

Particle Characterization Analyzer: Light Scattering Technique

Reference

PCA2

Price

605€ per attendee

Duration

1 day

Dates

15 March 2024

Schedule

From 9 am to 5.30 pm

Registration deadline

15 February 2024

Location

14 Boulevard Thomas Gobert, 91120 Palaiseau - France

Prerequisites

Dedicated to HORIBA customers only and knowledge of the technique and equipment.

Who should attend

Users equipped with a DLS and ELS analyzer.

Certification

A diploma is delivered at the end of the course.

Learning methods

Theoretical presentation and instruments practice.

Course language

English

Objectives

- Learn how to set up good conditions to properly run a sample
- How to interpret results in DLS and ELS

PROGRAM

Day 1

Dynamic Light Scattering Theory:

- · Principle of the technique, optical configuration and hardware description
- · Parameters necessary to set up and influence results
- · Cumulant and histogram methods
- Results and interpretation: distribution base (intensity, volume, number), description of typical statistical parameters (Zave, PI, mean size, mode, std)
- · Zeta potential principle (DLVO approach)
- · Henry equations (models available: Schmolukovski, Huckel...).
- · Molecular weight measurement (Debye plot).
- · Presentation of the unit with its different parts, accessories and their associated applications.

Software:

- · Installation and description for quick handling
- · How to create method and check reference materials
- · How to create a standard method
- · Method set up on customer samples
- · Importance of sample preparation

Choice of Analytical Conditions and Optimization:

- · Media RI and viscosity set up
- Detector angle selection / attenuation filters
- · Correlator set up
- · Measurement acquisition time
- · Model of computation
- · Result display configuration: intensity base, volume base, etc.
- · Results interpretation: fit optimization, and data evaluation and treatment
- · Data exportation and setup, and re-computation

Hands on with common samples such as:

- · Diluted and concentrated samples
- · Broad size distribution samples
- · Very small sample sizes (< 10nm)
- Proteins approachEmulsions
- · Powders approach

First level maintenance

