds, no effect was
observed.

The trait correlation map in Figure 2 revealed two
clusters of related traits. Cluster 1 consisted of excitability,
stranger-directed aggression, stranger-directed fear, non-
social fear, dog-directed fear, separation-related problems,
attachment/attention-seeking, chasing, energy. Within Cluster
1, non-social fear and dog-directed fear were most correlated
(r = 0.61). Stranger-directed fear and stranger-directed
aggression were also highly correlated traits (r = 0.58).
In comparison to the entire population (rmean = 0.161,
variance = 0.087) disregarding cluster assignment, Cluster 1 has
a higher correlation and slightly lower variance (rmean = 0.209,
variance = 0.084). Cluster 2 was composed of training
difficulty, owner directed-aggression, touch sensitivity, dog-
directed aggression, and familiar dog aggression. Dog-directed
aggression and familiar dog aggression were the most correlated
traits within this cluster (r = 0.29). In comparison to the entire
population (rmean = 0.161, variance = 0.087), Cluster 2 had a
much lower mean correlation coefficient and slightly smaller
variance (rmean = 0.074, variance = 0.083). Compared to the
traits in Cluster 2, the traits in Cluster 1 were on average more
correlated to one another.
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FIGURE 1

Heat map of the dog phenotype data and breed using Python Seaborn Clustermap (Waskom, 2021). The map depicts dog’s breeds and their
scores from 0 to 4 in the 14 behavioral phenotypes. White colors indicate a score of 0 for a behavioral phenotype while darkening shades of
green indicate a behavioral score close to 4. Related breeds and traits are clustered close to one another on nodes of the hierarchical trees.
These nodes are determined by hierarchical clustering.

Predictability of behaviors

Partial Least Squares Regression analysis with LOOCV was
used to construct models. Five models showed a significant
correlation between the predicted and actual values of the
traits (Table 1). PLS Regression with LOOCV was also used to
construct models using the SNPs and one of these also yielded
a significant correlation between the predicted and actual trait
values. Correlations were determined to be significant if their
p-value was below 0.05. Table 1 displays a summary of these
results.

Before adjusting for false discovery, five behavioral traits
could be significantly predicted with epigenetic data. The most
significant model was for energy (r = 0.49, p = 0.00053,

p-adj = 0.00748). The PLS Regression model for energy was
based on five components. The model can be visualized
and its results are displayed as a scatterplot of predicted vs.
actual energy phenotype value (Figure 3E). Models for other
traits also produced significant results. The other traits that
were significantly predicted were attachment/attention-seeking
(r = 0.44, p = 0.002, p-adj = 0.0154), non-social fear (r = 0.38,
p = 0.0099, p-adj = 0.0462), stranger-directed fear (r = 0.37,
p = 0.011, p-adj = 0.0368), and dog-directed fear (r = 0.32,
p = 0.033, p-adj = 0.0924) (Table 1). After adjusting for false
discovery using The Benjamini Hochberg Procedure, energy,
attachment/attention-seeking, non-social fear, and stranger-
directed fear remained significant (p-adj < 0.05). Figures 3A–E
displays a plot of predicted vs. actual phenotypes for each of the
significantly correlated traits.
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FIGURE 2

Cluster analysis of correlations between traits. Traits were examined for their correlation with other traits using Python Seaborn Clustermap
(Waskom, 2021). Correlations of r = 1 are depicted on the diagonal as each trait correlates exactly with itself. Lighter green shades indicate low
trait correlation while darker green shades indicate correlations closer to 1. Cluster 1 is colored in red on the dendrogram while Cluster 2 is
colored in blue.

Touch sensitivity was the only trait that could be
significantly predicted with genotype data (r = 0.41, p = 0.0047)
(Table 1). However, after adjusting for false discovery touch
sensitivity was no longer significant (p-adj = 0.0657) (Table 1).
Figure 3F depicts the linear relationship between actual
and predicted touch sensitivity behavioral values. No other
phenotype was significantly predictable using genetic variants.

We used a biplot to inspect the loadings of the first two
components in our PLS methylation analysis of behaviors
(Supplementary Figure 1). Biplots show how each dependent

variable contributes to the components of a regression
model. In our biplots, we inspected each trait’s weighted
contribution to the first two components of the PLS model.
Traits are represented as points in a two-dimensional space:
their x-coordinate indicating contribution to component 1
and y-coordinate indicating contribution to component 2.
Supplementary Figure 1 showed that stranger-directed fear,
non-social fear, attachment/attention-seeking, dog-directed
fear, stranger-directed aggression, separation-related problems,
chasing, and owner-directed aggression have greater weights
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TABLE 1 Behavioral phenotype results.

Trait Methylation Genotype

Correlation coefficient
(R-value)

R2 P-value p-adj Components
in model

Correlation coefficient
(R-value)

R2 P-value p-adj Components in
model

Energy 0.4908 0.241 0.000534 0.00748 5 0.1065 0.0113 0.4812 0.674 1

Attachment/attention- seeking 0.4411 0.195 0.0022 0.0154 2 0.2289 0.0524 0.1261 0.441 1

Non-social fear 0.3767 0.142 0.0099 0.0462 6 0.1420 0.0202 0.3469 0.694 1

Stranger- directed fear 0.3736 0.140 0.0105 0.0368 5 −0.0025 6.25E-6 0.9895 0.990 1

Dog-directed fear 0.3150 0.0992 0.0330 0.0924 2 0.2504 0.0627 0.0933 0.435 1

Touch sensitivity 0.2856 0.0816 0.0544 0.127 3 0.4098 0.168 0.004691 0.0657 2

Chasing 0.2821 0.0796 0.0575 0.115 4 0.0447 0.002 0.7680 0.827 3

Dog-directed aggression 0.2523 0.0637 0.0907 0.159 1 0.1839 0.0338 0.2212 0.516 1

Familiar dog aggression 0.2181 0.0476 0.1456 0.226 1 0.2664 0.0710 0.0736 0.515 2

Separation- related problems 0.1632 0.0266 0.2785 0.390 2 −0.1164 0.0135 0.4427 0.774 10

Training difficulty −0.1269 0.0161 0.4041 0.514 1 −0.2131 0.0454 0.1552 0.435 6

Owner-directed aggression 0.0818 0.00669 0.5889 0.687 3 −0.0476 0.00227 0.7564 0.882 1

Excitability 0.0506 0.00256 0.7384 0.795 1 0.0998 0.00996 0.5093 0.648 3

Stranger- directed aggression 0.0488 0.00238 0.7474 0.7474 5 −0.1155 0.0133 0.4466 0.695 1

Summary of the statistics of the PLS regression models of methylation data and dog behavior as well as genotype data and dog behavior. The table details correlation between data and behavior, significance of the results (p-value), and the number of
components used to generate the specified output. The data was analyzed using PLS regression in scikit-learn and cross-validated using LOOCV (Pedregosa et al., 2011). Significant correlations were those with a p-value below 0.05. The Benjamini Hochberg
adjusted p-value adjusts for false discovery rate.
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FIGURE 3

(A) Scatter plot of predicted vs. actual phenotype for stranger-directed fear. Actual stranger-directed fear values were recorded by the C-BARQ
survey. Predicted phenotype scores were generated by PLS regression on methylation values. The plot specifies the slope of the best-fit line
through the plotted points. (B) Scatter plot of predicted vs. actual phenotype for non-social fear. Actual non-social fear values were recorded by
the C-BARQ survey. Predicted phenotype scores were generated by PLS regression on methylation values. The plot specifies the slope of the
best-fit line through the plotted points. (C) Scatter plot of predicted vs. actual phenotype for attachment/attention-seeking. Actual
attachment/attention-seeking values were recorded by the C-BARQ survey. Predicted phenotype scores were generated by PLS regression on
methylation values. The plot specifies the slope of the best-fit line through the plotted points. (D) Scatter plot of predicted vs. actual phenotype
for dog-directed fear. Actual dog-directed fear values were recorded by the C-BARQ survey. Predicted phenotype scores were generated by
PLS regression on methylation values. The plot specifies the slope of the best-fit line through the plotted points. (E) Scatter plot of predicted vs.
actual phenotype for energy. Actual energy values were recorded by the C-BARQ survey. Predicted phenotype scores were generated by PLS
regression on methylation values. The plot specifies the slope of the best-fit line through the plotted points. (F) Scatter plot of predicted vs.
actual phenotype for touch sensitivity. Actual touch sensitivity values were recorded by the C-BARQ survey. Predicted phenotype scores were
generated by PLS regression on genotype values. The plot specifies the slope of the best-fit line through the plotted points.

in component 1 than component 2. Training difficulty, touch
sensitivity, excitability, dog-directed aggression, energy, and
familiar dog aggression have greater weights in component 2
than component 1. This analysis closely aligns with the trait-trait

clustering revealed in Figure 2. All the traits with greater weights
in component 1 except for owner-directed aggression were in
Cluster 1 (Figure 2), implying a strong relationship between
these traits.
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Age dependencies

Age was a possible confound of the association between
methylation and behavioral phenotype. Therefore, for each of
the four behaviors significantly associated with methylation
we calculated age-adjusted methylation associations. We used
the Pearson Correlational Coefficient to calculate associations
between age and behavioral phenotypes (Harris et al., 2020).
All four traits significantly correlated with age: energy
(r = −0.443, p-value = 0.00205), attachment/attention-seeking
(r = −0.369, p-value = 0.0116), non-social fear (r = −0.494,
p-value = 0.000485), and stranger-directed fear (r = −0.348,
p-value = 0.0181) (Supplementary Table 2). To differentiate
the predictive power of age and methylation, we compared
each model’s r-squared values for the significant traits. Of
the four significant traits predicted using methylation data,
only non-social fear was more significant in the age model
(Supplementary Table 2). The methylation RM

2 were higher
in energy (RM

2 = 0.241, RA
2 = 0.197), attachment/attention-

seeking (RM
2 = 0.142, RA

2 = 0.136), and stranger-directed
fear (RM

2 = 0.140, RA
2 = 0.121) (Table 1 and Supplementary

Table 2), suggesting that in most of the tested traits, methylation
may contribute more significantly than age.

We also addressed age dependencies in the association of
methylation and behavioral phenotypes by regressing age out
of the traits. We used PLS regression to assess if methylation
values were predictive of behavior trait residual values. Energy
(r = 0.293, p-value = 0.0489) and stranger-directed fear
(r = 0.363, p-value 0.0132) remained significantly associated
with methylation in these models (Supplementary Table 3).
The results of the age models indicate that age does contribute
to the association between methylation and dog behavioral
traits. However, there remain traits such as energy and stranger-
directed fear that can be partially predicted by methylation
alone. The persistence of these significant associations after
adjusting for age indicates that methylation is a contributing
factor to behavioral phenotypes.

Association studies of individual loci

The significant correlations found between methylation
and energy, attachment/attention-seeking, non-social fear, and
stranger-directed fear suggest an association between DNA
methylation and canine behaviors. We created Manhattan
plots to identify specific loci whose age-adjusted methylation
was associated with each of these four traits (Figure 4). The
Manhattan plots in Figure 4 and Supplementary Figure 2
depict the association, measured as a -log10(p) value, of
individual chromosome locations to a phenotype. Stranger-
directed fear was the only trait out of the four analyzed that
had individual loci significantly associated with its phenotype.
Figure 4 shows two loci to be significantly associated with

stranger-directed fear: chromosome 12 position 5141697 and
chromosome 12 position 12409719 (Figure 4). A summary
of the specific loci identified for each trait as well as genes
at or near these loci is detailed in Table 2. We report
loci with -log(p) values larger than the calculated Bonferroni
Threshold contributing to each behavioral phenotype. The most
significant locus [-log(p) = 4.96] is located within an exon
of serine/arginine-rich splicing factor (SRPK1) (Kent et al.,
2002). The second significant loci [-log(p) = 4.94] is within
an exon on vascular endothelial growth factor A (VEGFA)
(Kent et al., 2002).

Discussion

Behavioral variation is attributed to both genetic inheritance
and environment; however, the respective influence of each
of these factors on individual behaviors is a question that
still requires clarification. Individual genes and genetic variants
have been shown to contribute to behavioral phenotypes and
behavioral disorders. Additionally, the regulation of genes by
DNA methylation has also been associated with individual
behaviors. In our analysis, we analyzed epigenetic and genetic
influences on behavior. We hypothesized that our broad
analysis of chromosome locations would reveal new associations
between DNA methylation, genotype, and dog behaviors.
Additionally, we predicted that comparing DNA methylation
and genotype associations would reveal insights to their relative
influence on shaping behavior development in dogs. After
adjusting for false discovery rate and age bias, we found
energy and stranger directed fear were significantly associated
with DNA methylation. We also found that the limited
panel of SNPs used in our analysis was not associated with
behavioral traits. While these findings are preliminary, they
support our hypothesis by demonstrating a link between DNA
methylation and behavior.

Our analysis of the behavioral trait dataset revealed trait-
breed and trait-trait correlations. In trait-breed analysis we
found that dog breed did not have a strong influence
on behavioral phenotypes. We also measured correlations
between traits and found that the two most correlated traits
were non-social fear and dog-directed fear. The analysis
of behavioral phenotypes in Figure 2 revealed that they
formed two clusters. Cluster 1 was composed of chasing,
energy, separation-related problems, attachment/attention-
seeking, stranger-directed aggression, stranger-directed fear,
excitability, non-social fear, and dog-directed fear. Cluster
2 consisted of training difficulty, owner directed-aggression,
touch sensitivity, dog-directed aggression, and familiar dog
aggression. We expect energy related traits such as energy,
chasing, and excitability to be more related than hostility traits
such as owner-directed aggression, touch sensitivity, or dog-
directed aggression. Previous research has suggested that traits
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FIGURE 4

Manhattan plots for energy, attachment/attention-seeking, non-social fear, and stranger-directed fear. P-values, associated with an individual
loci’s methylation and statistical significance in predicting behavior, were calculated using OLS Regression from StatsModel (Seabold and
Perktold, 2010). Significant loci were determined using a Bonferroni threshold, enlarged, and labeled.

Frontiers in Psychology 11 frontiersin.org

https://doi.org/10.3389/fpsyg.2022.1025494
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/


fpsyg-13-1025494 November 26, 2022 Time: 15:26 # 12

Sanders et al. 10.3389/fpsyg.2022.1025494

TABLE 2 Association studies of individual Loci (Manhattan plots).

Trait Chr Position Gene -log(p) Expression

Stranger-directed fear 12 5141697 Serine/arginine-Rich Splicing Factor
(SRPK1) (Non-dog RefSeq Gene)

4.96 Broadly; majority in Whole Blood (GTEx Consortium,
2013)

Stranger-directed fear 12 12409710 Vascular Endothelial Growth Factor A
(VEGFA)

4.94 Adipose (Subcutaneous), Adipose (Visceral), Artery
(Aorta), Heart (Atrial Appendage), Prostate, Thyroid
(GTEx Consortium, 2013)

Characterization of individual loci significant in phenotype analysis. Significant loci were generated through Manhattan plot analysis. Each loci is characterized by the trait it is significantly
associated with, its closest gene, the -log(p) value of its association, and regions where it is most expressed. These genes at these loci were identified using the CanFam4 genome from the
UCSC genome browser (Kent et al., 2002).

such as fear and aggression in dogs are correlated with one
another (Zapata et al., 2016), but our cluster analysis reveals low
correlation between dog-directed aggression and dog-directed
fear. This is likely due to the low sample size and unusual breed
composition in our study.

Additionally, we did not find that dogs of the same
breed cluster together based on their behaviors (Figure 1).
The behavioral variance of Australian Shepherds, the most
abundant breed, was greater than the behavioral variance of our
entire sample. The high variance between breed and phenotype
suggests that there may be a broader range of behaviors within
each breed than initially expected. It is important to note that
this analysis was completed with a small sample size and should
be confirmed with a larger sample size.

To analyze epigenetic and genetic components of behavioral
traits, we used PLS regression models. PLS accounts for
covariance between independent and dependent variables
and allows high dimensional data to be embedded into
lower dimensional components. PLS is particularly useful in
scenarios where there exists many dependent variables and
many correlated independent variables. We also pursued PLS
regression because it is well established within epigenetics
research. For example, a recent study which analyzed 1,982
probes trained a PLS model on a mix of schizophrenic and
non-psychiatric patients and determined that symptoms
of schizophrenia are influenced by unique methylation
at correlated regions of systemic interindividual variation
(Gunasekara et al., 2021).

Examining DNA methylation across the 46 dogs in our
sample revealed new information on the epigenetic basis
of dog behaviors. PLS regression analysis revealed energy,
attachment/attention-seeking, non-social fear, stranger-
directed fear, and dog-directed fear to be significantly
predictable using methylation data. Of these traits energy,
attachment/attention-seeking, non-social fear, and stranger-
directed fear had significant adjusted p-values. Our findings
of significant methylation-behavior associations in energy,
attachment/attention-seeking, non-social fear, and stranger-
directed fear support previous work that found dog social
behavior to be significantly associated with promoter
methylation (Cimarelli et al., 2017). These findings support
our hypothesis that analyzing a broad sample of chromosome

locations reveals new information about the genetic basis of
behavioral development. Earlier studies in worker bees found
preliminary results that social experiences and behaviors impact
the epigenome, concluding that further work needs to be done
to analyze epigenetic regulation of behavioral development
(Rehan et al., 2016). The present study can serve as a proof of
concept for using bisulfite sequencing to study the epigenetic
basis of such behaviors across species. However, the age bias and
low power of our study should be noted. Our findings therefore
require further testing to validate our results.

Our analysis of the genotype dataset did not reveal any
significant associations between genotype and behavioral traits.
Touch sensitivity was shown to be significantly predictable using
SNPs. However, no trait had significant adjusted p-values after
correcting for multiple testing using the Benjamini Hochberg
Procedure. The lack of genotype associations compared to
DNA methylation associations could indicate that methylation
plays a larger role in influencing the dog behaviors examined
in this study. However, the small selection of SNPs included
in genotype analysis precludes this conclusion. The lack of
significant associations between behaviors and genotypes may
be due to the fact that we only measured a small fraction of
SNPs using our targeted bisulfite assay. There were only 930
specific SNPs used in analysis and these sites were contained
within the regions that we captured using our probe pool. In
previous genome wide association studies (GWAS), researchers
have found SNPs to be associated with canine behaviors.
A previous GWAS study in beagles found five candidate genes
to be associated with human-directed social behaviors in dogs
(Persson et al., 2016). Across species, GWAS in honeybees
have found four candidate genes to be associated with defense
behaviors (Spötter et al., 2016). Therefore, it is certain that
other SNPs within the dog genome could contribute more
significantly to behavior. Future studies should incorporate a
greater selection of SNPs to better capture genotype influence
in behavior analysis.

The associations between DNA methylation and behavioral
traits suggested that differences in gene expression could
contribute to behavioral differences between dogs. Therefore,
we sought to examine specific loci whose methylation was
significantly associated with behavioral traits. We created
Manhattan Plots for each of the four traits that were significantly
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associated with DNA methylation in our initial analysis.
These Manhattan plots displayed the significance of individual
associations between one behavioral trait and each chromosome
position included in our methylation matrix (Figure 4 and
Supplementary Figure 2).

The study of associations between single loci and traits
revealed sites that were significantly associated with each of the
four phenotypes we analyzed (Figure 4). The genes adjacent
to these significant sites provided interesting hypotheses about
possible mechanisms involved in behavioral regulation by
gene expression (Table 2). The loci significantly associated
with stranger-directed fear span internal exons of SRPK1 and
VEGFA which have a CpG island at its 5′ end. These genes
are highly conserved within many mammals, suggesting that
further research should be conducted. The former, SRPK1,
has been found to have high expression in neurons in the
brain (Mytilinaios et al., 2012). It is plausible that in the
brain SRPK1 regulates splicing of neurons and neuronal
differentiation (Mytilinaios et al., 2012). Perhaps its associations
with neuron development impact behavioral development. The
latter, VEGFA, has been found to have neuroprotective effects
in the central nervous system through protecting neurons
from degradation and cell death (Axelsen and Woldbye, 2018).
VEGFA has been proposed as a plausible gene therapy for
Parkinson’s disease patients because of its role in the nervous
system (Axelsen and Woldbye, 2018). Since VEGFA helps guard
against neuron dysfunction, perhaps regulation of this gene
alters dog behaviors.

Though they did not meet the Bonferroni threshold, it
is worth noting that several loci in chromosome 2 were
suggestive of methylation association with touch sensitivity
(Supplementary Figure 2). Chromosome 2 positions 51331684,
52739194, 52739210 are located downstream of MAST4 and
within an intron of PIK3R1. Further studies should explore
these genes and loci to better understand methylation and its
association with touch sensitivity.

Thus, we were able to identify loci whose methylation
is significantly correlated with behavioral phenotypes and
are located near genes that impact the nervous system or
behavior. It is likely that significantly associated loci are
located at the promoter, enhancer, or regulatory element
of their adjacent genes, although these regions are not yet
well described in the dog genome. We therefore hypothesize
that differential methylation of these loci could impact gene
expression and dog behavior.

There were several limitations in our study. The low sample
size of 46 dogs reduces the power of this study. Future work
should be done with a larger sample size to validate our findings.
Additionally, the owner’s bias in reporting has an effect on
the dogs’ behavior data. If the owner has known the dog for
longer, it is likely they have a better understanding of their dog’s
behavior. As we have shown, a dog’s age can also influence the
behavior. This effect is likely amplified by our study design. The

limited number of probes in this study were selected by Rubbi
et al. (2022) and included loci whose methylation was associated
with age. The presence of such ascertainment bias required
correction for the age association within all of our analysis. In
addition, the strong linkage disequilibrium in dogs paired with
the low number of SNPs in our study make it possible that
mapped signals are detected because they are in LD with the
true functional variant. Again, future studies with a broader SNP
panel can further explore this issue.

Our initial analysis found evidence that behavioral
phenotypes can be predicted from methylation data. However,
the influence of age may preclude our ability to confidently
conclude that energy, attachment/attention-seeking, non-social
fear, and stranger-directed fear are significantly predictable by
DNA methylation profiles. Across species, aging is known to
impact animal behaviors. A study in mice found significant
differences in behavior between age groups with older mice
exhibiting decreased movement and social behaviors, and
increased anxiety (Shoji et al., 2016). We used two different
methods to determine the effect of age on behavior. In
both methods energy and stranger-directed fear remained
significantly associated with DNA methylation after adjusting
for age bias (Supplementary Tables 2, 3). This suggests that the
associations between DNA methylation and behaviors are not
solely due to age associated changes in DNA methylation. The
persistence of energy and stranger-directed fear associations
adds confidence to our analysis. This finding aligns with
previous research that links epigenetic mechanisms regulating
translational access to genes and fear memory formation (such
as in post-traumatic stress disorder or PTSD). Previous studies
have shown that the inhibition of DNA methyltransferase
(DNMT) activity impedes hippocampal-dependent memory
formation processes, such as contextual fear memory creation
(Miller and Sweatt, 2007; Lubin et al., 2008; Feng et al., 2010;
Han et al., 2010). Similarly, other research has found that
auditory fear conditioning is associated with an increase in
DNMT3a protein within the lateral amygdala suggesting that
DNMT activity is necessary for fear memory consolidation
(Monsey et al., 2011). These findings implicate DNMT activity
as a crucial part of synaptic plasticity and fear memory
synthesis. Thus, it is not surprising that our study found
energy and stranger-directed fear to remain significant after
correcting for age bias. We can propose that a few traits are
predictable by DNA methylation and that the associations
between DNA methylation and behaviors are not solely due
to DNA methylation age associations. Future research projects
should control for age in subject recruitment to strengthen the
genetic association of behavior.

In conclusion, we propose that energy and stranger-directed
fear are partially predictable by DNA methylation in dogs. These
behavioral associations are of interest because they provide
evidence that changes in methylation can impact personalities,
energy levels, and other aspects of behavior. Since methylation
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is dynamic and can be influenced by environmental factors,
in the future we might be able to modify canine behavior
by modulating these factors. Our findings should motivate
additional studies to identify the epigenetic basis of behaviors
across species. Future studies could utilize probe panels that
capture more loci to better study the impact of methylation
on behavior. Additionally, more behavioral traits such as dog
herding and ball retrieving could be analyzed as these behaviors
are unique to dogs. Since dogs are a valuable model organism
for humans, it is plausible that similar associations may exist
between epigenetics and human behavior.
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