
OMNI + RATE® Rateio eficaz e sem perdas

Manual de Serviço

Este manual descreve a instalação, o uso e a configuração do Medidor Eletrônico de Insumos com TCs incorporados (MEI-TCI).

1. CARACTERÍSTICAS

O Medidor Eletrônico de Insumos (MEI) é um equipamento desenvolvido para a medição de insumos em sistemas de rateio de custos. Em conjunto com o software de tarifação ele se torna uma solução completa para controle de custos de insumos em sistemas prediais.

Podemos destacar as seguintes características:

- Medição de energia ativa e reativa para sistemas trifásicos (até 380V_{CA}).
- Transformadores de corrente incorporados para medição direta até 130A_{CA}.
- Até 5 entradas de pulso para totalização de consumos de água, gás, etc...
- Medição de consumo de ar-condicionado (BTUmeter).
- Até 5 entradas para medição de temperaturas.
- Uma entrada analógica 0-10V ou 4-20mA (configurável) para medição de vazão ou qualquer outra grandeza.
- Quatro saídas digitais com programação horária independente para controle de cargas diversas (iluminação de vitrine, ...).
- Interface ethernet 10/100M. Permite a leitura de dados de medição e a configuração completa do equipamento através de browser comum.
- Interface EIA-485 isolada.
- Interface local (display) para visualização dos consumos e estado do equipamento e configuração básica.
- Relógio calendário, mantido à bateria.
- Alimentação 90 a 240V_{CA}.

2. MODELOS DISPONÍVEIS

O MEI está disponível nos seguintes modelos:

Modelo	Características
STD	Somente medição de energia.
PLUS	Acrescenta medição de BTU e entradas de pulso.
PRO	Acrescenta funções de segurança patrimonial.
ULTRA	Acrescenta funções de controle de fancoil

Tabela 2.1 – Modelos disponíveis.

O anexo A apresenta as diferenças entre cada modelo em detalhes.

Este manual descreve as características do modelo mais completo (ULTRA). Consulte no anexo A a disponibilidade da função para o modelo adquirido.

3. INSTALAÇÃO

CONEXÕES

A tabela 3.1 identifica as funções de cada ponto de conexão do MEI.

PONTO	NOME	DESCRIÇÃO
1	EARTH	Aterramento do equipamento.
2	VAC	Alimentação principal.
3	VAC	Alimentação principal.
4	VA	Medição de tensão fase A.
5	VB	Medição de tensão fase B.
6	VC	Medição de tensão fase C.
7	NEUTRO	Neutro do canal de medição.
8	DO4	Contato 1 da saída digital 4.
9	DO4	Contato 2 da saída digital 4.
10	DO3	Contato 1 da saída digital 3.
11	DO3	Contato 2 da saída digital 3.
12	DO2	Contato 1 da saída digital 2.
13	DO2	Contato 2 da saída digital 2.
14	DO1	Contato 1 da saída digital 1.
15	DO1	Contato 2 da saída digital 1.
16	+24V	Alimentação do laço para entrada
10	+24 V	analógica.
17	Al1	Entrada analógica 1.
18	GND	Comum da entrada analógica 1.
19	DI1/S1	Entrada digital 1 / Temperatura 1.
20	DI2/S2	Entrada digital 2 / Temperatura 2.
21	GND	Comum das entradas.
22	DI3/S3	Entrada digital 3 / Temperatura 3.
23	DI4/S4	Entrada digital 4 / Temperatura 4.
24	GND	Comum das entradas.
25	DI5/S5	Entrada digital 5 / Temperatura 5.
26	GND	Comum das entradas.
27	AO1	Saída analógica 1
28	GND	Comum da saída analógica.
29	D+	Comunicação RS485 +
30	COM	Comum da fonte isolada da RS485
31	D-	Comunicação RS485

Tabela 3.1 – Pontos de conexão

ALIMENTAÇÃO PRINCIPAL

Para funcionamento, o medidor MEI deve ser alimentado através da entrada de alimentação principal. Esta alimentação deve estar entre 90 a $240V_{\text{CA}}$.

Para segurança e operação correta, o equipamento deve ser corretamente aterrado, através do borne específico.

MEDIÇÃO DE TENSÃO

Os canais de medição de tensão (VA, VB e VC) foram projetados para medição de tensão **fase-neutro** máxima de 380V_{CA}. Para tensões maiores é possível a utilização de TPs externos. É possível a configuração desta relação TP para correta visualização dos valores medidos.

MEDIÇÃO DE CORRENTE

A medição de corrente é feita por TCs incorporados no equipamento, para medição de até 130A.

Na instalação, observar a correta polaridade de passagem da fiação pelo gabinete. O medidor indica alarme de TC invertido caso seja ligado invertido.

ENTRADAS DIGITAIS / TEMPERATURA

O MEI possui 5 entradas (DIn/Sn) que podem ser configuradas entre digitais (contato seco / pulso) ou medição de temperatura (NTC).

A entrada configurada como digital (contato seco ou pulsos) pode ser utilizada para monitoração do estado de um contato ou totalização de pulsos. Não pode ser aplicado nenhum potencial na entrada, com risco de danificar o equipamento.

Nestas entradas podem ser conectados um contato (sem potencial) ou saídas de pulso com transistor NPN em coletor aberto, como mostrado na figura 3.1.

No modo digital, é possível a programação de um filtro na entrada, para evitar falsos disparos ou pulsos.

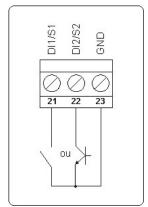


Figura 3.1 – Uso das entradas digitais.

A entrada configurada como temperatura (NTC) permite a medição de temperatura com o uso de um sensor NTC modelo 10k-AN ou 10k-CP da ACI.

Consulte sobre a utilização de sensores NTCs com outra curva de temperatura.

ENTRADA ANALÓGICA

A entrada analógica do MEI aceita sensores externos com saída em 0-20mA, 4-20mA e 0-10V. Esta entrada pode ser usada para medição de vazão ou monitoração e registro de qualquer outro sinal.

O equipamento pode fornecer uma alimentação de $24V_{\rm CC}$ para alimentação do laço de corrente. Nos casos que esta alimentação é utilizada, a ligação deve ser feita conforma a figura 3.2A. Para casos onde a alimentação é externa, a ligação deve ser feita como indicado na figura 3.2B.

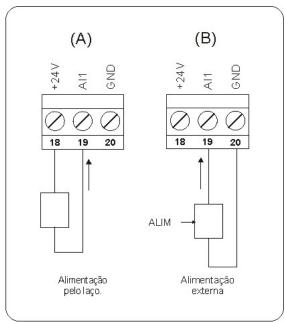


Figura 3.2 – Ligação da entrada analógica.

É possível configurar a faixa de valores da grandeza medida para a variação na entrada analógica, facilitando a visualização.

SAÍDAS DIGITAIS

O MEI possui duas saídas digitais que podem ser utilizadas para acionamento de cargas diversas, por programação horária.

As saídas foram projetadas para acionamento de cargas até 250V_{CA} em 2A. Possui proteção interna para cargas indutivas.

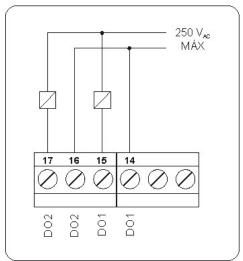


Figura 3.3 – Ligação das saídas digitais.

COMUNICAÇÃO ETHERNET

O equipamento possui uma interface ethernet 10/100Mbps com conector RJ45 padrão. Podem ser utilizados tanto cabos cruzados (cross) como os cabos normais (pino a pino).

A configuração completa do medidor é feita através da interface ethernet, utilizando-se um browser comum.

O endereço IP padrão do equipamento é 10.1.1.240. Ligando-se o equipamento com a tecla ACIMA pressionada, a interface é reconfigurada com este IP padrão.

COMUNICAÇÃO RS485

O medidor MEI possui uma interface de comunicação RS485 que permite a leitura dos dados históricos e monitoração do equipamento.

Para instalação, a fiação da rede 485 deve ser encadeada de medidor a medidor. Ligações em barramento ou estrela devem ser evitadas. O sinal

GND dos controladores pode ser opcionalmente desconectado em redes menores e mais simples.

Para conectar mais de 32 equipamentos em um mesmo segmento de rede, é necessário utilizar repetidores RS485. Em casos de redes longas, pode ser necessário a terminação através de um resistor de 120Ω / 0.5W. Estes resistores devem ser instalados apenas nas duas extremidades da rede.

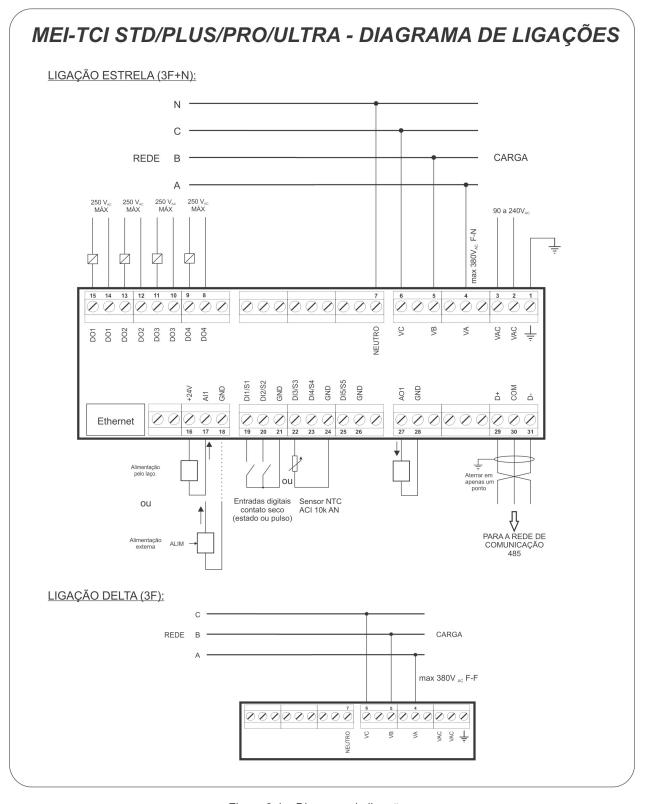


Figura 3.4 – Diagrama de ligações.

4. DESCRIÇÃO DE FUNCIONAMENTO

Este capítulo descreve as diversas funções do equipamento e as configurações necessárias para operação.

ACESSO ÀS CONFIGURAÇÕES

A configuração do medidor MEI é feita através da interface WEB ou pelo display local. Para acessar estas configurações, basta conectar o equipamento à rede ethernet e através de um browser acessar o endereço IP do equipamento, por exemplo:

http://10.1.1.240

O endereço IP atual do controlador pode ser verificado pela interface local, dentro do grupo "MEDIDOR".

A senha padrão para acesso às configurações é:

Usuário: config Senha: config

Esta senha pode ser trocada através do menu CONFIGURAÇÕES / DIVERSOS da interface web.

Alguns ítens do menu podem não estar disponíveis para alguns modelos do MEI.

CONFIGURAÇÕES DIVERSAS

O menu Configurações / Diversos permite alterar as senhas de acesso e a descrição do equipamento.

LOCAL: Permite configurar uma descrição para o equipamento, facilitando sua identificação. O texto neste campo aparece no título da página.

SENHA CONFIGURAÇÃO: Altera a senha para configuração do equipamento (usuário "config"). Esta senha permite alterar as configurações e executar as funções disponíveis (apagar históricos, zerar acumuladores, etc).

MEDIÇÃO DE ENERGIA

O medidor MEI é projetado para uso em sistemas trifásicos, com tensões fase-neutro de até $250V_{\text{AC}}$. Faz a medição de energia ativa, reativa e tensões e correntes de cada fase.

O MEI pode armazenar o consumo horário de energia ativa e reativa com autonomia de aproximadamente 60 dias.

A configuração para a medição de energia é feita no menu Configurações / Medição Energia. As seguintes configurações estão disponíveis:

MODO DE MEDIÇÃO: Seleciona o tipo de ligação – Estrela (4 fios) ou Delta (3 fios).

RELAÇÃO TP: Permite configurar a relação do transformador TP para os canais de tensão. Nos casos onde TP não for usado, recomenda-se programar estes valores em 220/220.

CONFIGURAÇÃO DAS ENTRADAS

No menu Configuração / Entradas, são feitas as configurações das entradas digitais/temperatura (DIn/Sn) e da entrada analógica AI1.

Para as entradas digitais/temperatura, as seguintes configurações estão disponíveis:

TIPO: Selecionar entre DIGITAL, PULSO ou NTC.
O modo DIGITAL serve para monitoração de estado de algum contato. O modo PULSO permite a totalização de pulsos para controle de consumo de algum insumo (água, gás, etc). O modo NTC permite a medição de temperatura através de um sensor NTC.

<u>TAG</u>: Pemite a configuração de um texto que facilite a identificação do sinal sendo monitorado por esta entrada.

<u>UNIDADE</u>: Configura o texto da unidade da grandeza medida.

ESCALA: Configura a relação de unidade por pulso quando a entrada for configurada como PULSO.

OFFSET: Permite um ajuste de offset na medição da temperatura quando a entrada for configurada como NTC.

FILTRO: Configura o filtro para a entrada de PULSO. Pulsos menores que o valor configurado (em múltiplos de 5ms) são ignorados. Por exemplo, um filtro de valor 2 (10ms) ignora qualquer pulso na entrada que seja menor que 10ms.

Para a entrada analógica, as seguintes configurações estão disponíveis:

<u>TIPO</u>: Seleciona o tipo de entrada: tensão (0-10V) ou corrente (0-20mA ou 4-20mA).

<u>TAG</u>: Permite configurar uma descrição que facilite a identificação da grandeza medida.

<u>UNIDADE</u>: Configura o texto da unidade da grandeza medida.

VALOR MÍNIMO: Configura o valor real (na unidade da grandeza) da medição quando a entrada estiver em seu valor mínimo (0V, 0mA ou 4mA).

<u>VALOR MÁXIMO</u>: Configura o valor real da grandeza medida quando a entrada estiver em seu valor máximo (10V ou 20mA).

A função de cada entrada é selecionada através de outras configurações. As entradas que forem programadas como pulso, automáticamente se tornam acumuladores e são incluídas nos históricos.

MEDIÇÃO DE BTU

O MEI pode calcular o consumo de ar-condicionado (BTU, TR) de cada unidade. Para isto, é necessária a medição de vazão e das temperaturas de entrada e saída de água do fancoil.

No menu Configurações / BTU Meter, temos as configurações necessárias:

ENTRADA TEMP ENTR ÁGUA: Seleciona a entrada de medição da temperatura de entrada de água no fancoil. Esta entrada deve estar programada como NTC para o correto funcionamento.

ENTRADA TEMP SAÍDA ÁGUA: Seleciona a entrada de medição da temperatura de saída de água do fancoil. Esta entrada deve estar programada como NTC para o correto funcionamento.

ENTRADA VAZÃO: Seleciona a entrada para medição de vazão de água no fancoil. Esta medição pode ser feita por entrada de pulsos ou pela entrada analógica. No caso de PULSOS, a entrada correspondente deve estar configurada neste modo.

CONSTANTE LÍQUIDO: Configura a constante usada no cálculo de BTU, conforme o líquido sendo utilizado no sistema.

A medição de vazão de água pode ser feita através da entrada analógica, usando um medidor de vazão com saída em 0/4-20mA ou 0-10V. O fundo de escala do medidor deve ser configurado na entrada analógica, em m³.

Outra opção de menor custo é fazer a medição de vazão através de hidrômetros com saída de pulso. A medição é feita através de uma entrada de pulsos, configurada de acordo. A relação de m³ por pulso deve ser configurada para a entrada, no ítem ESCALA.

Os medidores convencionais de saída de pulso não possuem resolução suficiente para fazer o cálculo de BTU, devendo ser usado modelos com maior resolução. Estes medidores possuem uma relação baixa de litros/pulso.

Para o cálculo correto de consumo térmico, BTU, é necessária a configuração da constante do líquido, definida por:

$$K = \frac{\rho \cdot c}{3024}$$

Onde ρ é a densidade do líquido, em kg/m³, \boldsymbol{c} é o calor específico, em cal/g°C.

A constante padrão é a da água, K = 0.330692.

TOTALIZAÇÃO DE PULSOS

O medidor MEI permite a totalização de pulsos para controle de consumo de insumos (água, gás, etc). Qualquer medidor com saída de pulsos pode ser conectado às entradas configuradas como PULSO.

Apenas a configuração da entrada é necessária. Quando configuradas como pulso, automáticamente são acumuladas e inseridas no históricos, onde o consumo a cada hora é mantido.

A configuração do TAG na entrada permite a fácil identificação do insumo.

MEDIÇÃO DE TEMPERATURA

As entradas de temperatura do MEI podem ser utilizadas para monitoração de uma temperatura qualquer (ambiente, externa, etc), com registro nos históricos a cada 5 minutos.

Para o registro, não é necessária nenhuma configuração adicional, apenas a configuração da entrada como NTC.

RELÓGIO

O equipamento possui um relógio mantido à bateria para registro dos históricos.

O ajuste do relógio é feito através do menu Configurações / Relógio.

Caso ocorra uma falha no relógio (bateria fraca), o MEI para de registrar os históricos, mas mantém as demais funções em operação.

ACUMULADORES

O MEI possui diversos acumuladores de consumo. Estes acumuladores são armazenados em memória não volátil e permanecem acumulando até que sejam explicitamente zerados.

Os valores atuais destes acumuladores são acessados pela interface local (display) ou pela interface WEB.

Os seguintes acumuladores estão disponíveis:

- Energia Ativa
- Energia Reativa Indutiva
- Energia Reativa Capacitiva
- BTU de Refrigeração
- BTU de Aquecimento
- Pulsos Entrada 1
- Pulsos Entrada 2
- Pulsos Entrada 3
- Pulsos Entrada 4
- Pulsos Entrada 5

Apenas as configurações das entradas são necessárias para a operação dos acumuladores. Para as entradas de pulso, é necessária a configuração da relação unidade/pulso (ESCALA).

Após a instalação inicial, é recomendado zerar os acumuladores. Isto pode ser feito no menu AJUSTES / COMANDOS, no botão "Zerar ACUMULADORES".

HISTÓRICOS

O MEI tem a capacidade de manter um registro histórico dos consumos com resolução horária por até 60 dias.

Todos os canais de consumo são mantidos no histórico automáticamente, não é necessária nenhuma configuração.

Além das variáveis de consumo, as entradas configuradas como temperatura, a entrada analógica e a tensão RMS em cada fase são incluídas no histórico, com resolução de 5 minutos. Neste caso, a autonomia é de aproximadamente 10 dias.

O anexo B contém uma tabela com todas as variáveis mantidas em histórico e a autonomia de cada.

O registro dos históricos são interrompidos caso ocorra uma falha no relógio (data/hora inválida). Neste caso, um alarme é gerado.

Após a instalação, é recomendado apagar os históricos para evitar a leitura pelo software de dados inválidos. Isto pode ser feito pela interface web, no menu AJUSTES / COMANDOS, no botão "Apagar HISTÓRICOS".

COMUNICAÇÃO

O MEI possui duas interfaces de comunicação, a ethernet e a RS485. Quando utilizado com o sistema de tarifação que acompanha o equipamento, a leitura dos dados pode ser feita por qualquer uma das portas.

Existem dois protocolos disponíveis para o MEI-TCI que devem ser selecionados no momento da compra. O modelo BACnet, que disponibiliza as variações:

- BACnet MS/TP (porta RS485).
- BACnet/IP (porta ethernet)
- BACnet/Ethernet (porta ethernet).

O modelo Modbus disponibiliza as seguintes variações do protocolo:

- Modbus RTU (porta RS485).
- Modbus/TCP (porta ethernet).
- Modbus/UDP (porta ethernet).

Consultar o apêndice C e D para as configurações disponíveis de comunicação.

MONITORAÇÃO PELA INTERFACE LOCAL

O medidor possui uma interface local, com display e 4 teclas que permite verificar o funcionamento e monitorar os consumos dos insumos. É possível fazer a configuração básica do equipamento pela interface local.

A tecla navega entre os menus disponíveis e as teclas e eventre as telas disponíveis no menu.

Os seguintes menus e telas estão disponíveis:

MENU CONSUMOS

Permite acesso aos acumuladores de consumo do equipamento. As telas existentes:

- Consumo ativo
- Consumo reativo indutivo
- Consumo reativo capacitivo
- Consumo Refrigeração
- Consumo Aquecimento
- Entrada Pulsos 1
- Entrada Pulsos 2
- Entrada Pulsos 3
- Entrada Pulsos 4
- Entrada Pulsos 5

Para as entradas de pulso, o nome mostrado é o configurado no TAG da entrada correspondente.

MENU ENERGIA

Acesso às variáveis de medição de energia. As seguintes telas estão disponíveis:

- Tensão fases A, B, C
- Tensões fase-fase (CA, AB, BC).
- Ângulos de fase
- Corrente fases A, B, C
- Potência Ativa fases A, B, C, Total
- Potência Reativa fases A, B, C, Total
- Fator potência fases A, B, C, Total
- Frequência (fase A)

MENU AR CONDICIONADO

Acesso às variáveis de medição do consumo de ar condicionado. As telas disponíveis:

- Potência refrigeração
- Potência Aquecimento
- Vazão
- Temperatura de entrada de água
- Temperatura de saída de água

MENU MEDIDOR

Acesso à variáveis gerais do equipamento.

- Data/hora
- Relação TP
- Endereço IP / Máscara de rede / Gateway
- Endereço MAC da interface ethernet
- Endereços Modbus ou BACnet
- Velocidade da porta RS485
- Versão do firmware

MENU ES

Estado das entradas e saídas do equipamento.

- Valor das entradas de temperatura.
- Entrada analógica
- Estados das entradas digitais
- Estado das saídas digitais

MENU ALARMES

Indica o estado dos alarmes ativos. Cada tela contém um alarme ativo.

CONFIGURAÇÃO PELA INTERFACE LOCAL

Os parâmetros básicos de medição e comunicação podem ser feitos pela interface local. Para acessá-los, é necessário pressionar as teclas e por alguns segundos.

Nas telas de edição, a tecla inicia a edição e confirma o novo valor. As teclas e navegam entre as configurações disponíveis ou alteram o valor sendo editado. A tecla seleciona os campos da variável sendo editada. Para cancelar a edição e retornar ao valor original, basta esperar alguns segundos sem pressionar nenhuma tecla.

Para acesso às configurações, é necessário o uso de uma senha. **A senha padrão é 1111**.

Consultar o apêndice D com a lista de configurações disponíveis.

ALARMES

Os seguintes alarmes são gerados pelo MEI:

FALHA NTC x

Ocorre quando uma entrada configurada como medição de temperatura (NTC) estiver com o sensor em aberto, curto ou fora da faixa de medição.

FALHA ANALÓGICA

Ocorre quando a entrada Al1 estiver configurada como 4-20mA e o cabo for desconectado.

TC x INVERTIDO

Ocorre quando um dos canais de corrente estiver com defasagem maior que 90° em relação ao canal de tensão correspondente.

ERRO NO RELÓGIO

Data e hora do controlador são inválidas.

ERRO DE CALIBRAÇÃO

Ocorre quando há uma falha em recuperar a calibração do equipamento da memória não volátil. Contate o fabricante para solucionar este problema.

5. ESPECIFICAÇÕES TÉCNICAS

	22 0404 50404
Alimentação	90 a 240V _{CA} , 50/60Hz.
Consumo	15 VA máximo.
Saídas	Relés.
digitais	Carga máxima 2A @ 250V _{CA} .
Entradas	Para contato seco, sem potencial. Corrente ~200uA.
digitais	Frequência máxima (pulsos): 100Hz.
Entradas	Tipo sensor NTC 10k.
Temperatura	Curvas disponíveis para sensores ACI 10K-AN e 10K-CP.
Entrada	Configurável entre tanção (0.40V) ou corrente (0.20mA ou 4.20mA). Decelução 40 hito
Analógica	Configurável entre tensão (0-10V) ou corrente (0-20mA ou 4-20mA). Resolução 10 bits.
Exatidão	Tensão e corrente 0.2%, Potência e energia 0.5%.
Relógio	Mantido à bateria CR2032. Acesso por tampa no painel frontal.
Comunicação RS485	EIA-485, isolada, com fonte interna. Isolação 1500V. Máx 115200 bps.
Comunicação	10/100Mbps, sem polaridade de cabo (Auto MDI/MDI-X).
Ethernet	Protocolos suportados: ARP, IPv4, UDP, TCP, HTTP, DHCP, ModbusTCP
Temperatura	0 a 60 °C. Umidade máx 95% não condensável.
de operação	0 a 00 °C. Officace max 95% had concensavel.
Fixação	Fundo de painel, por parafusos.
Dimensões	160 x 112 x 98 mm (L x P x A).
externas	Diâmetro abertura fiação: 17mm

A. DIFERENÇA ENTRE MODELOS

FUNÇÃO	STD	PLUS	PRO	ULTRA
Medição de energia trifásica (ativa e reativa)	X	Х	Х	Х
Fator de potência	Χ	Χ	X	X
Medição de tensão por fase	X	Χ	X	X
Medição de corrente por fase	X	Χ	X	X
Memória de massa (para históricos)	X	Χ	X	X
Medição de consumo de ar-condicionado (BTU- meter)		X	Χ	Х
Entradas de pulso para totalização de consumo de água, gás, etc		X	Х	X
Entradas para medição de temperatura (NTC)		Χ	X	X
Entrada analógica		Χ	X	X
Entrada para alarme de pânico			X	X
Porta de comunicação RS485	X	X	X	Χ
Porta de comunicação ethernet 10/100M	X	Χ	X	X
Software de tarifação incluído *	X	X	X	Χ

O software de tarifação está incluso nos fornecimentos acima de 50 peças de qualquer modelo.

B. VARIÁVEIS NO HISTÓRICO

Variável	Resolução	Núm máx registros	Autonomia (dias)
Energia Ativa	1h	1452	60.5
Energia reativa	1h	1452	60.5
Fator de potência	1h	1452	60.5
BTU Refrigeração	1h	1452	60.5
BTU Aquecimento	1h	1452	60.5
Entrada Pulsos 1	1h	1452	60.5
Entrada Pulsos 2	1h	1452	60.5
Entrada Pulsos 3	1h	1452	60.5
Entrada Pulsos 4	1h	1452	60.5
Entrada Pulsos 5	1h	1452	60.5
Temperatura 1	5min	2904	10.1
Temperatura 2	5 min	2904	10.1
Temperatura 3	5 min	2904	10.1
Temperatura 4	5 min	2904	10.1
Temperatura 5	5 min	2904	10.1
Entrada Analógica 1	5 min	2904	10.1
Tensão RMS Fase A	5 min	2904	10.1
Tensão RMS Fase B	5 min	2904	10.1
Tensão RMS Fase C	5 min	2904	10.1
Demanda ativa	15min	5808	60.5

C. VARIÁVEIS DE CONFIGURAÇÃO NA INTERFACE WEB

Estas variáveis são disponibilizadas na interface web para configuração do equipamento.

VARIÁVEL	GRUPO	DEFAULT	FAIXA	DESCRIÇÃO
Modo	Medição	Estrela (3F+N)		Seleciona o tipo de ligação (estrela ou triângulo).
Relação TP	Medição	220/220		Seleciona a relação TP (primário/secundário).
Minuto de fechamento	Medição	0	0 59	Seleciona o minuto de fechamento dos históricos de energia ativa.
Tipo	Entradas	Digital		Seleciona o tipo de entrada (digital/pulso/NTC).
Tag	Entradas			Configura um nome para facilitar a identificação da entrada.
Unidade	Entradas			Configura a unidade (texto) da entrada.
Escala pulsos	Entradas	1.0	0.0001 100.0	Configura a relação de unidade/pulso da entrada.
Offset NTC	Entradas	0.0	-5 5	Configura um offset para ajuste do sensor NTC.
Filtro pulsos	Entradas	2	0 200	Filtro da entrada digital/pulsos. Pulsos menores que este valor (x5ms) são ignorados
Tipo analógica	Entradas	0-20mA		Seleciona o tipo da entrada analógica (tensão ou corrente).
Valor mínimo analógica	Entradas	0		Valor da variável medida quando a entrada estiver em seu valor mínimo.
Valor máximo analógica	Entradas	100		Valor da variável medida quando a entrada estiver em seu valor máximo.
Entrada temp entr agua	BTU	-		Seleciona o número da entrada para medição da temperatura de entrada da água.
Entrada temp saída agua	BTU			Seleciona o número da entrada para medição da temperatura de saída de água.
Entrada vazão	BTU			Seleciona o número da entrada para medição de vazão (pulsos ou analógica).
Constante líquido	BTU	0.330692		Constante do líquido para cálculo de BTU.
Endereço IP	Comunicação	10.1.1.240		Endereço do medidor na rede ethernet.
Máscara de rede	Comunicação	255.255.255.0		Máscara da rede IP que pertence o medidor.
Gateway	Comunicação	10.1.1.1		Endereço do gateway padrão.
Baudrate	Comunicação	9600	9600 115200	Velocidade da porta RS485.
Device ID (BACnet)	Comunicação	4194303	0 4194303	Identificador do equipamento BACnet na rede.
Habilita BACnet/IP	Comunicação	Sim		Habilita o protocolo BACnet/IP na interface ethernet.
Porta	Comunicação	47808	0 65535	Configura a porta UDP para o protocolo BACnet/IP.
Habilita BACnet/Ethernet	Comunicação	Sim		Habilita o protocolo BACnet/Ethernet.
Habilita BACnet MS/TP	Comunicação	Sim		Habilita o protocolo BACnet MS/TP na porta RS485.
Station Addr	Comunicação	127	0 127	Configura o endereço do medidor na rede BACnet MS/TP
Max Master	Comunicação	127	0 127	Identifica o endereço do último mestre na rede.
Max Info Frames	Comunicação	1	0 8	Número máximo de comunicações antes de passar o token.
Endereço Modbus	Comunicação	254	0254	Endereço do equipamento na rede Modbus.

Ostusiut Dafulusus 2		24.0		O-ufinima - u-uta da au-u-a a da a-utada da u-fiinana a a
Setpoint Refrigeração	Fancoil	24.0		Configura o ponto de operação do controle de refrigeração.
Histerese On-Off	Fancoil	1.0		Configura a histerese do controle On-Off de refrigeração.
PID	Fancoil		0 100	Configura os ganhos do PID.
Tempo amostragem PID	Fancoil	60		Tempo de execuções do algoritmo de PID.
Tempo abertura válvula	Fancoil	90		Tempo de abertura total da válvula floating.
Temp ambiente	Mapa E/S		1 5	Número da entrada para medição de temperatura ambiente.
Status ventilador	Mapa E/S		1 5	Número da entrada para monitoração de status do ventilador.
Automático/desligado	Mapa E/S		1 5	Número da entrada para função AUT/DESLIGADO.
Habilitação externa	Mapa E/S		1 5	Número da entrada para a função habilitação remota.
Ventilador	Mapa E/S		1 4	Número da saída de acionamento do ventilador.
Válvula On-Off	Mapa E/S		1 4	Número da saída para acionamento da válvula on-off.
Válv floating abre	Mapa E/S		1 4	Número da saída para abertura da válvula floating.
Válv floating fecha	Mapa E/S		1 4	Número da saída para fechamento da válvula foating.
Válvula proporcional	Mapa E/S		11	Número da saída analógica para acionamento da válvula proporcional.
Entrada Alarme	Pânico		15	Número da entrada para acionamento do alarme de pânico.
Mensagem	Pânico			Texto do alarme de pânico.
Porta UDP	Pânico		0 65535	Porta UDP para transmissão do alarme de pânico.
Local	Diversos			Texto com o local de instalação do medidor, para facilitar a identificação.
Senha configuração	Diversos	config		Senha de acesso às configurações pela interface web.

D. VARIÁVEIS DE CONFIGURAÇÃO NA INTERFACE LOCAL

VARIÁVEL	DEFAULT	FAIXA	DESCRIÇÃO
Relação TP Prim	220	127 127000	Tensão nominal do primário do TP.
Relação TP Sec	220	127 127000	Tensão nominal do secundário do TP.
Min fechamento	0	0 59	Configura o minuto de fechamento dos históricos de energia ativa.
Ajuste data			Permite a configuração da data.
Ajuste hora			Permite a configuração da hora.
Endereço IP	10.1.1.240		Endereço do equipamento na rede IP.
Máscara rede	255.255.255.0		Máscara da rede IP.
Gateway padrão	10.1.1.1		Endereço do gateway padrão.
Hab BACnet/Eth	Sim		Habilita a interface BACnet/Ethernet.
Hab BACnet/IP	Sim		Habilita a interface BACnet/IP
Hab BACnet MS/TP	Sim		Habilita a interface BACnet MS/TP
Endereço MS/TP	127	0 127	Endereço do equipamento na rede MS/TP (deve ser único na subrede MS/TP).
BACnet DeviceID	4194303	0 4194303	Identificador global do equipamento na rede (deve ser único em toda instalação).
Porta BACnet/IP	47808	0 65535	Porta UDP usada no protocolo BACnet/IP.
Endereço Modbus	254	0 254	Endereço do equipamento na rede Modbus.
Baudrate	9600	9600 115200	Velocidade de comunicação da porta RS485.

E. TABELA MODBUS

Os seguintes tipos de dados são utilizados nos registros Modbus, acessíveis sem distinção através das funções 03 (Read Holding Registers) e 04 (Read Input Registers) do Modbus.

TIPO	NUM REGISTROS MODBUS	DESCRIÇÃO
WORD	1	Inteiro de 16 bits, sem sinal
DWORD	2	Inteiro de 32 bits, sem sinal. A ordem dos bytes é MSBLSB (high end).
FLOAT	2	Ponto flutuante padrão IEEE754. A ordem dos bytes é MSB LSB

A interface RS485 utiliza as seguintes configurações fixas: 8 bits de dados, 1 stop bit, sem paridade. A velocidade de comunicação é configurável pela interface web.

Endereço Modbus (decimal)	Tipo	R/ W	Unidade	Descrição
0	FLOAT	R	V	Tensão fase A
2	FLOAT	R	V	Tensão fase B
4	FLOAT	R	V	Tensão fase C
6	FLOAT	R	V	Tensão fases C-A
8	FLOAT	R	V	Tensão fases A-B
10	FLOAT	R	V	Tensão fases B-C
12	FLOAT	R	Α	Corrente fase A
14	FLOAT	R	Α	Corrente fase B
16	FLOAT	R	Α	Corrente fase C
18	FLOAT	R	kW	Potência ativa fase A
20	FLOAT	R	kW	Potência ativa fase B
22	FLOAT	R	kW	Potência ativa fase C
24	FLOAT	R	kVAr	Potência reativa fase A
26	FLOAT	R	kVAr	Potência reativa fase B
28	FLOAT	R	kVAr	Potência reativa fase C
30	FLOAT	R		Fator de potência fase A
32	FLOAT	R		Fator de potência fase B
34	FLOAT	R		Fator de potência fase C

36	FLOAT	R	Graus	Ângulo fases C-A
38	FLOAT	R	Graus	Ângulo fases A-B
40	FLOAT	R	Graus	Ângulo fases B-C
42	FLOAT	R	kW	Potência ativa total.
44	FLOAT	R	kVAr	Potência reativa total
46	FLOAT	R		Fator de potência total
48	FLOAT	R	Hz	Frequência rede (fase A).
50	FLOAT	R	°C	Temperatura NTC1
52	FLOAT	R	°C	Temperatura NTC2
54	FLOAT	R	°C	Temperatura NTC3
56	FLOAT	R	°C	Temperatura NTC4
58	FLOAT	R	°C	Temperatura NTC5
60	FLOAT	R		Valor da entrada analógica.
62	WORD	R		Estado da entrada digital 1
63	WORD	R		Estado da entrada digital 2
64	WORD	R		Estado da entrada digital 3
65	WORD	R		Estado da entrada digital 4
66	WORD	R		Estado da entrada digital 5
67	FLOAT	R	TR/h	Potência de refrigeração
69	FLOAT	R	TR/h	Potência de aquecimento.
71	FLOAT	R	m³/h	Vazão
73	WORD	R		Estado da saída digital 1
74	WORD	R		Estado da saída digital 2
75	WORD	R		Estado da saída digital 3
76	WORD	R		Estado da saída digital 4
77	FLOAT	R	%	Valor da saída analógica.
79	FLOAT	R	kW	Demanda do último intervalo de 15 minutos (sincronizado com o relógio do medidor).
81	FLOAT	R	V	Tensão trifásica média
83	FLOAT	R	Α	Corrente trifásica média.
				Alarmes ativos:
				Bit 0 = Falha NTC1
				Bit 1 = Falha NTC2
				Bit 2 = Falha NTC3
100	DWORD	R		Bit 3 = Falha NTC4
				Bit 4 = Falha NTC5
				Bit 5 = Falha entrada analogical
				Bit 6 = TC fase A invertido.
				Bit 7 = TC fase B invertido

Bit 8 = TC fase C invertido.
Bit 9 = Data/hora inválidas.
Bit 10 = Tabela de calibração inválida.

				Dit 10 – Tabela de Calibração litvalida.
300	FLOAT	R	kWh	Acumulador de consumo ativo.
302	FLOAT	R	kVArh	Acumulador de consumo reativo indutivo.
304	FLOAT	R	kVArh	Acumulador de consumo reativo capacitivo.
306	FLOAT	R		Acumulador da entrada de pulsos 1
308	FLOAT	R		Acumulador da entrada de pulsos 2
310	FLOAT	R		Acumulador da entrada de pulsos 3
312	FLOAT	R		Acumulador da entrada de pulsos 4
314	FLOAT	R		Acumulador da entrada de pulsos 5
316	FLOAT	R	TR	Acumulador de consumo de refrigeração
318	FLOAT	R	TR	Acumulador de consumo de aquecimento.
400	DWORD	R	kWh	Acumulador de consumo ativo (formato DWORD)
402	DWORD	R	kVArh	Acumulador de consumo reativo indutivo
404	DWORD	R	kVArh	Acumulador de consumo reativo capacitivo
406	DWORD	R		Acumulador da entrada de pulsos 1
408	DWORD	R		Acumulador da entrada de pulsos 2
410	DWORD	R		Acumulador da entrada de pulsos 3
412	DWORD	R		Acumulador da entrada de pulsos 4
414	DWORD	R		Acumulador da entrada de pulsos 5
416	DWORD	R	TR	Acumulador de consumo de refrigeração
418	DWORD	R	TR	Acumulador de consumo de aquecimento
450	WORD	RW		Zera acumuladores de energia (escrever 1 para zerar)
451	WORD	RW		Zera acumuladores de refrigeração/aquecimento
452	WORD	RW		Zera acumuladores das entradas de pulso
500	WORD	R		Relógio: dia
501	WORD	R		Relógio: mês
502	WORD	R		Relógio: ano
503	WORD	R		Relógio: hora
504	WORD	R		Relógio: minuto
505	WORD	R		Relógio: segundo
600	WORD	RW		Ajuste do relógio - dia
601	WORD	RW		Ajuste do relógio – Mês
602	WORD	RW		Ajuste do relógio – Ano
603	WORD	RW		Ajuste do relógio – hora

604	WORD	RW		Ajuste do relógio – minuto
605	WORD	RW		Ajuste do relógio – segundo
606	WORD	RW		Ajuste do relógio – Escrever 12345 para atualizar relógio.
1000	STRUCT	RW		Programação horária de operação
1100	STRUCT	RW		Programação horária auxiliar 1
1200	STRUCT	RW		Programação horária auxiliar 2
1300	STRUCT	RW		Programação horária auxiliar 3
1400	STRUCT	RW		Programação horária auxiliar 4
2000	FLOAT	R	°C	Temperatura ambiente
2002	FLOAT	RW	°C	Setpoint de refrigeração
2004	FLOAT	R	%	Posição da válvula proporcional
2006	WORD	R		Controle habilitado
2007	WORD	R		Estado da entrada AUTO/DESLIGADO
2008	WORD	R		Estado da entrada de HABILITAÇÃO EXTERNA
2009	WORD	R		Estado da entrada STATUS VENTILADOR
2010	WORD	R		Estado da saída do ventilador
2011	WORD	R		Estado da saída VALVULA ON-OFF
2012	WORD	R		Alarme do ventilador ativo
2013	WORD	RW		Modo de operação (0 = automático, 1= ligado, 2 = desligado)
2014	WORD	R		Status do controle (0 = desligado, 1 = ligado, 2 = alarme)

As programações horárias possuem o seguinte formato:

OFFSET	ITEM	TIPO	DESCRIÇÃO			
0	DIAS1	WORD	Dias válidos para o período 1 da programação horária (bit 7 = segunda, bit 1 = domingo, bit 0 = feriados).			
1	HINI1	WORD	Hora de início do período 1 da programação horária.			
2	MINI1	WORD	Minuto de início do período 1 da programação horária.			
3	HFIM1	WORD	Hora de término do período 1 da programação horária			
4	MFIM1	WORD	Minuto de término do período 1 da programação horária			
5	DIAS2	WORD	Dias válidos para o período 2 da programação horária (bit 7 = segunda, bit 1 = domingo, bit 0 = feriados).			
6	HINI2	WORD	Hora de início do período 2 da programação horária.			
7	MINI2	WORD	Minuto de início do período 2 da programação horária.			
8	HFIM2	WORD	Hora de término do período 2 da programação horária			
9	MFIM2	WORD	Minuto de término do período 2 da programação horária			
10	DIAS3	WORD	Dias válidos para o período 3 da programação horária (bit 7 = segunda, bit 1 = domingo, bit 0 = feriados).			
11	HINI3	WORD	Hora de início do período 3 da programação horária.			
12	MINI3	WORD	Minuto de início do período 3 da programação horária.			
13	HFIM3	WORD	Hora de término do período 3 da programação horária			

14	MFIM3	WORD	Minuto de término do período 3 da programação horária				
15	DIAS4	WORD	Dias válidos para o período 4 da programação horária (bit 7 = segunda, bit 1 = domingo, bit 0 = feriados).				
16	HINI4	WORD	Hora de início do período 4 da programação horária.				
17	MINI4	WORD	Minuto de início do período 4 da programação horária.				
18	HFIM4	WORD	Hora de término do período 4 da programação horária				
19	MFIM4	WORD	Minuto de término do período 4 da programação horária				

F. OBJETOS BACNET

Nome	Tipo	Instância	Descrição
MEI	Device		Objeto padrão com as propriedades do equipamento.
NTC_1	Analog Input	0	Temperatura entrada 1
NTC_2	Analog Input	1	Temperatura entrada 2
NTC_3	Analog Input	2	Temperatura entrada 3
NTC_4	Analog Input	3	Temperatura entrada 4
NTC_5	Analog Input	4	Temperatura entrada 5
Al_1	Analog Input	5	Entrada analógica 1
AO_1	Analog Output	0	Saída analógica 1
Tensão A	Analog Value	0	Tensão RMS da fase A
Tensão B	Analog Value	1	Tensão RMS da fase B
Tensão C	Analog Value	2	Tensão RMS da fase C
Corrente A	Analog Value	3	Corrente RMS da fase A
Corrente B	Analog Value	4	Corrente RMS da fase B
Corrente C	Analog Value	5	Corrente RMS da fase C
Pot Ativa A	Analog Value	6	Potência ativa fase A
Pot Ativa B	Analog Value	7	Potência ativa fase B
Pot Ativa C	Analog Value	8	Potência ativa fase C
Pot Reativa A	Analog Value	9	Potência reativa da fase A (positivo = indutivo)
Pot Reativa B	Analog Value	10	Potência reativa da fase B (positivo = indutivo)
Pot Reativa C	Analog Value	11	Potência reativa da fase C (positivo = indutivo)
Pot ativa total	Analog Value	12	Potência ativa total
Pot reativa total	Analog Value	13	Potência reativa total (positivo = indutivo).
FP A	Analog Value	14	Fator de potência da fase A
FP B	Analog Value	15	Fator de potência da fase B
FP C	Analog Value	16	Fator de potência da fase C
FP Total	Analog Value	17	Fator de potência total.
Frequencia	Analog Value	18	Frequência da fase A
Consumo ativo	Analog Value	19	Acumulador de consumo ativo
Consumo reat ind	Analog Value	20	Acumulador de consumo reativo indutivo.
Consumo reat cap	Analog Value	21	Acumulador de consumo reativo capacitivo.
BTU/h Refr	Analog Value	22	Potência de refrigeração.
BTU/h Aquec	Analog Value	23	Potência de aquecimento.
BTU Vazão	Analog Value	24	Vazão de água.
BTU Refr	Analog Value	25	Acumulador de consumo de refrigeração.
BTU Aquec	Analog Value	26	Acumulador de consumo de aquecimento.
Pulsos 1	Analog Value	27	Acumulador da entrada de pulsos 1

Pulsos 2	Analog Value	28	Acumulador da entrada de pulsos 2
Pulsos 3	Analog Value	29	Acumulador da entrada de pulsos 3
Pulsos 4	Analog Value	30	Acumulador da entrada de pulsos 4
Pulsos 5	Analog Value	31	Acumulador da entrada de pulsos 5
Temp ambiente	Analog Value	32	Temperatura ambiente.
Setpoint	Analog Value	33	Setpoint do controle de refrigeração.
Válvula	Analog Value	34	Posição da válvula de água gelada.
Tensao CA	AnalogValue	36	Tensão entre fases C e A
Tensao AB	AnalogValue	37	Tensão entre fases A e B
Tensao BC	AnalogValue	38	Tensão entre fases B e C
Demanda	AnalogValue	39	Demanda do último intervalo de 15 minutos (sincronizado com o relógio do medidor)
Tensão trifasica	AnalogValue	40	Tensão trifásica média
Corrente media	AnalogValue	41	Corrente trifásica média
DI_1	BinaryInput	0	Estado da entrada digital 1
DI_2	BinaryInput	1	Estado da entrada digital 2
DI_3	BinaryInput	2	Estado da entrada digital 3
DI_4	BinaryInput	3	Estado da entrada digital 4
DI_5	BinaryInput	4	Estado da entrada digital 5
DO_1	Binary Output	0	Estado da saída digital 1
DO_2	Binary Output	1	Estado da saída digital 2
DO_3	Binary Output	2	Estado da saída digital 3
DO_4	Binary Output	3	Estado da saída digital 4
Habilitado	Binary Value	0	Indica controle de fancoil habilitado para operação.
Automático	Binary Value	1	Indica estado da entrada Automático/Desligado
Hab externa	Binary Value	2	Estado da habilitação externa
Status vent	Binary Value	3	Estado da entrada de retorno do ventilador.
Ventilador	Binary Value	4	Estado da saída do ventilador.
Valvula On-Off	Binary Value	5	Estado da válvula ON-OFF
Feriados	Calendar	0	Lista de feriados do sistema.
Configs	File	0	Arquivo de configurações do medidor
PH_1	Schedule	0	Programação horária auxiliar 1
PH_2	Schedule	1	Programação horária auxiliar 2
PH_Oper	Schedule	2	Programação horária de operação do controle de fancoil
Hist Cons Ativo	TrendLog	0	Hitórico de energia ativa.
Hist Cons reativo	TrendLog	1	Histórico de energia reativa.
Hist BTU Refr	TrendLog	2	Historico de consumo de refrigeração.
Hist BTU Aquec	TrendLog	3	Histórico de consumo de aquecimento.
Hist Pulsos 1	TrendLog	4	Histórico da entrada de pulsos 1
Hist Pulsos 2	TrendLog	5	Histórico da entrada de pulsos 2
Hist Pulsos 3	TrendLog	6	Histórico da entrada de pulsos 3

Hist Pulsos 4	TrendLog	7	Histórico da entrada de pulsos 4
Hist Pulsos 5	TrendLog	8	Histórico da entrada de pulsos 5
Hist Temp 1	TrendLog	9	Histórico da entrada de temperatura 1
Hist Temp 2	TrendLog	10	Histórico da entrada de temperatura 2
Hist Temp 3	TrendLog	11	Histórico da entrada de temperatura 3
Hist Temp 4	TrendLog	12	Histórico da entrada de temperatura 4
Hist Temp 5	TrendLog	13	Histórico da entrada de temperatura 5
Hist Analogica 1	TrendLog	14	Histórico da entrada analógica 1
Hist Tensão A	TrendLog	15	Histórico de tensão da fase A (ou CA, no modo delta).
Hist Tensão B	TrendLog	16	Histórico de tensão da fase B (ou AB, no modo delta).
Hist Tensão C	TrendLog	17	Histórico de tensão da fase C (ou BC, no modo delta).
Hist Demanda	TrendLog	18	Histórico de demanda ativa.
Historico Alarmes	TrendLog	19	Histórico de alarmes e eventos.

CONTROLE DE REVISÕES

REVISÃO H - 23/03/2023

Atualização para indicação de medição de corrente até 130A.

REVISÃO G - 25/05/2020

Atualização das tabelas Modbus e BACnet de acordo com firmware 2.21.

REVISÃO F - 15/04/2020

■ Inclusão das variáveis de controle de fancoil na tabela Modbus.

REVISÃO E - 31/07/2019

■ Inclusão das programações horárias Modbus.

REVISÃO D - 17/04/2017

■ Correção da tensão máxima de medição no texto.

REVISÃO C - 03/11/2014

- Correção da tabela de variáveis do histórico.
- Incluída frequência máxima de pulsos na tabela de especificações.
- Alteradas informações de dimensão do equipamento.
- Incluídas observações da interface Modbus.

REVISÃO B - 26/03/2014

Correção do diagrama de ligações.

REVISÃO A - 10/12/2013

Versão inicial

MEI-TCI – MANUAL DE SERVIÇO Revisão H – 20230323

A critério da fábrica e, tendo em vista o aperfeiçoamento do produto, as características aqui constantes poderão ser alteradas sem aviso prévio.

comercial@mercatoautomacao.com.br

