- DIRECT DRIVE STEREO TURNTABLE

CONTENTS

1. SPECIFICATIONS 4
2. PANEL FACILITIES 5
3. PARTS LOCATIONS
3.1 Top View 7
3.2 Under View 9
4. EXPLODED VIEW 11
4.1 Motor (PXM-020) 13
4.2 Function Mechanism Assembly 14
4.3 Anti Skating Assembly (PXA-641) 15
4.4 Tonearm Assembly (PPD-539) 16
4.5 Packing 17
5. NOMENCLATURE OF SCREWS, WASHERS AND NUTS 18
6. SCHEMATIC DIAGRAM, P.C. BOARD PATTERNS AND PARTS LISTS
6.1 Schematic Diagram 19
6.2 Power Supply Assembly B (PWR-006) 21
6.3 Driving Current Control Assembly 22
6.4 Positional Detector Assembly 24
6.5 Power Supply Assembly A (PWR-816) 25
7. PXM-020 OUTLINE OF OPERATION
7.1 Structure 26
7.2 Operation of the Motor (See Connection Diagram) 26
7.3 Speed Control 26
7.4 Temperature Composition 27
8. TROUBLE SHOOTING CHART
8.1 Motor Does Not Turn 29
8.2 Wide Variations in Motor Speed 30
8.3 Motor Races 31
9. ADJUSTMENT
9.1 Motor Speed 32
9.2 Arm Elevation 32Service information for PL-510A/KCT, KUT is described through pages 4 to 32

Additional Service Manual (HGT model)
10. SPECIFICATIONS . 34
11. EXPLODED VIEW. 35
12. SCHEMATIC DIAGRAM... . . . 37
13. P.C. BOARD PATTERN AND PARTS LIST... 38

Additional Service Manual (ST.S model)
14. SPECIFICATIONS \qquad
15. EXPLODED VIEW. 43
16. SCHEMATIC DIAGRAM. \qquad
17. P.C. BOARD PATTERN AND PARTS LIST. ... 46

1. SPECIFICATIONS

MOTOR AND TURNTABLE

Motor:
Turntable drive:
Speed:
Wow and flutter:

S / N :

Turntable platter:
Moment of inertia:

DC servo motor
Direct drive
Two speeds: $33-1 / 3 \mathrm{rpm}, 45 \mathrm{rpm}$
0.03\% (WRMS) or less

68 dB (DIN-B) or more (with Pioneer cartridge model PC-135)
321 mm diam. aluminum alloy
$240 \mathrm{~kg}-\mathrm{cm}^{2}$ (including rubber mat)

TONEARM

Tonearm type:
Effective arm length:
Tracking error:
Overhang:
Static-balance, S-shaped, pipe arm 221 mm $+3^{\circ} \sim-1^{\circ}$

Usable cartridge weight:
15.5 mm
(For cartridge weighs over 8.5 g (min .) 10 g (max.)

SUBFUNCTIONS

Anti-skating force control
Plug-in type headshell
Oil-damped arm elevator
Hinges (Free-adjustable)
Lateral balance weight
Fine speed adjusters ($33-1 / 3 \mathrm{rpm}, 45 \mathrm{rpm}$: using the stroboscope for turntable speed adjustment).

ACCESSORIES

Headshell 1

Overhang gauge 1
EP adaptor 1
Screwdriver 1
Sub weight 1
Cartridge mounting screws 6
Cartridge mounting nuts 2
Cartridge mounting washers 2
Operating instructions 1

MISCELLANEOUS

Power requirements:
Power consumption:
Dimensions:
Weight:
$\mathrm{AC}, 120 \mathrm{~V}, 60 \mathrm{~Hz}$

5 W
$440(\mathrm{~W}) \times 362(\mathrm{D}) \times 159(\mathrm{H}) \mathrm{mm}$ $17-5 / 16(\mathrm{~W}) \times 14-1 / 4(\mathrm{D}) \times 6-1 / 4(\mathrm{H}) \mathrm{in}$. $8 \mathrm{~kg}, 17 \mathrm{lb} 10 \mathrm{oz}$

NOTE:
Specifications and design subject to possible modification without notice, due to improvements.

2. PANEL FACILITIES

Headshell Stand

A spare headshell can be stored in this stand. Align the headshell pins with the stand grooves and insert.
Observe that the headshell length is not greater than the height of the dust cover. This stand can also be used for storing the EP adaptor.

Stroboscope

Fine adjustments of rotation speed can be performed with the aid of the stroboscope. Adjust the SPEED ADJ. knobs while observing the pattern indicated bellow. If the rotation is fast, the pattern will appear to move toward the left, while movement toward the right indicates slow speed. Correct speed is obtained when the pattern appears to be stationary.

Arm Rest

Supports the tonearm when not playing a record. At the end of a playing session, engage the clamp as illustrated below.

EP Adaptor

Place on center shaft when playing 45 rpm EP records.

33 SPEED ADJ. Knob
Use for fine adjustment of $33-1 / 3 \mathrm{rpm}$.
45 SPEED ADJ. Knob
Use for fine adjustment of 45 rpm .
33 SPEED Button
Depress to play $33-1 / 3 \mathrm{rpm}$ records.
45 SPEED Button
Depress to play 45 rpm records.
Function Lever
This lever incorporates power switch and arm elevation functions.

- OFF AC power is cut off.
- ON-UP Power is turned ON. When set from DOWN to this position, the tonearm is raised.
- DOWN Tonearm is gently lowered.

OPERATION

1. Remove stylus cover.
2. Set function lever to ON-UP.

Strobe lamp lights and platter rotates.
3. Depress SPEED button (33 or 45) according to type of record.
4. Employ SPEED ADJ. controls and stroboscope to adjust rotating speed (required only once per listening session).
5. Disengage arm clamp and gently position the tonearm over the desired portion of the record.
6. Set function lever to DOWN.

Stylus will be gently lowered onto the record.
7. Adjust volume and tone controls of the stereo amplifier as desired.
8. At the end of the record, or to interrupt the record, set the function lever to ON-UP. The stylus will be raised from the record.
9. Return tonearm to arm rest and engage clamp.
10. Set function lever to OFF. Power will be cut off and strobe lamp extinguished.
11. It is advisable to replace the stylus cover for protection whenever the turntable is not in use.

OPERATING PRECAUTIONS

- Keep stylus and records clean. Use a stylus brush to clean the stylus and a good quality record cleaner to clean the records each time before and after playing.
- Avoid exerting unnecessary force on the tonearm. When changing headshells, set the tonearm in the arm rest and engage the clamp.
- Take care not to impart vibration to the turntable while a record is playing. Record and stylus can be damaged.
- Avoid placing more than 2 records on the turntable platter while playing records.

3. PARTS LOCATIONS

3.1 TOP VIEW

Output cord
PDE-004 (KCT)
PDE-016 (KUT)

[^0]

3.2 UNDER VIEW

Wire

PXT-523

Microswitch KSF-016

Driving current control assem PWG-007

Jriving current control assembly WG-007
4. EXPLODED

FUNCTION MECHANISM ASSEMBLY

5. NOMENCLATURE OF SCREWS, WASHERS AND NUTS

The following symbols stand for screws, washers and nuts as shown in exploded view.

Symbol	Description	Shape	
RT	Brazier head tapping screw	\square	
PT	Pan head tapping screw	$\square \square$	
PTT	Special screw (A)	(11711\|\%17	
PTBA	Special screw (B)	G117M	
POTBA	Special screw (C)	(H)	
OCT	Oval countersunk head tapping screw		
PM	Pan head machine screw	\square	
CM	Countersunk head machine screw	\longrightarrow	
OCM	Oval countersunk head machine screw	\square	
TM	Truss head machine screw	$\sqrt{\square}$	
BM	Binding head machine screw	\sqrt{n}	
PSA	Pan head screw with spring lock washer	\square	
PSB	Pan head screw with spring lock washer and flat washer	\square	
PSF	Pan head screw with flat washer	$\rightarrow \infty$	

Symbol	Description	Shape
EW	E type washer	(s)
FW	Flat washer	(0)
SW	Spring lock washer	\bigcirc
N	Nut	(0) θ
WN	Washer faced nut	(0) A
PN	Push nut	(3) ह
FFW	Fiber flat washer	(0)
SC	Slotted set screw (Cone point)	$\theta \square$
SF	Slotted set screw (Flat point)	θ
HS	Hexagon socket headless set screw	(0)
OCW	Oval countersunk head wood screw	1 ——
CW	Countersunk head wood screw	1 -
RW	Round head wood screw	(——

EXAMPLE

6. SCHEMATIC DIAGRAM, P.C.BOARD PATTERNS AND PAF
 6.1 SCHEMATIC DIAGRAM

3	4	5	6

ERNS AND PARTS LIST

6.2 POWER SUPPLY ASSEMBLY B (PWR-006)

Parts List of Power Supply Assembly B (PWR-006)

Symbol	Description		Part No.	
C1	Electrolytic	330	35 V	CEA 331P 35
C2	Electrolytic	100	25 V	CEA 101P 25
C3	Ceramic	0.01	50 V	CKDYF 103Z 50
R1	Carbon film	3.3 k		RD1⁄4PS 332J
Q1	Transistor		2SD234	
Q2	Transistor		2SC372	
			PCX-010	
D1	Diode		WZ-192	
D2	Zener diode		PEK-004	
FU	Fuse	500 mA	K91-006	
	Fuse clip			

6.3 DRIVING CURRENT CONTROL ASSEMBLY (PWG-007)

Parts List of Driving Current Control Assembly (PWG-007)

CAPACITORS

Symbol	Description			Part No.
C1	Ceramic	0.01	50 V	CKDYF 103Z 50
C2	Ceramic	0.01	50 V	CKDYF 103Z 50
C3	Ceramic	0.01	50 V	CKDYF 103Z 50
C4	Electrolytic	220	6 V	CEA 221P 6
C5	Electrolytic	2.2	50 V	CEA 2R2P 50
C6	Electrolytic	10	16 V	CEA 100P 16
C7	Electrolytic	47	10 V	CEA 470P 10
C8	Electrolytic	100	25 V	CEA 101P 25

Symbol	Description		Part No.	Symbol	Description	Part No.
R201	Carbon film	330	RD1⁄VS 331J	Q6	Transistor	2SC711-F
R202	Carbon film	270	RD $1 / 4 \mathrm{VS} 271 \mathrm{~J}$	Q6	Transistor	(2SC458-C,
R203	Carbon film	330	RD1/4VS 331J			2SC945-P1)
R204	Carbon film	270	RD $1 / 4 \mathrm{VS} 271 \mathrm{~J}$	Q7	Transistor	2Sc711-F
R205	Carbon film	330	RD1/4VS 331J	Q	Transistor	(2SC923-E)
R206	Carbon film	270	RD¼V 271J	Q8	Transistor	2SA715-C
R207	Carbon film	2.2	RD $1 / 2 \mathrm{VS}$ 2R2J			(2SA509-Y,
R208	Carbon film	180	RD $1 / 4 \mathrm{VS} 181 \mathrm{~J}$	09	Transistor	2SB564-L) 2SC711-F
R209	Carbon film	3.3k	RD1⁄2VS 332J	,	Transistor	(2SC458-C,
R210	Carbon film	680	RD $1 / 4 \mathrm{VS} 681 \mathrm{~J}$			2SC945-P1)
R211	Carbon film	10k	RD1/4VS 103J	Q10	Transistor	2SC711-F
R212	Carbon film	47k	RD $1 / 4 \mathrm{~V}$ S 473J			(2SC458-C, 2SC945-P1)
R213	Carbon film	27k	RD\%VS 273J			2Sc945-P1)
R214	Carbon film	5.1k	RD1/4VS 512J	Q11	Transistor	2SC711-F
R215	Carbon film	1.3k	RD1/4VS 132J			(2SC923-E)
R216	Carbon film	680		Q12	Transistor	2SA715-C
R217	Carbon film	6.8 k	RD $1 / 4 V$ 6 681 J RD $1 / 4 \mathrm{VS} 682 \mathrm{~J}$			(2SA509-Y,
R218	Carbon film	470	RD1⁄4VS 471J	Q13	Transistor	2SB564-L)
R219	Carbon film	27k	RD1/4VS 273J	Q14	Transistor	2SC1000-BL
R220	Carbon film	150	RD $1 / 4 \mathrm{VS} 151 \mathrm{~J}$	Q15	Transistor	2SC1000-BL
R221	Carbon film	56k	RD1/4VS 563J	Q16	Transistor	2SC711-F
R222	Carbon film	22k	RD $1 / 4 \mathrm{VS} 223 \mathrm{~J}$			(2SC923-E)
R223	Carbon film	2.7k	RD1/4VS 272J	Q17	Transistor	2SC735-Y
R224	Carbon film	8.2k	RD1/4VS 822J	Q18	Transistor	2SA733-Q
R225	Carbon film	39k	RD1/4VS 393J			
R226				D1	Diode	IN60
R226 R227	Carbon film Carbon film	150 $47 k$	RD1/VVS 151J	D2	Diode	IN60
R227	Carbon film	47k	RD1/4VS 473J	D3	Diode	IN60
R228	Carbon film	15k	RD1/4VS 153J	D4	Varistor	VD1222
R229	Carbon film	3.9k	RD1/4VS 392J	D5	Varistor	VD1222
R230	Carbon film	12k	RD1/4VS 123J			
R231				D6	Varistor	VD1124
R231	Carbon film Carbon film	3.3 k 3.3 k	RD $1 / 4 \mathrm{VS} 332 \mathrm{~J}$	D7	Varistor	VD1124
VR1	Semi-fixed	3.3 k	RD1/4VS 332J	D8	Varistor	VO1124
VR2	Semi-fixed	3.3k-B	PCP-001	D9	Zener diode	WZ081
VR2	Semi-fixed	$4.7 \mathrm{k}-\mathrm{B}$	PCP-002	D10	Varistor	VD1222
				D11	Varistor	VD1124

SEMICONDUCTORS

Symbol	Description	Part No.
Q1	Transistor	2SC711-F
		(2SC458-C,
		2SC945-P1)
Q2	Transistor	2SC711-F
		(2SC458-C,
		2SC945-P1)
Q3	Transistor	2SC711-F
		(2SC923-E)
O4	Transistor	2SA715-C
		(2SA509-Y,
		2SB564-L)
Q5	Transistor	2SC711-F
		(2SC458-C,
		2SC945-P1)

NOTE:

1. $Q_{1}, Q_{2}, Q_{5}, Q_{6}, Q_{9}$, and Q_{10} should, on the same circuit board, use the same kind and rank of product.
2. Q_{3}, Q_{7}, Q_{11}, and Q_{16} should, on the same circuit board, use the same kind and rank of product.
3. D_{1}, D_{2}, and D_{3} should be 'paired' (PYY-006-0).

6.4 POSITIONAL DETECTOR ASSEMBLY (PWX-004)

Driving current control assembly, No. 2

Driving current control assembly, No. 1

Driving current control assembly, No. 3

Driving current control assembly, No. 4

Parts List of Positional Detector Assembly (PWX-004)

Symbol	Description	Part No.
H1	Hall-effect element	PCX-001
H2	Hall-effect element	PCX-001
H3	Hall-effect element	PCX-001
R101	Carbon film resistor 1 k	RD $1 / 4$ PS 102J
R102	Carbon film resistor 1 k	RD $1 / 4$ PS 102J
R103	Carbon film resistor 1 k	RD $1 / 4$ PS 102J
R104	Carbon film resistor 330	RD $1 / 4$ PS 331J

6.5 POWER SUPPLY ASSEMBLY A (PWR-816)

Parts List of Power Supply Assembly A (PWR-816)

Symbol	Description			Part No.
C1	Myler	0.033		KCE-009
R1	Metal oxide	10k	2W	RS2P 103J
FU	Fuse Fuse clip	300 mA		$\begin{aligned} & \text { E21-030 } \\ & \text { K91-006 } \end{aligned}$

7. PXM-020 OUTLINE OF OPERATION

7.1 STRUCTURE

The PXM-020 is an external-rotor type DC motor in which Hall-effect elements are used to detect the rotor position, with electronic ON-OFF switching of the current to the motor windings. As shown in Figure 1a, the ferrite rotor is magnetized alternately N and S in 45° segments. Figure 1b shows the three Hall-effect elements under the rotor.
The Hall-effect elements, $\mathrm{H}_{1}, \mathrm{H}_{2}$, and H_{3}, are fitted 30° apart (120° magnetically), so that whatever the orientation of the rotor, one of them will experience a Hall potential at a particular time.

7.2 OPERATION OF THE MOTOR (SEE CONNECTION DIAGRAM)

When the electrical supply is connected to the motor, current flows through the three Hall-effect elements, which go into the operating condition. If we assume, at this time, that a rotor N pole is located at the H_{1} Hall-effect element position, then the Hall potential developed in H_{1} sends the base of Q_{1} negative (-) and that of Q_{2} positive

Fig. 1: Relative Locations of Rotor and Hall-Effect Elements
(+). Due to this Hall-effect potential Q2 turns ON, voltage at the Q2 collector drops, the potentail on the base of Q_{4} drops, and Q_{4} turns ON. With $Q_{4} O N$, the motor drive coil W_{1} is energized by the collector current, and the rotor begins to move. After some small movement of the rotor, the N pole approaching the Hall-effect element H_{2} causes Q6 and Q8 to turn ON, and drive coil W_{3} to be energized. With further movement of the rotor the N pole approaches $\mathrm{H}_{3}, \mathrm{Q}_{10}$ and Q_{12} go ON, and W_{2} is energized. The first N pole passes H^{3} as the next one approaches H_{1}, putting Q2 and Q4 ON, and thus the rotation of the rotor is continuously sustained.
On the other hand, when a S pole approaches the Hall-effect element(s) $\mathrm{H}_{1}\left(\mathrm{H}_{2}, \mathrm{H}_{3}\right)$, the polarity of the Hall potential changes, the base(s) of Q_{1} $\left(Q_{5}, Q_{9}\right)$ go positive (+), the base(s) of $Q_{2}\left(Q_{6}\right.$, Q_{10}) go negative (-), and so Q_{2} ($\mathrm{Q}_{6}, \mathrm{Q}_{10}$) turn OFF. This means that Q4 (Q8, Q12) also turn OFF and the current ceases to flow in the drive coil(s) $W_{1}\left(W_{2}, W_{3}\right)$.

7.3 SPEED CONTROL

When no current is flowing through a drive coil (that is when a S pole is approaching the Hall effect element), a voltage proportional to the speed of rotation of the rotor is induced in the drive coil (the same effect as with a generator). This voltage is rectified by the diode(s) $\mathrm{D}_{1}\left(\mathrm{D}_{2}, \mathrm{D}_{3}\right)$, and the negative potential derived is applied to the base of $Q_{14} . Q_{14}$ and Q_{15} form a differential amplifier circuit, and the standard voltage for $33-1 / 3$ or 45 rpm rotation is applied to the base of Q_{15}. It follows that so long as the rotor is

Fig. 2: Block Diagram of the PXM-020
turning at the correct speed (revs), this circuit is balanced. If for any reason the speed of ratation of the rotor exceeds the proper value, the voltage generated in each drive coil will increase.
This causes the potential on the base of Q_{14} to drop, and the potential on the bases of Q_{18} and Q_{13} rises. As the potential on the base of Q_{13} rises, the collector current drops and this reduces the potential on the base(s) of $Q_{3}\left(Q_{7}, Q_{11}\right)$. This results in a reduction in the current flowing through $Q_{2}\left(Q_{6}, Q_{10}\right)$, and a rise in the potential on the base(s) of $Q_{4}\left(Q_{8}, Q_{12}\right)$, so that the collector current(s) of $Q_{4}\left(Q_{8}, Q_{12}\right)$ drop. If the collector current drops, the field strength of the drive coil also drops, the rotor speed drops, and it returns to the correct speed of rotation.
On the other hand, if the rate of rotation of the rotor drops below its proper value, the process is precisely the reverse of the above: the voltage across each drive coil drops, and the base potential of Q_{14} rises. This causes the collector current of Q_{13} to increase, and the current(s) through Q_{1} $\left(Q_{7}, Q_{11}\right)$ and $Q_{2}\left(Q_{6}, Q_{10}\right)$ also rise. As the collector current(s) of $Q_{2}\left(Q_{6}, Q_{10}\right)$ increase, the base potential(s) on $Q_{4}\left(Q_{8}, Q_{12}\right)$ drop, the collector current(s) rise, the magnetic field strength of the drive coil(s) increases, and the rotor speed increases to the correct value.

7.4 TEMPERATURE COMPENSATION

The section which corrects the speed of rotation of the motor as the ambient temperature changes comprises varistors $\left(\mathrm{D}_{4}, \mathrm{D}_{5}, \mathrm{D}_{6}, \mathrm{D}_{7}, \mathrm{D}_{8}, \mathrm{D}_{10}, \mathrm{D}_{11}\right)$ to achieve temperature compensation.

- D_{4} compensates Q_{3}, Q_{7}, and Q_{11}. If D_{4} were not provided, an increase in temperature would be accompanied by a drop in the $\mathrm{V}_{\mathrm{B} \cdot \mathrm{E}}$ of Q_{3}, Q_{7}, and Q_{11}, and an increase in the collector currents. This would result in a drop in the base potentials of Q_{4}, Q_{8}, and Q_{12}, and an increase in their collector currents with, in turn a higher current through the drive coils and a corresponding increase in the speed of revolution. The temperature coefficient of D_{4} (VD1222) is $-3.6 \mathrm{mV} /{ }^{\circ} \mathrm{C}$, which ensures that the bases of Q_{3}, Q_{7}, and Q_{11} do not drop in potential, so that the motor speed will not increase.
- D_{5} compensates Q_{16}. If D_{5} were not provided, an increase in temperature would cause an increase in Q_{16} collector current, and a corresponding increase in $Q_{14}, Q_{15}, Q_{18}, Q_{13}$, with a rise in the base potential of Q_{3}, Q_{7}, and Q_{11}, and an increase in the speed of the motor.
- $\mathrm{D}_{6}, \mathrm{D}_{7}$ and D_{8} provide the temperature compensation for rotor magnetism. Magnetic field strength drops at $-0.18 \% /{ }^{\circ} \mathrm{C}$ with an increase in temperature. For this reason, if $\mathrm{D}_{6}, \mathrm{D}_{7}$ and Ds are not provided, even at the proper rate of rotation, the voltage generated in the drive coils would drop, because the comparator would indicate that the speed has dropped, and so the motor speed would. D6 (33-1/3) D_{7} and D_{8} (45 rpm) raise the potential at the base of Q_{15} as the temperature rises, preserving the balance of Q_{14} and Q_{15}, and maintaining proper speed.

CONNECTION DIAGRAM

- D_{10} and D_{11} compensate D_{9} and Q_{17}, D_{6} (WZ081) is a zener diode. The zener temperature coefficient is $0.05 \% /{ }^{\circ} \mathrm{C}$. If D_{10} and D_{11} are not provided, as the temperature rises the zener potential will rise, so that the Vb-e of Q17 drops, raising the emitter potential (the standard voltage) of Q_{17}. If the standard voltage rises, the speed of the motor also rises. This is the reason for the compensation by D_{10} and D_{11} for the rise in D_{9} zener potential and the drop in $V_{b-e ~ p o t e n t i a l ~ o f ~}^{Q_{17} \text {. The tempera- }}$ ture coefficient of D_{11} (VD1124) is $-1.9 \mathrm{mV} /$ ${ }^{\circ} \mathrm{C}$.

8. TROUBLE SHOOTING CHART

8.1 MOTOR DOES NOT TURN

8.2 WIDE VARIATIONS IN MOTOR SPEED

With the power ON, rotate the turntable slowly by hand (about five seconds for each complete rev.). Do the collector voltages of Q_{4}, Q_{8}, and Q_{12} cycle between 0 and 17 V ?

YES

NO $\xrightarrow{\mathrm{NO}}$
, ,

8.3 MOTOR RACES

Check the connections to terminals 12,13 , and 15 .

Is the voltage between Q_{14} base on the driving current control assembly and terminal 4 equal to 2.8 V ?

NO
Block 2 is defective.

Block 3 is defective.

9. ADJUSTMENT

9.1 MOTOR SPEED

When it proves impossible to adjust the fine speed controls to give the correct speeds, the motor may be adjusted as follows.

1. Set the fine speed adjustment controls on the stereo turntable to their mechanical centers (approx. in the middle).
2. The separate volume-type controls on the P.C. Board PWG-007 are accessible for both 33 and 45 rpm adjustments. Use a small screwdriver to turn these preset controls to give synchronization as indicated by the stroboscopic speed indicator on the record player.
3. When even turning the controls fails to give the required adjustment, refer to Connection diagram on page 6 , and change R_{223} (33-1/3 rpm) and R_{229} (45 rpm) within the range $1.5 \mathrm{k} \Omega$ to $5.6 \mathrm{k} \Omega$ before repeating the adjustment.

9.2 ARM ELEVATION

Tonearm elevation is operated by a cable release. If the release stretches due to aging or other reasons, loosen EV guide screw (Fig. 1) and adjust cable release anchor condition. Perform this adjustment with tonearm elevation in DOWN setting. As adjustment standard, EV lever unit (Fig. 2) should tightly contact straight line portion of EV cam. Be sure to confirm operation after adjusting.

Fig. 1

Fig. 2

Additional
 Service Manual

This leaflet provides the description of the parts applied only HGT model.
For detailed instructions on adjustments, description, etc., please refer to the Service Manual of PL-510A/KCT, KUT.

10. SPECIFICATIONS (HGT model)

MOTOR AND TURNTABLE

Motor:
Turntable Drive:
Speed:
Wow and flutter:
S / N :

Turntable platter:
Moment of inertia:

DC servo motor
Direct drive
Two speeds: $33-1 / 3 \mathrm{rpm}, 45 \mathrm{rpm}$ 0.03\% (WRMS) or less 68 dB (DIN B) or more (with Pioneer cartridge model PC-135) 321 mm diam. aluminum alloy $240 \mathrm{~kg}-\mathrm{cm}^{2}$ (including rubber mat)

TONEARM

Tonearm type:
Effective arm length:
Tracking error:
Overhang:
Usable cartridge weight:
Static-balance, S-shaped, pipe arm 221 mm
$+3^{\circ} \sim 1^{0}$

Usable cartridge weight. $\quad 4 \mathrm{~g}(\mathrm{MIN}) \sim 10 \mathrm{~g}(\mathrm{MAX})$
(For cartridges weights over 8.5 g , attach the sub weight)

SUBFUNCTIONS

Anti-skating force control
Plug-in type headshell
Oil-damped arm elevator
Hinges (Free-adjustable)
Lateral balance weight
Fine speed adjusters ($33-1 / 3 \mathrm{rpm}$, 45 rpm : using the stroboscope for turntable speed adjustment)

ACCESSORIES

Headshell	1
Overhang gauge	1
45 rpm adaptor	1
Screwdriver	1
Sub weight	1
Cartridge mounting screws	6
Cartridge mounting nuts	2
Cartridge mounting washers	2
Operating instructions	1
MISCELLANEOUS	$\mathrm{AC} 220 \mathrm{~V}, 240 \mathrm{~V}, 50 \mathrm{~Hz}$
Power requirements:	7 W
Power consumption:	$440(\mathrm{~W}) \times 362(\mathrm{D}) \times 159(\mathrm{H}) \mathrm{mm}$
Dimensions:	$17-5 / 16(\mathrm{~W}) \times 14-1 / 4(\mathrm{D}) \times 6-1 / 4(\mathrm{H}) \mathrm{in}$.
	$8 \mathrm{~kg}, 17 \mathrm{lb} 10 \mathrm{oz}$
Weight:	

For Use in United Kingdom only.

Please note:

Models employ 3-conductor mains leads. Please read the following instructions carefully before connecting.

WARNING: THIS APPARATUS MUST BE EARTHED.
CAUTION 240V: MAINS SUPPLY VOLTAGE IS FACTORY ADJUSTED AT 240 VOLTS.

IMPORTANT

The wires in this mains lead are coloured in accordance with following code:

Green-and-yellow:	Earth
Blue:	Neutral
Brown:	Live

As the colours of the wires in the mains lead of this apparatus may not correspond with the coloured markings identifying the terminals in your plug proceed as follows.
The wire which is coloured green-and-yellow must be connected to the terminal in the plug which is marked by the letter E or by the safety earth symbol $\stackrel{\perp}{\equiv}$ or coloured green or green-andyellow.
The wire which is coloured blue must be connected to the terminal which is marked with the letter N or coloured blue or black.
The wire which is coloured brown must be connected to the terminal which is marked with the letter L or coloured brown or red.

NOTE:
Specifications and design subject to possible modification without notice, due to improvements.

12. SCHEMATIC DIAGRAM (HGT model)

13. P.C BOARD PATTERN AND PARTS LIST

13.1 POWER SUPPLY ASSEMBLY A (PWR-818)

Parts List of Power Supply Assembly A (PWR-818)

Symbol	Description			Part No.
C1	Myler 0.033 C2 Myler	0.033	250 V	PCL-013
R1	Metal oxide	10 k	2 W	PCL-013
FU	Fuse Fuse clip	315 mA		KEK-008
				KKR-001

13.2 POWER SUPPLY ASSEMBLY B (PWR-008)

Parts List of Power Supply Assembly B (PWR-008)

Symbol	Description		Part No.	
C1	Electrolytic	330	35 V	CEA 331P 35
C2	Electrolytic	100	25V	CEA 101P 25
C3	Ceramic	0.01	50 V	CKDYF 103Z 50
R1	Carbon film	3.3 K		RD1/4PS 332J
Q1	Transistor			2SD234
Q2	Transistor			2SC372
D1	Diode		PCX-010	
D2	Zener diode		WZ-192	
FU	Fuse	400 mA	PEK-005	
	Fuse clip			KKR-001

PIONEER ELECTRONIC CORPORATION
4-1, Meguro 1-Chome, Meguro-ku, Tokyo 153, Japan U.S. PIONEER ELECTRONICS CORPORATION

75 Oxford Drive, Moonachie, New Jersey 07074, U.S.A.
PIONEER ELECTRONIC (EUROPE) N.V.
Luithagen-Haven 9, 2030 Antwerp, Belgium PIONEER ELECTRONICS AUSTRALIA PTY. LTD.
178-184 Boundary Road, Braeside, Victoria 3195. Australia
(C) MAY 1976

Printed in Japan

[^0]: Strobo case assembly
 PXA-221

