

Developer’s Guide

for Private MQTT Messaging

of SenseCAP SensorHub

Seeed Technology Co., Ltd.

Table of Content

1. Overview ... 4

1.1 Architecture and Message Flow... 4

1.2 The MQTT Connection Parameters from the Device... 6

1.3 The Private Topics .. 6

2. Uplink ... 6

2.1 Introduction ... 6

2.2 Basic Message Structure ... 7

Table 1 Definitions of Event Names ... 7

2.2.1 Packet Segmentation... 8

2.3 Report Device Status .. 9

Table 2 The Fields of Device Status... 10

2.4 Report Sensor Channels ... 10

2.5 Report Measurements .. 12

3. Downlink .. 14

3.1 Introduction .. 14

3.2 Message Structure .. 14

4. Service Development Guide .. 15

4.1 Step-by-Step.. 15

4.2 Assembly of Packet Segments ... 16

4.3 Logic of Device Offline .. 17

5. Appendix .. 18

5.1 Measurement IDs .. 18

5.2 Sensor Types .. 19

Versions ... 22

1. Overview

SenseCAP Sensor Hub – 4G is a compact solution for remote environmental

monitoring. It consists of a powerful data logger that can connect a maximum of 40 RS-485

sensors and a wide range of sensor selection, you can use it for applications like weather

station, air quality monitoring. It supports uploading data to Seeed’s SenseCAP server and

users’ private server.

This guide will show you the message flow of the MQTT connection between

SensorHub and the private MQTT broker, and also the format of the uplink & downlink

messages.

1.1 Architecture and Message Flow

The diagram of the architecture is shown below,

SensorHub connects users’ private MQTT broker via the MQTT protocol. Based on the

MQTT protocol, we defined several topics, carrying the uplink and downlink messages.

Generally there’re three methods to develop the private MQTT message service, ①Modify

the MQTT broker to add the message processing for SensorHub, ②Develop another

standalone application which connects to the standard MQTT broker as a MQTT client,

make subscriptions and publish messages, ③mix the above two.

Users can configure the SensorHub to connect to a private MQTT broker by the

companion GUI tool. For more details, please refer to <Sensor Hub 4G Data Logger User

Guide>. After the configuration, the message flow between SensorHub and the cloud side is

shown as the following diagram.

We will give more details on how to develop cloud service in chapter 4. Service

Development Guide.

1.2 The MQTT Connection Parameters from the Device

The connection parameters used by the SensorHub when it’s doing MQTT connection is

shown below,

• Broker Address- configured via the Configuration Tool

• Port - configured via the Configuration Tool

• ClientId – “d-6-<EUI>”, where the EUI is the device’s EUI on the product label

• Username - configured via the Configuration Tool

• Password - configured via the Configuration Tool

• Timeout – 60 seconds

• CleanSession - false

• TLS - not applicable for SensorHub

1.3 The Private Topics

For every device that connects the broker, it has its private topics to publish messages to /

subscribe. Once the connection is authorized by the broker, the device will firstly subscribe

a specified topic through which the device can receive the downlink command from the

cloud side, and in parallel upload its status and measurements through an uplink topic.

• Publish（Uplink）：iot/ipnode/<deviceEui>/update/#

• Subscribe（Downlink）：$SHADOW/ipnode/<deviceEui>/get/config

The “#” in the uplink topic is a wildcard defined by the MQTT protocol. In the next chapter,

we will introduce separately the uplink messages and their related topics.

2. Uplink

2.1 Introduction

There’re three types of uplink messages, including report of device status, report of

information of sensor channels and report of sensor values(aka measurements). These

messages are one-way messages, not expecting the response from the cloud side, so we

call them “Events”.

INFO：$SHADOW is only a string, not special symbol. <deviceEui> stands for the EUI

on the product label.

NOTICE：The QoS of all the uplink messages is 1.

2.2 Basic Message Structure

• Topic： iot/ipnode/<DeviceEui>/update/event/<eventName>

• Payload:

{

"requestId": "aaaa-aaaa-aaaa-aaaa",

"timestamp": "<millisecond timestamp>",

"intent": "event",

"type": "simple",

"deviceEui": "local",

"events": [{

"name": "<eventName>",

"value": { },

"timestamp": "<millisecond timestamp>"

 }]

}

The above is the basic structure of the uplink message and its related topic. The

<eventName> in the topic is a placeholder which can be replaced with one of the event

names in table 1. The “Payload” is the MQTT message body, which is a JSON string.

Table 1 Definitions of Event Names

eventName Description

change-device-status for report of device status and information

update-channel-info for report of information of sensor channels, i.e.

whether a RS485 port has any kind of sensor

connected and what kind sensor it is

measure-sensor for report of sensor values(measurements from the

sensors)

Field of Payload Description

requestId The randomly generated unique ID of the message(in most cases the

service side can ignore this)

timestamp Millisecond timestamp, obtained from the cellular module. Please

note that this timestamp is the moment when the message is being

sent, not the moment of sensor sampling.

intent Fixed value “event”

type Used for packet segmentation.

- simple, the packet is a single complete packet

- cev, this is a segment of a giant packet

- fev, this is the last segment of a giant packet

When omitted, the packet is a single complete packet. For more

details please see the next section 2.2.1 .

deviceEui Fixed value “local”, means the message comes from this device, the

EUI can be extracted from the topic

events The array of events

--name The name of the event, equals to the <eventName> in the topic

--value The content of the event, separated introductions on different event

types will be done in the following sections.

--timestamp the timestamp of when the event occurs, millisecond timestamp, take

the “measure-sensor” event as an example, this timestamp stands for

the moment of sampling

2.2.1 Packet Segmentation

SensorHub is a RAM limited device, so when it’s sending a giant packet, segmentation is

needed.

If the type field of the message equals to “cev”, it means that this message is a segment of a

giant packet, i.e. slice packet. The slice packet has a complete JSON structure, but the events

array is a slice of the original array in the original giant packet, to fit the RAM requirement

of SensorHub.

When SensorHub has plenty of sensors connected or one of the sensor has several

measurements, the “update-channel-info” message and the “measure-sensor” message will

possibly be segmented.

If the type field of the message equals “fev”, it means that this is the last segment of the

giant packet.

In general, the service side need not to handle the segmentation, except that it has the

following requirements.

• The service needs extremely quick sense on the change of sensor channels.

• The minimum storage unit in the service is a whole collection/sample. For an example,

the SensorHub has several sensors connected, among those sensors 10 measurements

will be produced, the service must collect all the 10 measurements before it save them

to database.

We will give some advices in section 4.2 on how to handle packet segmentation and how to

ensure the idempotence of message.

2.3 Report Device Status

• Topic： iot/ipnode/<deviceEui>/update/event/change-device-status

• Payload

{
"requestId": "aaaa-aaaa-aaaa-aaaa",
"timestamp": "<millisecond timestamp>",
"intent": "event",
"deviceKey": "", //not used
"deviceEui": "local",
"events": [{

"name": "change-device-status",
"value": {

"3000": "99", // battery
"3001": "1.0.0", //hardware version
"3502": "1.1.0", //firmware version
"3013 ": "30", // onboard temperature
"3015": "89860412091880130000", // SIM card CCID
"3567" : "EC25EUXGAR08A05M1G", // cellular module model

 "3017": 3, //battery charge status
 "3900": "60", //sample interval, seconds
 "3009": -65, // cellular RSSI
 "3012": 179, //network latency, milliseconds
 "3018": 1, // sample counter
 "3005": "60" // report interval, seconds

},
"timestamp": "<millisecond timestamp>"

}]}

Table 2 The Fields of Device Status

Field ID Description

3000 Percentage of battery，0~100

3001 Hardware version *

3005 Status report interval, seconds

3009 Cellular Signal RSSI

3012 Network latency, milliseconds

3013 onboard temperature

3015 SIM card CCID *

3017 Battery charging status, 1- charging , 2 – full, 3 – no charging

3018 sample counter, reset to 0 after reboot

3502 firmware version *

3567 The model of cellular module *

3900 sample interval, seconds

2.4 Report Sensor Channels

As shown above, the SensorHub has 4 RS485 ports on the bottom side of the enclosure,

using some kind of aviation plug, we call them “physical ports”. For every physical port, the

bus protocol based on RS485 – Modbus is used to interact with sensors. Several Modbus

slaves can be connected to the bus, means that we can connect several sensors to one

INFO：Fields with ID 3001, 3015, 3502 and 3567 are reported once at power-up,

others are reported periodically.

physical port, we call every sensor/Modbus slave a “virtual port”. Up to 10 virtual ports can

be allocated for one physical port. Take physical port 1 as an example, its associated virtual

port number will be 10 ~ 19. The SensorHub will scan every physical port on bootup,

detecting whether any sensor is connected, and assign a virtual port number to that sensor

with a particular logic.

The number of virtual port consists of 2 digits, the high digit is the physical port number [1,

4], while the low digit is the index assigned [0, 9].

The definition of sensor channel report message is,

• Topic：iot/ipnode/<deviceEui>/update/event/update-channel-info

• Payload：

{
"requestId": "aaaa-aaaa-aaaa-aaaa",
"timestamp": "<millisecond timestamp>",
"intent": "event",
"type": "simple",
"deviceEui": "local",
"events": [{

"name": "update-channel-info",
"value": [{

"channel": "10",
"channelType": "1",
"sensorId": "0110001003900000",
"sensorType": "101E",
"status": "normal"

}, {
"channel": "11",
"channelType": "1",
"sensorId": "0111001003900000",
"sensorType": "1011",
"status": "normal"

},{
"channel": "12",
"sensorId": "0112001003900000",
"sensorType": "6000",
“measurementIds”:[4097,4098],
"status": "normal"

}, {
 "channel" : "13",
 "status" : "idle"

},...],
"timestamp": "<millisecond timestamp>"

}]}

Field Description

channel the number of the virtual port

channelType The interface type of the channel, depending on the interface of the

sensor

1: 485 Sensor；

2: Seeed Uart Sensor；

3: 485 Output；

4: Seeed Uart Output；

sensorId The unique ID of the sensor on this channel

sensorType The type of this sensor, refer to 5.2 Sensor Types

status The status of this channel

"normal" – with sensor connected, the sensor works well,

"idle" – no sensor connected, or the sensor can’t be recognized

"abnormal" – certain sensor is detected at the initial scan, but the

subsequent communication fails

measurementIds The IDs of the measurements produced by the sensor(on this

channel), only applicable for the channels which have user-defined

sensor connected(not Seeed pre-defined sensors). These

measurement IDs are defined by the user with the Configuration

Tool.

Notes：

1. If the status of the channel is idle or abnormal, only “channel” and “status” fields are

included in the JSON object of this channel, other fields are omitted.

2. If the sensor is a user-defined sensor, the “channelType” field will be omitted from the

JSON object.

2.5 Report Measurements

• Topic： iot/ipnode/<deviceEui>/update/event/measure-sensor

• Payload

{
"requestId": "aaaa-aaaa-aaaa-aaaa",
"timestamp": "<millisecond timestamp>",
"intent": "event",
"type": "simple",
"deviceEui": "local",
"events": [{

"name": "measure-sensor",
"value": [{

"channel": "10",
"measureTime": "<millisecond timestamp>",
"measurements": {

"4097": "30.1",
"4098": "50.5",

}, {
"channel": "11",
"measureTime": "<millisecond timestamp>",
"measurements": {

"4099": "100"
},

}, ...]
}]}

Field Description

timestamp The timestamp of the moment when the message is being sent

intent Fixed value "event"

type See 2.2 Basic Message Structure

deviceEui See 2.2 Basic Message Structure

events The array of events

--name Fixed value "measure-sensor"

--value The object of measurement

----channel The source virtual port number

----measureTime The timestamp of the moment when the sample is done

measurements

The measurement value(s), one sensor can output several

measurements, the “key” of this object is one of the measurement IDs

listed in 5.1 Measurement IDs. For an example, "4097": "30.1", means

the air temperature is 30.1℃.

3. Downlink

3.1 Introduction

With downlink messages the service side can issue simple control commands to the

device. Currently SensorHub supports the following commands:

- Modify the sample interval

- Reboot

Since SensorHub is a low power device with deep sleep mode, it only connects to the

MQTT broker when it’s awake, we recommend to mark the downlink message with the

retain flag. The firmware of SensorHub will ensure that the retained message is processed

only once.

To reduce the consumption of data traffic, all the JSON string of downlink messages

should be compressed before it’s sent, removing new lines and blank spaces. If not, the

firmware of SensorHub will fail to parse the message.

3.2 Message Structure

• Topic：$SHADOW/ipnode/<DeviceEui>/get/config

• Payload

{
 "timestamp": <millisecond timestamp>,
 "desire": {
 "3900": { // Modify the sample interval
 "ver": "<millisecond timestamp>",
 "value": <new interval, seconds>
 },
 "3910": { //reboot
 "ver": "<millisecond timestamp>"
 }
 }
}

Field Description

timestamp The timestamp of the moment when the message is being sent

desire The desired command

--KEY The command ID

---ver The version of the command, using millisecond timestamp, through

which the firmware do deduplication.

---value The value of the control

• The downlink message must be, QoS=0, Retain=1.

• On receiving the command the device will firstly compare the version of the command

with the one saved in the device, if the version of the command is newer, execute the

command and save the version to Flash.

• “3900” is the command ID for modifying the sample interval

• ”3910” is the command ID for reboot

• An example, to change the sample interval to 120 seconds: {"timestamp":

1601255713000,"desire": {"3900": {"ver":"1601255713000","value":120}}}

4. Service Development Guide

4.1 Step-by-Step
1. Prepare the MQTT broker, configure the authentication method to

username&password.

2. Configure the SensorHub via the Configuration Tool, achieving that the SensorHub

connects to the broker successfully. Please refer to <Sensor Hub 4G Data Logger User

Guide> for detailed instructions.

3. Utilizing a MQTT client tool, connect the client to the broker and subscribe the uplink

topics, make sure that the tool can also receive the messages published by SensorHubs.

4. Program the service application, and please notice that use QoS 1 to subscribe the

uplink topics. This is really not the major object of this documentation and it’s more

related to your system architecture and requirements on the service.

5. If downlink is required for your service, just publish downlink messages with QoS 1

and retain flag to the specific device’s topic. The control is one-way, the device will not

respond any confirmation. If your service needs strict close-cycle control, the device

status report message can be used.

4.2 Assembly of Packet Segments
Due to the uncertainty of the network transfer, many network protocols have the

mechanism to handle timeout and retransmission, including the MQTT protocol. In the

diagram below, the communication path 1 is simple, it’s generally TCP persistent

connection, with a balancer in some cases. Once the MQTT connection is established, the

path 1 can be treated as a TCP socket. Benefitting from the QoS mechanism of the MQTT

protocol, we can assume that the messages arriving at MQTT broker are order-preserved.

The communication path 2 will be more complicated, more attentions should be paid

to preserve the order of the messages. This is not only done by the architecture, but also

the implementation art of the programming, especially for those programming languages

with asynchronous features. If the architecture of path 2 is the bottle neck of implementing

idempotence, the consideration of hacking the MQTT broker can be done, in which case the

assembly of segments will be done immediately at where the slices are received in the very

beginning.

The “requestId” of all the slices of a giant packet are the same, based on this we

recommend the following assembly process for segmented packet.

• On receiving a message with type “cev” , push it into the cache/queue indexed with this

requestId.

• On receiving a message with type “fev”, pop all the slices in the cache/queue, merge the

events array of all the slices including this fev slice.

4.3 Logic of Device Offline
SensorHub is a low power device with sleep mode, the MQTT connection can only

indicate that the Hub is online, we can’t treat the Hub as offline since its MQTT connection

is closed. The way we recommend to detect the offline of the Hub is based on the interval,

we assume the Hub is offline on some kind of failure since no message is received from it

over N intervals. And we suggest N = 2.5.

Once offline is detected, initial diagnosis can be done as the following.

1. Check the power, if the Hub is an AC powered variant, please check the AC adapter or

solar system can output power normally, if the Hub is an battery powered variant,

please check the wire of the solar panel and whether the panel is covered by stuff.

2. Check the account of SIM card, the remaining data

3. Check the sensor, whether it’s damaged, short circuited, water soaked.

5. Appendix

5.1 Measurement IDs

ID Measurement

Name(Chinese)

Measurement

Name(English)

Value Range Unit

4097 空气温度 Air Temperature -40~90 ℃

4098 空气湿度 Air Humidity 0~100 %RH

4099 光照 Light 0~188000 Lux

4100 二氧化碳 CO2 0~10000 ppm

4101 气压 Barometric Pressure 300~1100000 Pa

4102 土壤温度 Soil Temperature -30~70 ℃

4103 土壤湿度 Soil Monisture 0~100 %RH

4104 风向 Wind Direction 0~360 °

4105 风速 Wind Speed 0~60 m/s

4106 pH pH 0~14 pH

4107 光通量 Light Quantum 0~2000、

0~5000

umol/㎡ s

4108 电导 Eletrical Conductivity 0~23 dS/m

4109 溶解氧 Dissolved Oxygen 0~20 mg/L

4110 土壤体积含水量 Soil Volumetric Water Content 0~100 %

4111 土壤电导 Soil Electrical Conductivity 0~23 ds/m

4112 土壤温度(三合一传感

器)

Soil Temperature(Soil

Temperature, VWC & EC Sensor)

-40~60 ℃

4113 每小时降雨量 Rainfall Hourly 0~240 mm/hour

4115 距离 Distance 28~250 cm

4116 浸液 Water Leak true / false

4117 液位 Liguid Level 0~500 cm

4118 氨气 NH3 0~100 ppm

4119 硫化氢 H2S 0~100 ppm

4120 瞬时流量 Flow Rate 0~65535 m3/h

4121 累计流量 Total Flow 0~6553599 m3

4122 氧气浓度 Oxygen Concentration 0~25 %vol

4123 水质电导率 Water Eletrical Conductivity 0~20000 us/cm

4124 水质温度 Water Temperature -40~80 ℃

4125 土壤热通量 Soil Heat Flux -500~500 W/㎡

4126 日照时数 Sunshine Duration 0~24 h

4127 太阳总辐射 Total Solar Radiation 0~5000 W/㎡

4128 水面蒸发量 Water Surface Evaporation 0~200 mm

4129 光合有效辐射 Photosynthetically Active

Radiation(PAR)

0～5000 umol/㎡ s

4131 响度 Volume 0~100 dB

4133 土壤张力 Soil Tension -100~0 kPa

4134 盐度 Salinity 0~20000 mg/L

4135 总溶解固体 TDS 0~20000 mg/L

4136 叶面温度 Leaf Temperature -40~85 ℃

4137 叶面湿度 Leaf Wetness 0~100 %

4146 PM2.5 PM2.5 0~1000 ug/m3

4147 PM10 PM10 0~2000 ug/m3

Seeed will maintain the measurement IDs increasingly, and publish via the URL

https://sensecap-statics.seeed.cn/hardware/lorapp/httpserver/src/constants/sensor-

name-lang-dictionary.json . Please obtain the latest definitions of measurement IDs from

the above address since this documentation may not keep up to date very tightly.

5.2 Sensor Types

Sensor

Type

Sensor

Name(Chinese)
Sensor Name(English) Measurement IDs

1001 空气温湿度传感器 Air Temperature and Humidity Sensor 4097，4098

1003 光照强度传感器 Light Intensity Sensor 4099

1004 二氧化碳传感器 CO2 Sensor 4100

1005 气压传感器 Barometric Pressure Sensor 4101

1006 土壤温湿度传感器 Soil Moisture and Temperature Sensor 4102，4103

1008 风向传感器 Wind Direction Sensor 4104

1009 风速传感器 Wind Speed Sensor 4105

100A pH 传感器 pH Sensor 4106

100B 光通量传感器 PAR Sensor 4107

100C 电导传感器 EC Sensor 4108

100D 溶解氧传感器 DO(Dissolved Oxygen) Sensor 4109

100E
土壤含水量温度电导传

感器
Soil Temperature, VWC & EC Sensor 4110，4111，4112

1011 雨量传感器 Rain Gauge 4113

https://sensecap-statics.seeed.cn/hardware/lorapp/httpserver/src/constants/sensor-name-lang-dictionary.json
https://sensecap-statics.seeed.cn/hardware/lorapp/httpserver/src/constants/sensor-name-lang-dictionary.json

1013 超声波测距传感器 Ultrasonic Distance Sensor 4115

1014 浸液传感器 Water Leak Detector 4116

1015 液位传感器 Liguid Level Sensor 4117

2001
RS485 五合一传感器(类

型-A)
RS485 Five-Elememt Sensor(Type-A)

4097，4098，4101，

4104，4105

2002
RS485 三合一传感器(类

型-A)
RS485 Three-Elememt Sensor(Type-A) 4097，4098，4101

2003
RS485 四合一传感器(类

型-A)
RS485 Four-Elememt Sensor(Type-A)

4097，4098，4099，

4101

2004
RS485 氨气温湿度传感

器(类型-A)

RS485 NH3 Temperature Humidity

Sensor(Type-A)
4097，4098，4118

2005
RS485 硫化氢温湿度传

感器(类型-A)

RS485 H2S Temperature Humidity

Sensor(Type-A)
4097，4098，4119

2006
RS485pH 传感器(类型-

A)
RS485 pH Sensor(Type-A) 4106

2007
RS485 土壤水分温度传

感器(类型-A)

RS485 VWC Temperature Sensor(Type-

A)
4112， 4110

2008
RS485 土壤水分温度电

导率传感器(类型-A)

RS485 VWC Temperature EC

Sensor(Type-A)
4112， 4110，4111

2009
RS485 涡轮流量计(类型

-A)

RS485 Turbine Flowmeter

Sensor(Type-A)
4120，4121

200A
RS485 七合一传感器(类

型-A)
RS485 Seven-Elememt Sensor(Type-A)

4097，4098，4099，

4101，4104，4105，

4113

200B
RS485 溶解氧传感器(类

型-A)

RS485 Dissolved Oxygen Sensor(Type-

A)
4109

200C
RS485 液位传感器(类型

-A)
RS485 Liguid Level Sensor(Type-A) 4117

200D
RS485 氧气传感器(类型

-A)
RS485 Oxygen Sensor(Type-A) 4122

200E
RS485 水质温度电导传

感器(类型-A)

RS485 Water Temperature EC

Sensor(Type-A)
4123，4124

200F
RS485 土壤热通量传感

器(类型-A)

RS485 Water Temperature EC

Sensor(Type-A)英文名不能修改就要新

建一个 ID 了

4125

2010
RS485 日照时数传感器(

类型-A)

RS485 Sunshine Duration Sensor(Type-

A)
4126

2011
RS485 太阳总辐射传感

器(类型-A)

RS485 Total Solar Radiation

Sensor(Type-A)
4127

2012
RS485 水面蒸发传感器(

类型-A)

RS485 Water Surface Evaporation

Sensor(Type-A)
4128

2013
RS485 光合有效辐射传

感器(类型-A)
RS485 PAR Sensor(Type-A) 4129

2014
RS485 水质温度溶氧传

感器(类型-A)

RS485 Temperature and Dissolved

Oxygen Sensor(Type-A)
4124, 4109

2015
RS485 土壤热通量传感

器(类型-A)
RS485 Soil Heat Flux Sensor(Type-A) 4125

2011
RS485 太阳总辐射传感

器(类型-A)

RS485 Total Solar Radiation

Sensor(Type-A)
4127

2012
RS485 水面蒸发传感器(

类型-A)

RS485 Water Surface Evaporation

Sensor(Type-A)
4128

2013
RS485 光合有效辐射传

感器(类型-A)
RS485 PAR Sensor(Type-A) 4129

2014
RS485 水质温度溶氧传

感器(类型-A)

RS485 Temperature and Dissolved

Oxygen Sensor(Type-A)
4124, 4109

2015
RS485 土壤热通量传感

器(类型-A)
RS485 Soil Heat Flux Sensor(Type-A) 4125

Versions

Version Date Changes Author

2.0 2021-4-14 Separate from the original combined

documentation (v1.x)

Jack

	1. Overview
	1.1 Architecture and Message Flow
	1.2 The MQTT Connection Parameters from the Device
	1.3 The Private Topics

	2. Uplink
	2.1 Introduction
	2.2 Basic Message Structure
	Table 1 Definitions of Event Names
	2.2.1 Packet Segmentation

	2.3 Report Device Status
	Table 2 The Fields of Device Status

	2.4 Report Sensor Channels
	2.5 Report Measurements

	3. Downlink
	3.1 Introduction
	3.2 Message Structure

	4. Service Development Guide
	4.1 Step-by-Step
	4.2 Assembly of Packet Segments
	4.3 Logic of Device Offline

	5. Appendix
	5.1 Measurement IDs
	5.2 Sensor Types

	Versions

