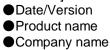


LTspice Model OpAmp Texas Instruments TLV4314IPWR

Model Information

Model	A macro model		
Call Name	MDC_TLV4314IPWR_LT		
Pin Assign	1:OUT A,2:-IN A,3:+IN A,4:V+,5:+IN B,6:-IN B,7:OUT B, 8:OUT C,9:-IN C,10:+IN C,11:V-,12:+IN D,13:-IN D,14:OUT D		
File List	Model Library MDC_TLV4314IPWR_LTlib		
	Model Report MDC_TLV4314IPWR_LT.pdf(this file)		
Verified Simul	ator Version LTspice 17.1.15		


Verified Simulator Version

Note

References

The information which was used for modeling is as follow:

[Data Sheet]

SBOS754A - MARCH 2016-REVISED MARCH 2016 TLVx314 Texas Instruments Incorporated.

[Characteristics listed]

Characteristics

Open Loop Gain, Phase Quiescent Current(per Ch) Offset Voltage Small-Signal Pulse Response EMIRR(Reference Only)

Simulation Condition

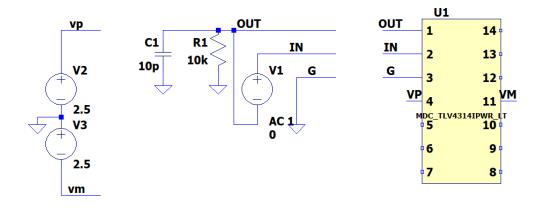
This table shows the range of evaluated simulation range that was not occurs any convergence problems in this area.

Item	Condition	Unit
Temperature	25	deg C

O:Implemented

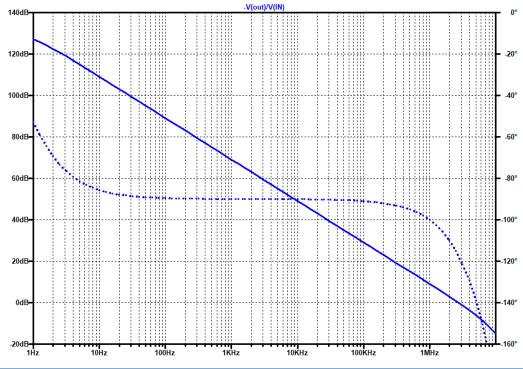
× : Not Implemented

Model Functions Table	RANK=1	— : Not applicable
Functions	RANK	Implemented
Open Loop Gain	1	0
Unity Frequency	1	0
Phase Margin	1	0
Input Offset Voltage	1	0
Input Offset Current	1	0
Bias Current	1	—
Maximum output amplitude voltage	1	0
Slew Rate	1	0
Equivalent Input Noise Voltage	2	×
Equivalent Input Noise Current	2	×



Open Loop Gain, Phase Testbench

Referred to Data Sheet


.OPTION TNOM=25 .TEMP 25

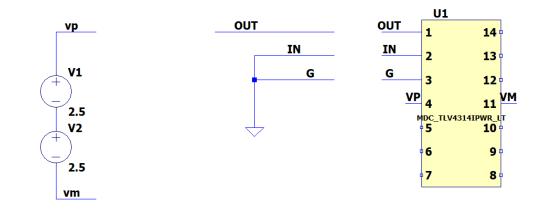
.ac dec 10 1 10Meg

Simulation results are following. Explanatory notes -: simulated

Open Loop Gain, Phase

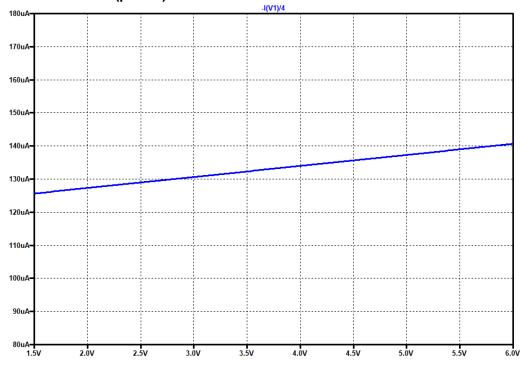
© 2023 MoDeCH inc.

Nov 08,2023 Rev 1.0



Quiescent Current(per Ch) Testbench

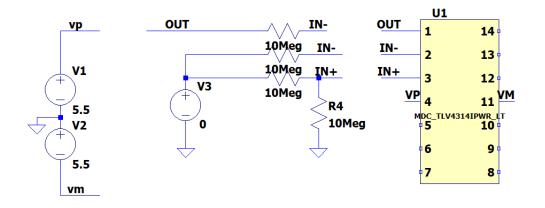
Referred to Data Sheet


.OPTION TNOM=25 .TEMP 25

.dc V1 1.5 6 0.1

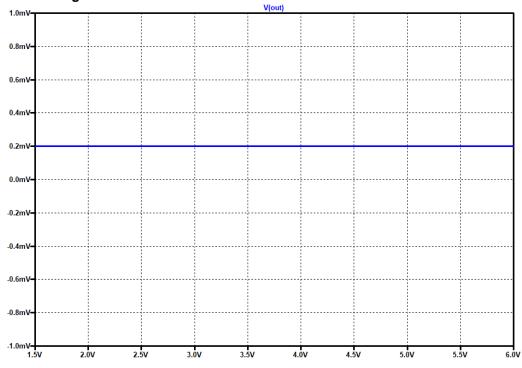
Simulation results are following. Explanatory notes -: simulated

Quiescent Current(per Ch)



Offset Voltage Testbench

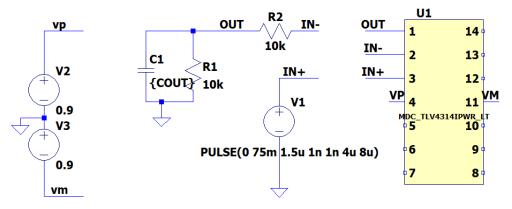
Referred to Data Sheet


.OPTION TNOM=25 .TEMP 25

.dc V3 1.5 6 0.1

Simulation results are following. Explanatory notes -: simulated

Offset Voltage


Small-Signal Pulse Response Testbench

Referred to Data Sheet

.OPTION TNOM=25 .TEMP 25

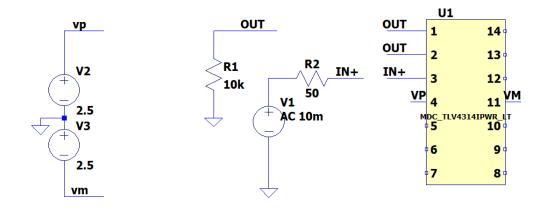
.tran 0 8u 0

.step param COUT list 10p 100p

Simulation results are following. Explanatory notes -: simulated

© 2023 MoDeCH inc.

Nov 08,2023 Rev 1.0



EMIRR Testbench

Referred to Data Sheet


.OPTION TNOM=25 .TEMP 25

.ac dec 10 10Meg 10G

Simulation results are following. Explanatory notes — : simulated

EMIRR

© 2023 MoDeCH inc.

DISCLAIMER

- 1. This SPICE (Simulation Program with Integrated Circuit Emphasis) model and its content (the "Contents") are copyright of MoDeCH Inc. All rights reserved. Any redistribution or reproduction of any or all part of the Contents in any form is prohibited without express written permission made by MoDeCH Inc.
- 2. MoDeCH Inc. as licensor (the" Licensor") hereby grants to you, as licensee (the "Licensee"), a nonexclusive, non-transferable license to use the Contents as long as you abide by the terms and conditions of this DISCLAIMER.
- 3. The Licensee is not authorized to sell, loan, rent and redistribute or license the Contents in whole or in part, or in modified form, to anyone.
- 4. The Licensor shall in no way be liable to the Licensee or any third party for any loss or damage (including ,but not limited to, lost profits, or other incidental, consequential, or punitive damages), however caused (including through negligence) which may be directly or indirectly suffered from, arising out of, or in connection with, any use of the Contents.
- 5. Notwithstanding anything contained in this DISCLAIMER, in no event shall Licensor be liable for any claims, damages or loss which may arise from the modification, combination, operation or use of the Contents with the Licensee's computer programs.
- 6. The Licensor does not warrant that the Contents will function in any environment.
- 7. The Contents may be changed or updated without notice. MoDeCH Inc. may also make improvements and/or changes in the products, pricing and/or the programs related to the Contents at any time without notice.

MoDeCH Inc.

Head Office Location: 5-15 Yokoyama-cho, Hachioji-Shi, Tokyo 192-0081, Japan Tel:+81-42-656-3360 E-Mail:model-on-support@modech.co.jp URL:http://www.modech.com/en/