

DCM600, DCM1000, DCM1500

Pristine sound, brute power and no-fault reliability make the DCM amps the power amp of choice for pro audio. Massive Toroid power supplies with huge capacitors deliver the bass that kick drums demand. Designed for continuous operation, overheating is not a problem especially down at minimum impedances where other amps simply turn off.
Each DCM is hand built at our San Diego factory featuring all steel construction, recessed controls and heavy-duty power components. The rock-solid, efficient design with its superb testimonial-proven sound makes the USA built DCM an amp you'll own for years.

PURE-TRANSPARENT SOUND

Carvin considers the sound of an amp equally important as to its reliability. To insure pure, uncolored sound, we build one of the fastest power stages on the market today. High slew rates of $50 \mathrm{v} / \mu \mathrm{s}$ deliver superb transient response. High frequencies are transparent and open-even at extreme levels. Linear feedback circuits reduce distortion to near the theoretical zero limit preventing harshness which would lead to ear fatigue. The DCM deliver transparent, unaltered soundespecially important to the studio user. Drive any type of reactive loads, including 70V transformer distribution systems.

ULTRA RUGGED FOR TOURING

Every chassis is made from heavy-duty 16 gauge steel that is plated before painted to prevent rust. All internal cabling is neatly tied and harnessed. Every circuit card is FR-4 MILITARY SPEC, double-sided, fire retardant glass epoxy. Plated through-holes insure that the solder flows on the top, bottom and through each hole of every component preventing components from shaking loose. Speakon ${ }^{\text {TM }}$ connectors, heavy-duty power switches, recessed knobs, all give the DCM amps a "tank-like" ruggedness.

TOROID POWER SUPPLY

Toroids deliver massive amounts of "on demand" current for continuous 2 ohm operation. This gives the power supply a solid foundation, yielding more headroom for large subwoofer applications. Not only do toroids deliver high current, but they are known for reducing stray magnetic fields eliminating hum \& noise. This is especially important to the recording industry.

MODULAR CONSTRUCTION

With the DCM Series, Carvin brings you totally modular construction. If you ever need an I/O (input/output) connector card because a connector wore-out, just unplug and re-install the replacement card. This applies to every aspect of the DCM Series amps including the power supply, power cards, heat sinks and fans. Everything is connected by heavy-duty AMPTM and MOLEXTM type connectors for easy replacement-even the Toroid transformer is a plug-in.

DISTORTION-FREE LIMITERS

The purpose of a limiter is to hold down peaks so the amp won't distort with extra hot input signals (helps protect speakers). In addition, a well designed limiter can increase your amp's average output as much as 3 dB allowing levels to be turned up without peak distortion. Part of Carvin's design uses the more expensive, distortion-free linear "opto isolators". Unlike amps that use FET controlled limiters, which inject small amounts of distortion, the DCM Series limiters keep your sound pure and uncolored!

RECEIVING INSPECTION—read before getting starfed

INSPECT YOUR UNIT FOR ANY DAMAGE which may have occurred during shipping. If any damage is found, please notify the shipping company and CARVIN immediately.
SAVE THE CARTON \& ALL PACKING MATERIALS. In the event you have to re-ship your unit, always use the original carton and packing material. This will provide the best possible protection during shipment. CARVIN and the shipping company are not liable for any damage caused by improper packing.
SAVE YOUR INVOICE. It will be required for warranty service if needed in the future.
SHIPMENT SHORTAGE. If you find items missing, they may have been shipped separately. Please allow several days for the rest of your order to arrive before inquiring.
RECORD THE SERIAL NUMBER on the enclosed warranty card for your records. Keep your portion of the card and return the portion with your name and comments to us.
USA customers register online at: www.carvin.com/registration
All other countries register online at: www.carvinworld.com/registration

FRONT PANELS \& CONNECTING UP

The DCM Series feature front panel signal, peak and protect LEDs which let you monitor the status of the amp. Both channels use detente level controls allowing you to see your settings at a glance. Balanced TRS \& XLR input connectors are used to eliminate hum \& noise. Speaker outputs feature heavy-duty binding posts, Speakon ${ }^{\text {TM }}$ connectors and $1 / 4$ " jacks.
The rear professional accessory group offers a GROUND switch to remove the chassis ground from the XLR input. A PARALLEL input switch connects the inputs together eliminating Y cables for patching multiple amp systems. The accessory group also features a BRIDGE MODE switch to deliver twice the power into a "mono" load or full power into a 70V distribution system, and a LIMITER ON/OFF switch gives the choice of using the internal limiter circuitry.

DCM POWER AMP SPECIFICATIONS:

MODEL	DCM600	DCM1000	DCM1500
Bridged RMS Continuous			
$4 \Omega,(20-20 \mathrm{k} \mathrm{Hz},<1.0 \%)$	600w	1000w	1500w
$8 \Omega,(20-20 \mathrm{k} \mathrm{Hz},<1.0 \%)$	450w	700w	1000w
Both Channels RMS Continuous			
$2 \Omega(20-20 \mathrm{k} \mathrm{Hz},<1.0 \%)$	300/300w	500/500w	750/750w
$4 \Omega(20-20 \mathrm{kHz},<1.0 \%)$	250/250w	350/350w	500/500w
$8 \Omega(20-20 \mathrm{k} \mathrm{Hz},<1.0 \%)$	125/125w	225/225w	300/300w
THD (20-20k Hz 50\% power)	0.03\%	0.03\%	0.03\%
THD (20-20k Hz 90\% power)	0.1\%	0.1\%	0.1\%
Damping Factor:	>500	>500	>500
Slew Rate: bridged mode	$>50 \mathrm{~V} / \mu \mathrm{s}$	>50v/ $/ \mathrm{s}$	$>50 \mathrm{~V} / \mu \mathrm{s}$
Sensitivity: (4Ω, Vms)	1.0 V	1.0 V	1.0 V
Signal to Noise Ratio:	Above 10		
Frequency Response:	$\begin{aligned} & \pm 0.5 \mathrm{~dB}, 2 \\ & (\pm 1.5 \mathrm{~dB}, \end{aligned}$	to 20kHz \& 40 kHz)	
Input Impedance:	$>20 \mathrm{~K} \Omega$, b		
Protection Circuits: Short Circuit • No Load Protection • SpeakerGuard ${ }^{\text {TM }} \bullet$ Thermal Shut-Off • Mute On/Off Control and Indicators:			
Front: Power switch • Recessed detente attenuators • Signal LED • Clip LED • Protect LED • Power Indicator			
Rear: Ground Lift (each channel) IN/OUT Switch • Input Co Dual heavy duty binding p	Parallel Input ors: Two each hree Speakon	- Speaker Ou anced XLR \& 1 four $1 / 4^{\prime \prime}$	Bridge Switch - Speaker Outp
Internal Fuse SLOW BLOW - DCM600: 15A, DCM1000: 20A, 240V/10A, DCM1500: 20A, 240V/10A			
Dimensions: $31 / 2^{\prime \prime}$ High $\times 19$ " Wide $\times 10$ " Depth (2-space); $8.8 \times 48.3 \times 25.3 \mathrm{~cm}$			
Net Weight: DCM600: 19 lbs. DCM1000: $23 \mathrm{lbs} .(10.3 \mathrm{Kgs}$, DCM1500: 26 lbs (11.9 Kgs)			

FRONT \& REAR PANEL CONTROLS

FRONT PANEL

1. MOUNTING

Sturdy one piece 12 gauge steel face plate accommodates standard 19 " rack installation. The rack mounting holes are designed on ISO standard spacing. Four 10-32 x.5" phillips machine screws are normally used to secure the amp. Rear support brackets are not required.

2. POWER SWITCH

Check the power amp connections and verify the AC line power source before engaging the POWER switch. The yellow LED unmistakably indicates that all circuits are properly powered up. Yellow is used so the operator can see the red indicators (clipping or protect) from a distance.

3. CHANNEL LEVEL CONTROL

A precision input LEVEL attenuate is used to adjust the volume levels. To deliver the amps maximum power without reducing the headroom of the signal source, the level controls should be turned full on.

4. CHANNEL SIGNAL INDICATOR

The green SIGNAL LED indicators will start to flash when there is a low signal passing to your speakers $(-30 \mathrm{~dB} \mu)$. This lets you know when the amp is passing a signal to your speaker connectors.

5. CHANNEL CLIP INDICATOR

The red CLIP LED indicators flash when each channel has reached its maximum output. Occasional flashing caused by low frequencies is OK. However, consistent flashing caused by higher frequencies may damage high frequency drivers (excessive distortion). This does not cause damage to the amp.

6. COOLING VENTS/FAN

Upon rack installation, the rear of the amp must be fully exposed to room temperature air. The surrounding air should not be warmer than 120° or the thermal protection could active the PROTECT LED. The front cooling vents are not to be restricted.

7. PROTECT LED INDICATOR

The red PROTECT LED provides the operator with information about the status of the amplifier. The PROTECT LED can come on under 3 different conditions (when this happens, both channels are muted and the speaker relays disconnect the speakers);

1) During power-up, the amplifier stays in a muted state for approx. 3 sec until it determines that everything is functioning normally (no output shorts or over temp conditions).
2) When the output load draws excessive current or a direct short is detected caused by a shorted speaker cable or speaker system, the RED PROTECT LED will illuminate. Reset this condition by turning the amp off for two seconds and then on again. Check for shorted cables and that the total speaker impedance is not below 2 ohms per channel (4 ohms bridged).
3) Overheating is usually determined when the amp stops in the middle of a performance and the PROTECT LED comes on. If this is the cause, leave the amp on for the fan to cool the amp down. The amp will automatically reset within 3 minutes. The PROTECT LED will turn off when ready. Check for the following conditions; a) The rear intake air is not restricted, b) The intake air is not extremely warm, c) The front exhaust vents are not restricted, or d) No excessive speaker load (try other speakers or remove speakers if you have more than one connected to each channel).

REAR PANEL

8. XLR CHANNEL INPUTS

For most applications, use the XLR balanced inputs. This will help to reduce hum and allow longer cable runs from your signal source (mixer, etc). Because this is a balanced input, the gain will be 6 dB higher than using the $1 / 4^{\prime \prime}$ input jack with non balanced lines. XLR pin configuration: Pin 1: Grounded through the GROUND LIFT switch, Pin 2: positive Bal. signal and Pin 3: negative Bal. signal.

9. CHANNEL 1/4" TRS INPUT

This TRS jack is designed to receive either balanced or unbalanced input signals. Balanced signals coming into this jack should be wired with the connector's tip going to signal + and the connector's ring to signal -. The connector's sleeve is then tied internally to ground through the GROUND LIFT switch.

10. PARALLEL OR "Y"INPUTS

The rear PARALLEL switch connects both channels together from either input. This eliminates Y adapter cables. This feature is used to "daisy chain" one piece of equipment to another. Just plug into the unused INPUT (TRS or XLR) and it will become the output for other equipment.

11. INPUT GROUND LIFT

Many times sound systems are connected in such a manner as to cause a grounded loop with the inputs which results in audible hum. The input GND LIFT switch (TRS \& XLR) on the rear panel will help eliminate this problem. If not, install a Carvin's MTF55 "Ground lifter" between the amplifier input and the signal.

12. LIMITERS

To activate the LIMITERS, engage the rear limiter switch. The built-in "Optio" limiters are recommended to hold down peaks that could cause distortion. To check the effectiveness of the limiters when the channel starts to distort (under full output), engage the limiters and listen for the reduction of the distortion. If the distortion stops, you can try to turn the channel up for more power until distortion is heard. The lower bass frequencies are most affected. WARNING: Do not check in an environment where the sound level could damage your ears!

13. SPEAKER 1/4" AND SPEAKON ${ }^{T M}$ OUTPUTS

The standard $1 / 4$ " SPEAKER jacks are offered for low power applications. Speakon ${ }^{\text {™ }}$ connectors are provided for high power application. Secure the Speakon ${ }^{\top \mathrm{TM}}$ connection by turning to the right. The center Speakon ${ }^{T M}$ is for the "Bridge" output only. Turn the amp off before connecting your speakers.

14. SPEAKER BINDING POSTS

For high power speaker connections, use the rear BINDING POSTS to connect your speakers. Wire sizes up to 7 gauge (50 amps) can be inserted into the binding post "side holes". Larger cable can be used with "banana" plugs which plug into the end of the binding posts (remove colored caps from end of binding posts). Binding posts are spaced on ISO standards. Use the two center RED binding posts to BRIDGE speaker connections (see 15 BRIDGE MODE).

15. BRIDGE MODE-25V/70V DISTRIBUTION SYSTEMS

The DCM's can be operated in bridge mode if you require a $25 \mathrm{~V} / 70 \mathrm{~V}$ mono distribution speaker system or a mono (single channel) amp, which doubles the power into a single load. With your amp off, push "IN" the rear (recessed) BRIDGE switch after you have made your connections to either the center bridge Speakon ${ }^{\text {TM }}$ or the rear center RED binding posts (ch 1 is + and ch 2 is -). Carefully select or damage may result to the speakers (this is why the switch has been recessed). No other speaker connectors or binding posts can be used at the same time! The INPUT connector and LEVEL is handled by channel 1. Channel 2 is non-operational. The minimum speaker impedance is 4 ohms. CAUTION: The power developed by bridging your amp can destroy most speakers.

16. AC POWER

Your amp is designed to run on either 120 V 60 Hz or 240 V 50 Hz depending on the model purchased. The voltage range for 120 V model is 95 V to 132 V and for 240 V model it is 195 V to 255 V . The rear heavyduty $A C$ receptacle will accept a universal grounded $A C$ cord that is designed your country. Be sure to check your power source before plugging into a grounded (3 prong) outlet. Never defeat the grounded connection or electrocution may result! Firmly push the AC cord all the way into the receptacle.
FUSE: The fuse is located within the main chassis above the AC connector mounted on the rear, inside the PC card. Normaly if the fuse fails, the amp will require service. See spec. chart for fuse values.
NOTE: Each amp will require a dedicated circuit if you are driving the amp to its full output. There will be a sustained loss of power if the AC voltage falls below the rated 120 V or $230 / 240 \mathrm{~V}$. Use a heavy gauge power cable and power source.

Ch 1 Input To signal socket XLR or $1 / 4^{\prime \prime} 2$ or 3 cond. shielded

The channel PARALLEL
switch OFF (OUT).

HELPFUL HINTS

1) NO SOUND FROM CH 2: The rear (recessed) BRIDGE switch has been inadvertently pushed in.
2) STEREO CHANNELS SOUND THE SAME: The rear PARALLEL switch has been inadvertently pushed in.
3) NO HIGH FREQUENCIES: Tweeters or midrange drivers have been damaged or blown from feedback or to much power.
4) SYSTEM HUM: Switch the rear GND LIFT switch IN or OUT. If the hum is not eliminated, then install Carvin's MTF55 "Ground Lifter" between the amplifier input and signal source. This isolates the input ground from the AC power ground.
5) POOR SOUND (BASS): The speaker systems are wired out of phase to each other. To correct, reverse the wires on one speaker connector only and your sound, especially the bass response will improve.
6) DEDICATED CIRCUIT BREAKER: Each amp will require a dedicated circuit breaker for its full output. There will be a sustained loss of power if the AC voltage falls below the rated 120 V or $230 / 240 \mathrm{~V}$ input.

AThis symbol is intended to alert the user to the pres－ ence of uninsulated＂dan－
gerous voltage＂within the product＇s enclosure that may be of suf－ ficient magnitude to constitute a risk of electric shock to persons．

CAUTION
 RISK OF ELECTRIC SHOCK DO NOT OPEN

C

This symbol is
intended to alert the user to the presence mportant operating and maintenance（servicing）instruc tions in the literature accompanying the appliance．

IMPORTANT！FOR YOUR PROTECTION，PLEASE READ THE FOLLOWING：

WATER AND MOISTURE：Appliance should not be used near water（near a bathtub，washbowl， kitchen sink，laundry tub，in a wet basement，or near a swimming pool，etc）．Care should be taken so that objects do not fall and liquids are not spilled into the enclosure through openings
POWER SOURCES：The product should be connected to a power supply only of the type described in the operating instructions or as marked on the appliance

GROUNDING OR POLARIZATION：Precautions should be taken so that the grounding or polar－

 ization is not defeated．POWER CORD PROTECTION：Power supply cords should be routed so that they are not likely to be walked on or pinched by items placed upon or against them，paying particular attention to cords at plugs，convenience receptacles，and the point where they exit from the appliance． SERVICING：The user should not attempt to service the appliance beyond that described in the operating instructions．All other servicing should be referred to qualified service personnel．
FUSING：If your unit is equipped with a fuse receptacle，replace only with the same type fuse． Refer to replacement text on the unit for correct fuse type．

SAFETY INSTRUCTIONS（EUROPEAN）

The conductors in the AC power cord are colored in accordance with the following code． GREEN \＆YELLOW－Earth BLUE－Neutral BROWN－Live U．K．MAIN PLUG WARNING：A molded main plug that has been cut off from the cord is unsafe．NEVER UNDER ANY CIRCUMSTANCES SHOULD YOU INSERTA DAMAGED OR CUT MAIN PLUG INTO A POWER SOCKET．

LIMITED WARRANTY

Your Carvin product is guaranteed against failure for 3 YEARS unless otherwise stated．Carvin will service and supply all parts at no charge to the customer providing the unit is under war－ ranty．Shipping costs are the responsibility of the customer．CARVIN DOES NOT PAY FOR PARTS OR SERVICING OTHER THAN OUR OWN．A COPY OF THE ORIGINAL INVOICE IS REQUIRED TO VERIFY YOUR WARRANTY．Carvin assumes no responsibility for horn drivers or speakers damaged by this unit．This warranty does not cover，and no liability is assumed， for damage due to：natural disasters，accidents，abuse，loss of parts，lack of reasonable care， incorrect use，or failure to follow instructions．This warranty is in lieu of all other warranties， expressed or implied．No representative or person is authorized to represent or assume for Carvin any liability in connection with the sale or servicing of Carvin products．CARVIN SHALL NOT BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES．

SERVICE：

In the USA，please call 800－235－2235 for a RMA \＃（return authorization number）．Write this number on the box and enclose a description of the problem．Prepay to Carvin 12340 World Trade Drive，SD，CA 92128.
Outside the USA，contact your dealer or go to http：／／www．carvinworld．com for your near－ est service center．Include a written description of the problem with serial number and date of purchase．

MAINTAINING YOUR EQUIPMENT

Avoid spilling liquids or allowing any other foreign matter inside the unit．The panel of your unit can be wiped from time to time with a dry or slightly damp cloth in order to remove dust and bring back the new look．As with all pro gear，avoid prolonged use in caustic environ－ ments（salt air）．When used in such an environment，be sure the amplifier is adequately protected by rack，covers，etc．．

REPLACEMENT PARTS LIST FOR DCM AMPS A CAUTION

Cover，Black 18GA Steel

Chassis．．．．．

Facce panel b Trim Label

Fan，24VDC 80 mm ．．．

 Fan Guard， $80 \times 80 \mathrm{~mm}$ Power cord（120V）．．．Power cord（230V）． Handle，2－space rack．
Knob，Black，recessed Rower cord， $8^{\prime} 2^{\prime \prime}$ ．．． Stand－off，Al，1．5＂Hex，6－32． DCM600 Specific parts：

Rear label．

 10 Amp Circuit breaker（120V） 6 Amp CircuitToroid， 120 V ．．
Coroid， 230 V ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． C2B，Capacitor 10KuF 63V，Poly 20\％．．． DCM1000 Specific parts：

Rear label．．．．．

15 Amp Circuit breaker（ 120 V ）
Toroid， 120 V ．
C1，Capacitor $10 \mathrm{~K} \mu \mathrm{~F}$ 80V．．．．．．．．．．．．．．．．．．．．．．．．．Poly 20% ．
C2，Capacitor $10 \mathrm{~K} \mu \mathrm{~F} 80 \mathrm{~V}$ ，Poly 20%
R21， $1 / 4 \mathrm{~W}$ Resistor $36 \mathrm{~K}, .35^{\prime \prime}$ prep．

Parts list for PCB Card HT Series Power Amplifiers

Ref．Des．Description

for PCB Card HT Series Power Amplifiers			D108	Diode 1N4003	Rect Gen 1A 200V
		Carvin P／N／ Carvin P／N	D109	Diode 1N4003	Rect Gen 1A 200V
IC Op Amp NE5532	Linear Output	60－55320	D200	Diode 1N4003	Rect Gen 1A 200V
IC Op Amp MC4558	CP1 Dual HFREQ	60－45580	D201	Diode 1N4003	Rect Gen 1A 200V
IC Op Amp NE5532	Linear Output	60－55320	D202	LED Green small	\＃204GD 3mm T－1．0
IC Op Amp NE5532	Linear Output	60－55320	D203	LED Red small	\＃204HD 3mm T－1．0
IC Op Amp MC4558	CP1 Dual HFREQ	60－45580	D204	LED Red small	\＃2004D 3mm T－1．0
IC Op Amp MC4558	CP1 Dual HFREQ	60－45580		ode 1N4003	Rect Gen 1A 200V
IC Op Amp MC4558	CP1 Dual HFREQ	60－45580		1N4003	Rect Gen 1A 200V
IC Op Amp NE5532	Linear Output	60－55320	D207	1 N4003	Rect Gen 1A 200V
Binding Post Red／Black	Combo	03－10400	D208	Diod	
Binding Post Red／Black	Combo	03－10400		Header 4 Piod	Rect Gen 1A 20
Diode Bridge AC／DC PCB MTG		60－35041		${ }_{\text {Header }} 4$ Pin A	9 ga 600 V PCB
Capacitor $1000 \mu \mathrm{~F} 35 \mathrm{~V}$	Electrolytic 20\％	47－10235	H2	Header 2 Pin V	Panduit PCB MTG
Capacitor $1000 \mu \mathrm{~F} 35 \mathrm{~V}$	Electrolytic 20\％	47－10235	H2－A	$\text { Header } 4 \text { Pin Ve }$	SHS 2.5 mm PCB MTG
Capacitor 0．047山F 100V	Poly 10\％	46－47312	H2－B	Header 4 Pin Ve	SHS 2.5 mm PCB MTG
Capacitor 0．047 F F 100V	Poly 10\％	46－47312	H3－A	Header 10 Pin V	t SHS 2.5 mm PCB MTG
Capacitor 220」F 50V	Electrolytic 20\％	47－22151	H3－B	Header 10 Pin	SHS 2.5 mm PCB MTG
Capacitor 10uF 50V	Electrolytic 20\％	47－10051	H4－A	Header 10 Pin Ver	MTG
Capacitor 0．047 F F 100 V	Poly 10\％	46－47312			
Capacitor 0．047 $\mathrm{F}^{\text {F } 100 \mathrm{~V}}$	Poly 10\％	46－47312		Header 10 P	
Capacitor 0．047山F 100V	Poly 10\％	46－47312	H6		
Capacitor 0．047uF 100V	Poly 10\％	46－47312	H6－B		
Capacitor 0．047 ${ }^{\text {F }} 100 \mathrm{~V}$	Poly 10\％	46－47312			
Capacitor 0．047 F F 100 V	Poly 10\％	46－47312	J100		
Capacitor 470山F 25 V	Electrolytic 20\％	47－47125	J10	Phone Jack，1／4＊	Tall
Capacitor 27PF 500V	Ceramic 5\％	45－27052	J101	Phone Jack，1／4＂	7 Pin Plastic， 24 mm Tall
Capacitor 27PF 500V	Ceramic 5\％	45－27052	J102	Phone Jack， $1 / 4$	
Capacitor 22 $\mathrm{F}^{\text {5 }}$ 5V	Electrolytic 20\％	47－22051			
Capacitor 27PF 500V	Ceramic 5\％	45－27052			7 Pin Plastic， 24 mm Tall
Capacitor 0．047 F F 100 V	Poly 10\％	46－47312		Phone Jack，1／4	3 Pin Plastic， 24 mm Tall
Description		Carvin P／N	Ref．	Description	
Capacitor $0.001 \mu \mathrm{~F} 100 \mathrm{~V}$	Poly 10\％	46－10212	100	Relay 24V12A SP	diemens PCB MGT
Capacitor $22 \mu \mathrm{~F} 50 \mathrm{~V}$	Electrolytic 20\％	47－22051			
Capacitor 27PF 500V	Ceramic 5\％	45－27052	L200		
Capacitor 56PF 500V	Ceramic 5\％	45－56052	－	Op	
Capacitor 120PF 500V	Ceramic 5\％	45－12052	OP	Opto Isolator VTL	

 | 45－12052 |
| :--- | :--- |
| $47-10061$ |

Capacitor 0．047 HF 100 V	Poly 10\％
Capacitor $0.001 \mu \mathrm{~F} 100 \mathrm{~V}$	Poly 10\％
Capacitor $0.068 \mu \mathrm{~F} 100 \mathrm{~V}$	Poly 10\％
Capacitor 27PF 500V	Ceramic 5\％
Capacitor 27PF 500V	Ceramic 5\％
Capacitor 22 2 F 50 V	Electrolytic 20\％
Capacitor 27PF 500V	Ceramic 5\％
Capacitor $0.047 \mu \mathrm{~F} 100 \mathrm{~V}$	Poly 10\％
Capacitor $0.001 \mu \mathrm{~F} 100 \mathrm{~V}$	Poly 10\％
Capacitor 22 $\mathrm{F}^{\text {5 5 V }}$	Electrolytic 20\％
Capacitor 27PF 500V	Ceramic 5\％
Capacitor 56PF 500V	Ceramic 5\％
Capacitor 120PF 500V	Ceramic 5\％
Capacitor 0．047 F F 100 V	Poly 10\％
Capacitor $0.047 \mu \mathrm{~F} 100 \mathrm{~V}$	Poly 10\％
Capacitor $0.001 \mu \mathrm{~F} 100 \mathrm{~V}$	Poly 10\％
Capacitor $0.068 \mu \mathrm{~F} 100 \mathrm{~V}$	Poly 10\％
Diode 1N4003 Rect G	en 1A 200V
Diode 1N4003 Rect G	en 1A 200V
Diode 1N4003 Rect G	en 1A 200V
Diode 1N4003 Rect G	en 1A 200V
Diode 1N4003 Rect G	en 1A 200V
Diode 1N4003 Rect G	en 1A 200 V
Diode 1N4003 Rect	en 1A 200V
LED Red small \＃204H	3mm T－1．0
LED Yellow small \＃204Y	3 mm T－1．0
Diode 1N4003 Rect G	en 1A 200V
Diode 1N4003 Rect G	en 1A 200V
Diode 1N4003 Rect G	en 1A 200V
Diode 1N4003 Rect G	en 1A 200V
Diode 1N4003 Rect G	en 1A 200V
Diode 1N4003 Rect G	en 1A 200V
LED Green small \＃204G	3mm T－1．0
LED Red small \＃204H	3mm T－1．0
LED Red small \＃204H	D 3mm T－1．0
Diode 1N4003 Rect G	en 1A 200V
Diode 1N4003 Rect G	en 1A 200V
Diode 1N4003 Rect G	en 1A 200V
Diode 1N4003 Rect G	en 1A 200V
Diode 1N4003 Rect G	en 1A 200V
Diode 1N4003 Rect G	en 1A 200V
LED Green small \＃204G	3mm T－1．0
LED Red small \＃204H	3mm T－1．0
LED Red small \＃204H	D 3mm T－1．0
Diode 1N4003 Rect G	en 1A 200V
Diode 1N4003 Rect G	en 1A 200V
Diode 1N4003 Rect G	en 1A 200V
Diode 1N4003 Rect G	en 1A 200V
Diode 1N4003 Rect G	en 1A 200V
Header 4 Pin AMP 9A 600	V PCB MTG
Header 4 Pin AMP 9A 600	V PCB MTG
Header 2 Pin Vert Panduit	PCB MTG
Header 4 Pin Vert SHS 2	5 mm PCB MTG
Header 4 Pin Vert SHS 2.	5 mm PCB MTG
Header 10 Pin Vert SHS	． 5 mm PCB MTG
Header 10 Pin Vert SHS	． 5 mm PCB MTG
Header 10 Pin Vert SHS 2	． 5 mm PCB MTG
Header 10 Pin Vert SHS	.5 mm PCB MTG
Header 2 Pin Vert Panduit	PCB MTG
Header 4 Pin AMP 9A 600	V PCB MTG
Header 4 Pin AMP 9A 600	V PCB MTG
Header 9 Pin AMP 9A 600	V PCB MTG
XLR Jack Female Neutrik	Vert PCB MTG
Phone Jack，1／4＂ 7 Pin Pl	astic， 24 mm Tall
Phone Jack，1／4＂ 3 Pin	astic， 24 mm Tall
XLR Jack Female Neutrik	Vert PCB MTG
Phone Jack，1／4＂ 7 Pin Pl	astic， 24 mm Tall
Phone Jack，1／4＂ 3 Pin Pl	astic， 24 mm Tall
Description	
Relay 24V12A SPDT SIE	MENS PCB MGT
Relay 24V12A SPDT SIE	MENS PCB MGT
Inductor $3.3 \mu \mathrm{H}$ Air Core	Spool
Inductor $3.3 \mu \mathrm{H}$ Air Core	Spool
Opto Isolator VTL5C2	
Opto Isolator VTL5C2	

Pot．B10Kx2 21 Clk Brkt Rot Knurled 90°	
	Pot．B10Kx2 41Clk Brkt Rot Knurled 90°
Pot．Trimmer 5K Vert PCB MTG	
Transistor Darlington NPN MPSA14	
Transistor 2N5400 PNP AMP TO－92	
Transistor Darlington NPN MPSA14	
Transistor TIP31C 3A 100 V NPN TO－220 Transistor MPSW42 HV 1．0W NPN TO－237	
Transistor CENW92 HV PNP 1．0W T0－92	
Transistor TIP32C 3A 100V PNP T0－220	
Transistor TIP31C 3A 100V NPN T0－220	
Transistor TIP31C 3A 100V NPN T0－220	
Transistor MJL21194 NPN 16A 250V 200W	
Transistor MJL21194 NPN 16A 250V 200W	
Transistor MJL21193 PNP 16A 250V 200W	
Transistor MJL21193 PNP 16A 250V 200W	
Transistor Darlington NPN MPSA14	
Transistor MPSW42 HV 1．0W NPN T0－237	
Transistor CENW92 HV PNP 1．0W TO－92	
Transistor TIP32C 3A 100V PNP TO－220	
Transistor TIP31C 3A 100V NPN TO－220	
Transistor TIP31C 3A 100V NPN T0－220	
Transistor MJL21194 NPN 16A 250V 200W	
Transistor MJL21194 NPN 16A 250V 200W	
Transistor MJL21193 PNP 16A 250V 200W	
Transistor MJL21193 PNP 16A 250V 200W	
1／4W Resistor 2.2 K .35 ＂prep．5\％Carbon	
$\begin{array}{llll}1 / 4 \mathrm{~W} \\ 1 / 4 \mathrm{~W} & \text { Resistor } & 3.3 \mathrm{~K} & .35 \text {＂prep．} 5 \% \text { Carbon } \\ 100 \mathrm{~K} & 35^{\prime \prime} \text { prep } 5 \% \text { Carbon }\end{array}$	
1／4W Resistor 100K $.35^{\prime \prime}$ prep． 5% Carbon	
$1 / 4 \mathrm{~W}$ Resistor $150 \Omega .35{ }^{\text {＂prep．}} 50$ Carbon	
1／4W Resistor 39K .35 ＂prep． 5% Carbon	
1／4W Resistor 39K ． 35 ＂prep． 5% Carbon	
1／4W Resistor 470K ． $35^{\prime \prime}$ prep． 5% Carbon	
1／4W Resistor 470K .35 ＂prep． 5% Carbon	
1／4W Resistor 22K ． 35 ＂prep．5\％Carbon	
1／4W Resistor 22K ． 35 ＂prep．5\％Carbon	
1／4W Resistor 20K ． 35 ＂prep．5\％Carbon	
1／4W Resistor 6.8 K .35 ＂prep． 5% Carbon	
1／4W Resistor 2.2 M .35 ＂prep． 5% Carbon	
1／4W Resistor 20K ． 35 ＂prep．5\％Carbon	
1／4W Resistor 10K ． 35 ＂prep． 5% Carbon	
Not Used	
1／4W Resistor $22 \mathrm{~K} \quad .35$＂prep． 5% Carbon	
1／4W Resistor 1K ． 35 ＂prep． 5% Carbon	
1／4W Resistor 10K $\quad .35^{\prime \prime}$ prep． 5% Carbon	
1／4W Resistor 10 K .35 ＂prep． 5% Carbon	
1／4W Resistor 5．6K ． 35 ＂prep． 5% Carbon	
1／4W Resistor 470K $\quad .35$＂prep．	
1／4W Resistor 10K $\quad .35$＂prep． 5% Carbon	
1／4W Resistor 1K ． 35 ＂prep．5\％Carbon	
1／4W Resistor 4．7K ． 35 ＂prep．5\％Carbon	
1／4W Resistor $220 \Omega .35$＂prep．5\％Carbon	
1／4W Resistor 100K ． 35 ＂prep．5\％Carbon	
1／4W Resistor 10K .35 ＂prep．5\％Carbon	
1／4W Resistor 10K $.35^{\prime \prime}$ prep．5\％Carbon	
1／4W Resistor $22 \mathrm{~K} \quad .35$＂prep．5\％Carbon	
1／4W Resistor 22K ． $35^{\prime \prime}$ prep．5\％Carbon	
1／4W Resistor 2.2 K ． 35 ＂prep．5\％Carbon	
1／4W Resistor $220 \Omega .35$＂prep．5\％Carbon	
1／4W Resistor 470K .35 ＂prep． 5% Carbon	
1／4W Resistor 470K ． $35^{\prime \prime}$ prep．5\％Carbon	
1／4W Resistor $1 \mathrm{~K} \quad .35$＂prep． 5% CarbonNot Used	
1／4W Resistor 470K ． 35 ＂prep．5\％Carbon	
1／4W Resistor 470s ． $35^{\prime \prime}$ prep． 5% Carbon	
1／4W Resistor $1.5 \mathrm{~K} \quad .35$＂prep． 5% Carbon	
	1／4W Resistor 10K ． 35 ＂prep． 5% Carbon
Description	
1／4W Resistor 10K $\quad .35$＂prep． 5% Carbon	
$1 / 4 \mathrm{~W}$ Resistor $2.2 \mathrm{~K} .35^{\prime \prime}$ prep． 5% Carbon	
1／4W Resistor 47K ． $35^{\prime \prime}$ prep． 5% Carbon	
1／4W Resistor 4.7 K .35 ＂prep． 5% Carbon	
1／4W Resistor $100 \Omega .35^{\prime \prime}$ prep． 5% Carbon	

[^0]REFER SERVICING TO QUALIFIED SER VICE PERSONNEL！THIS UNIT CON－ TAINS HIGH VOLTAGE INSIDE！

[^0]:

