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Abstract The “A-type” proanthocyanidins in cranberry
fruit (Vaccinium macrocarpon Ait.) are bioactive compo-
nents associated with prevention of urinary tract infections
(UTI). Cranberry juice, fruit (fresh and dried), functional
foods, and cranberry dietary supplements are promoted for
prevention of UTI and for maintenance of urinary tract
health (UTH), on the basis of their content of cranberry
proanthocyanidins (c-PAC) with “A-type” interflavan
bonds. With increasing consumer use of cranberries for
maintenance of UTH and an expanding number of commer-
cial cranberry products of different types, the availability of
unified methods for measuring levels of c-PAC is important.
This review discusses quantitative and qualitative analysis
of c-PAC with “A-type” interflavan bonds in relation to their
biological activity for UTI prevention. The integrity (includ-
ing authenticity, standardization, efficacy, and safety) of
cranberry fruit, juices, and dietary supplements may now
be measured by using recent advances in mass spectrometry,

liquid chromatography, production of c-PAC standards, and
improved simple quantitative techniques.
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Introduction

Urinary tract infections (UTI), regarded as among the most
pervasive of bacterial infections, are a large economic and
medical burden worldwide. In the United States alone, they
account for over seven million outpatient hospital visits and
one million emergency room visits, with an annual direct
cost greater than $2 billion [1]. Cranberry (Vaccinium mac-
rocarpon Ait.) fruit has been used for many years for pre-
vention of UTI and for promotion of urinary tract health
(UTH). Originally, the ameliorating effect was believed to
be because of the acidity of the fruit, but in the last 20 years,
research has focused on the effect of cranberry proantho-
cyanidins (c-PAC) or condensed tannins which are
oligomers and polymers of monomeric flavan-3-ols, for
example catechin and epicatechin. There are two common
series of procyanidin dimers. The “B-type” series are dimers
linked either in the C4–C6 or C4–C8 position whereas the
“A-type” series are dimers linked in the C4–C8 position
with an additional C2–O–C7 ether linkage (Fig. 1). c-PAC
oligomers with a DP>2 may incorporate both “A-type” and
“B-type” interflavan linkages. By extension of this defini-
tion, and for purposes of discussion, c-PAC oligomers that
contain one or more “A-type” interflavan linkages in their
structure are referred to as “A-type” c-PAC whereas c-PAC
oligomers that contain only “B-type” interflavan linkages
are referred to as “B-type” c-PAC. In-vitro studies have
revealed that c-PAC, specifically those that contain “A-type”
interflavan bonds [2], inhibit the adhesion of P-fimbriated
uropathogenic Escherichia coli (E. coli) to uroepithelial cells
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[3–5], which is the first step in the infection process [6]. If
bacteria are unable to bind to the bladder wall, they will not
grow and progress to a UTI. This mechanism does not kill
bacteria, so there is less chance of selection for resistant
bacterial strains. c-PAC inhibit adherence of multi-drug-
resistant E. coli strains to uroepithelial cells by up to 70 %
[7]. Foods that contain only proanthocyanidins (PAC) with
“B-type” interflavan bonds, for example chocolate and grapes
do not seem to be effective in preventing UTI [2].

Researchers are currently examining the hypothesis that
the urinary anti-adhesion effect may result from an innate
immune response in the urinary tract that is induced by
interaction of c-PAC with gut-associated lymphoid tissue.
Research demonstrates that there are bacterial anti-adhesion
effects in urine after consumption of cranberry products [2,
8–13]. Although dimers of c-PAC (procyanidin A2) have
been detected in urine [14], c-PAC as a class of compounds
are minimally absorbed because of non-hydrolyzable bonds
between monomeric subunits and a propensity to bind pro-
teins by hydrogen bonding [15, 16]. c-PAC complex with
salivary glycoproteins, a process that causes astringency in
the oral cavity when many fruits and beverages are ingested
[17]. Astringency stimulates increased production of saliva,
hypertrophy of the parotid gland, and a shift in salivary
composition to proline-rich glycoproteins in rodents [18,
19]. Because of poor absorption, >95 % of c-PAC remain
in the intestinal lumen during transit [20, 21], suggesting
that beneficial dietary effects of c-PAC may occur via inter-
actions at the mucosal surface of the gastrointestinal tract
[22], for example, by affecting secretion of mucins, a class
of glycoproteins, in the small intestine [23–25].

Evidence from a meta-analysis of clinical studies indi-
cates that cranberry juice and dietary supplements reduce
the number of symptomatic UTI over a 12-month period for
women with recurrent UTI [26]. However, the usefulness of
these clinical studies is limited because they used different
doses and products, lacked compositional analysis of puta-
tive bioactive components, and lacked mechanistic guidance
for selection of subjects and study design. Although it is
now widely accepted that c-PAC are the putative bioactive
component, research shows that there are substantial differ-
ences among products in c-PAC content and structural hetero-
geneity, including number of “A-type” linkages, which affect
their bioactivity [27]. Cranberry fruit is typically made into
27 % juice drinks containing 36 mg PAC and dosed daily at
300 mL for recurrent UTI prevention, although consumption
of cranberry encapsulated powder has become a popular al-
ternative to juice. Accurate determination of the amount of
PAC in cranberry products is required to ensure correct con-
sumer product labeling, efficacy monitoring, shelf-life deter-
mination, and formulation of standardized materials for
research studies. This review discusses quantitative and qual-
itative analysis of c-PAC with “A-type” interflavan bonds in
relation to their biological activity for UTI prevention.

Quantitative analysis of cranberry proanthocyanidins

4-(Dimethylamino)cinnamaldehyde (DMAC)

Rapid analytical methods to determine the concentration of
c-PAC are essential to research on the integrity of cranberry
products. In this regard, the 4-(dimethylamino)cinnamalde-
hyde (DMAC) method has great potential as a rapid analyt-
ical method [28]. DMAC is an aromatic aldehyde that reacts
with flavan-3-ols and c-PAC to form a green chromophore
with maximum absorbance at approximately 640 nm [29].
This wavelength effectively excludes the spectra of antho-
cyanidins which are a source of interference in other assays
for quantification of c-PAC [30], for example the vanillin
and the butanol–HCl assays. In strongly acidic solutions,
DMAC is highly reactive via the formation of a reactive
electrophilic carbocation [31]. Because of delocalization of
the positive charge on the DMAC molecule and consequent
reduced electrophilicity, the reaction is specific for phenolic
compounds with meta-oriented di or trihydroxy phenols, as
found in c-PAC [32, 33]. Post-column derivatization with
DMAC has been used to detect PAC by high-performance
liquid chromatography (HPLC) [29, 34, 35] and by chro-
matography on Sephadex G-25 [36] and to detect accumu-
lation of PAC in plant seeds [37]. Cell-specific localization
of PAC is possible by DMAC staining of plant tissues [38].
DMAC does not react with hydroxycinnamic acids, hydrox-
ybenzoic acids, flavones, and flavonols [29, 36] and is more

Fig. 1 Representative structure of a c-PAC dimer linked to an antho-
cyanin through an ethyl group. Variation in degree of polymerization,
position, and number of A-type versus B-type interflavan bonds and
substitutions with anthocyanins leads to large structural heterogeneity
among c-PAC oligomers [69]
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accurate and sensitive for PAC than the acid–butanol and the
vanillin assays [31].

Adoption of DMAC method by cranberry industry

Currently, the cranberry industry is using DMAC in a stan-
dard method, with a procyanidin A2 dimer standard, to
measure the c-PAC content of products. This method seems
to be more accurate than other colorimetric methods, is
inexpensive, rapid, and simple to perform, and is less likely
to suffer from interference from other sample components
[28]. Overall results suggest that DMAC may be useful for
quantification of c-PAC, but may not be as accurate for
comparing levels among different types of cranberry prod-
uct, especially if they contain highly polymerized c-PAC.
The degree of polymerization (DP) of c-PAC is affected by
the extraction process. Powders that originate from cranber-
ry juice tend to contain oligomers with a lower degree of
polymerization (2–10 DP) than powders that originate from
whole cranberry fruit or press cake (2 to >30 DP). Thus, the
use of A2 dimer standard is biased toward providing more
accurate quantification of products that contain lower c-PAC
oligomers because these products more closely reflect the
structure and reaction kinetics of the A2 dimer standard.

Recently, a multi-laboratory validation study was con-
ducted to evaluate the use of procyanidin A2 standards in
the DMAC method for determination of the c-PAC content
of cranberry powders. The results of this study revealed
intra-laboratory variation of 16 % and inter-laboratory var-
iation of 32 % [28]. The greatest variation was evident for
cranberry powders with a low total c-PAC content (<2 %
w/w). Conditions that affect the DMAC reaction can be
found in the publication of Wallace and Giusti, who inves-
tigated the effects of acid concentration, temperature, reac-
tion time, water content, and DMAC concentration [30].
The laboratories participating in the validation study used
a common procedure controlling for these conditions.
However, it was noted that, depending upon the particular
brand of plate reader, some laboratories used an automatic
pipettor in the plate reader to add the DMAC solution and
the laboratories were not given specific instructions about
dilutions to use, both of which may account for the variabil-
ity among laboratories [28].

Improved accuracy of the DMAC assay as a result
of the development of c-PAC standards

To enable more accurate quantification of c-PAC in cran-
berry powders and juices, Feliciano et al. [39] investigated
the suitability of c-PAC isolated from cranberry press cake
as a standard in the DMAC assay. Mass spectrometric
analysis corroborated c-PAC composition and confirmed
cranberry-specific structures, i.e. “A-type” PAC. It has been

shown that PAC DP affects the stoichiometry of the reaction
with DMAC, leading to underestimation of the PAC oligomer
content when using a commercially available “A-type” dimer
(procyanidin A2) as a standard [39]. Thus, use of monomers
and procyanidin dimers as DMAC standards to estimate the
c-PAC oligomer content is inaccurate and greatly underesti-
mates the c-PAC content of cranberry products [31].

The slope of the c-PAC regression curve (y=0.1406x+
0.0101) was a factor of 7.1 lower than that for catechin and a
factor of 2.5 lower than those for procyanidin A2 and B2
standards (Fig. 2). Prior et al. [28] previously speculated that
the response per unit weight may be lower for large poly-
meric PAC compounds than for monomers or dimeric pro-
cyanidins. Use of PAC oligomers as standards was
suggested as a better approach for estimating the PAC
content of chocolate and confectionary products rich in
high-molecular-weight PAC [32]. The reaction seems to be
limited to the C8 position of the A-ring of PAC terminal
units. The reduced response of c-PAC is likely to be because
of the proportion of C8 reactive sites on the PAC that are
available to participate in the DMAC reaction. If, as previ-
ously reported, the C8 terminal unit is the only position
available for DMAC reaction, then as the DP of PAC
increases, each additional flavan-3-ol adds weight but no
additional DMAC reactivity.

Increasing the accuracy of the DMAC assay by develop-
ment of a more robust standard will improve the marketing
and regulation of cranberry products. Ideally, standards
should express the complex nature of the specific food
component being assayed. Commercially available flavan-
3-ols and procyanidin dimers are not representative of the
structural heterogeneity of c-PAC. As reference standards
for PAC with higher DP are not yet commercially available,
isolation of PAC from the food being studied is recommended
to obtain accurate results [31]. For this specific application, a

Fig. 2 Regression curves for catechin, procyanidin A2, procyanidin
B2, and c-PAC after reaction with 4-(dimethylamino)cinnamaldehyde
[39]
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standard for the DMAC assay would be most accurate
when based on purification of c-PAC oligomers from
cranberries [40].

A similar problem was encountered when use of gallic
acid as a standard in the Folin–Ciocalteu assay resulted in
the total polyphenol content of pomegranate (Punica gran-
atum L.) powder being underestimated by up to 30 %.
Pomegranates contain hydrolyzable tannins classified as
gallotannins (1,2,4,6-tetra-O-galloyl-D-glucose and
1,2,3,4,6-penta-O-galloyl-D-glucose), ellagitannins (ellagic
acid esters of D-glucose with one or more galloyl substitu-
ents), and the much less common gallagyl esters with glu-
cose, for example punicalagin and punicalin. Pomegranates
also contain oligomeric ellagitannins with two to five glu-
cose core molecules cross-linked by dehydrodigalloyl
esters. Collectively, these pomegranate hydrolyzable tannins
contain approximately 20 % glucose by weight. The Folin–
Ciocalteu reagent does not react with glucose and thus the
choice of gallic acid as a standard leads to underestimation
of total polyphenol content. This issue was addressed by
developing and validating a pomegranate standard [41]. The
standard contained a complex mixture of oligomeric ellagi-
tannins that are found in pomegranate and improved the
accuracy of quantification of polyphenols in pomegranate
powder by the Folin–Ciocalteu assay in comparison with
use of gallic acid.

Thiolysis

Thiolysis and phloroglucinolysis are used to determine
monomeric composition and average DP of PAC
[42–47] and have also been used to determine the
presence of “A-type” interflavan bonds [43, 47, 48].
However, several problems with these techniques are
unresolved. Thiolysis and phloroglucinolysis depends
on cleavage by auto-oxidation of the interflavan bond
in the presence of strong acid and subsequent reaction
of extension units with a nucleophile [42].

Thiolysis is performed on the basis of the assumptions
that cleavage of the interflavan bond is complete, the reac-
tion follows 1:1 stoichiometry [42], and flavan-3-ol ben-
zylthioethers have the same molar absorptivities as their
respective flavan-3-ol monomers [49]. Furthermore, other
PAC sources, for example quebracho, lack 5-OH groups in
their fisetinidol units, which makes determination of aver-
age DP by thiolysis impossible [50]. Therefore, use of
thiolysis and phloroglucinolysis to estimate DP and the
presence of “A-type” interflavan bonds may be inaccurate
when these assumptions are incorrect. Other disadvantages
of this method include the use of benzyl mercaptan, the most
commonly used nucleophile agent, which is highly flamma-
ble and has an unpleasant odor, and the need to use strong
acid at high temperatures.

Mass spectrometric methods for characterization of PAC

Application of LC–ESI–MS for quantification of c-PAC

Atmospheric-pressure ionization [51] and liquid chromatog-
raphy with electrospray ionization (LC–ESI) mass spec-
trometry (MS) have been used to characterize PAC
oligomers in foods [52–63]. A method for analysis of pro-
cyanidins in cocoa, by normal-phase HPLC coupled with
detection by UV absorbance, fluorescence, or mass spec-
trometry, was developed by researchers at M&M Mars [52,
55, 64]. Individual procyanidin oligomers up to a DP of 10
were isolated by preparative HPLC and their masses were
confirmed by HPLC–MS and used as quantitative standards
for fluorescence detection [65]. The isolated oligomers were
then used as standards for quantification of PAC in samples
of chocolate, wine, cranberry juice, and apples [53].
Although the method is an excellent example of the appli-
cation of modern chromatography to the analysis of PAC,
there are several problems in its application for quantifica-
tion of PAC in a variety of samples. The research of
Hammerstone et al. indicates that the PAC in chocolate are
exclusively “B-type” procyanidin homopolymers with a DP
of 1 to 10 [52]. Thus they are quite homogeneous when
compared with c-PAC with “A-type” linkages.

Although ESI–MS is capable of detecting intact molecu-
lar ions with high molar mass (>100,000 Da), ESI is best
suited to analysis of monodispersed biopolymers because of
complications arising from the formation of multiply
charged ions [66]. The use of oligomeric procyanidins from
chocolate as standards for quantification of PAC from cran-
berries is therefore inaccurate. Accurate quantification of c-
PAC would require preparation of appropriate standards by
isolation and characterization of the individual oligomers, in
a manner similar to that used for chocolate. However, be-
cause the number and structural diversity of c-PAC is much
greater than for chocolate, isolation of each oligomer would
be difficult. For instance, Yang and Chien [67] concluded
that as the DP of galloylated procyanidins in grape seeds
increased, separation and detection of individual isomers
solely by normal phase HPLC becomes impossible.

MALDI–TOF-MS qualitative analysis of c-PAC

Matrix-assisted laser desorption/ionization time-of-flight
mass spectrometry (MALDI–TOF-MS) methods have been
developed to characterize the structural features of PAC and
other tannins in fruit used to produce dietary supplements
[2, 27, 49, 68–77]. MALDI–TOF-MS is ideally suited to
characterization of polydispersed oligomers and is regarded
as the mass spectral method of choice for analysis of PAC
with large structural heterogeneity [27, 78]. MALDI–TOF-
MS produces only a singly charged molecular ion for each
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parent molecule and enables detection of high mass with
precision [66]. Use of MALDI–TOF-MS to characterize the
heterogeneity of c-PAC is possible by using published struc-
tures of isolated dimers and trimers as determined by nucle-
ar magnetic resonance (NMR) spectroscopy, MS, chemical
degradation, and MS fragmentation studies. MALDI–TOF-
MS separates molecular ions in the flight tube and enables
baseline detection of a broad range of c-PAC oligomers over
the DP range of 2 to 26 [27, 39].

Determining ratios of “A-type” to “B-type” interflavan
bonds by use of MALDI–TOF-MS

A series of c-PAC which vary only in the ratio of “A-type”
to “B-type” interflavan bonds produces a MALDI–TOF
mass spectrum with overlapping isotope patterns for each
individual oligomer. An understanding of the natural abun-
dance of C, H, and O isotopes within c-PAC oligomers
enabled Feliciano et al. [79] to develop a novel MALDI–
TOF-MS isotope deconvolution method. They were able to
quantify ratios of “A-type” to “B-type” interflavan bonds on
the basis of theoretical isotope distributions and application
of matrix algebra to the experimental spectra (Fig. 3). As an
example, experimental and theoretical isotope clusters for c-
PAC trimer [M + Na]+ ions revealed remarkably high cor-
relation of isotope patterns between predicted and estimated
percentages of “A-type” and “B-type” bonds, indicating the
method is simple, repeatable, robust, precise, and accurate.
It was shown that the characteristic isotope clusters for the c-
PAC were quantifiable from DP 2 to DP 11 (Fig. 4). The
ability to separate overlapping isotopic patterns provides
another method of determination of the structural diversity
of c-PAC in food products and dietary supplements.

Improved accuracy in determining “A-type” to “B-type”
interflavan ratios can be accomplished by refinement of
instrument settings, including:

1. low-mass gating (i.e., suppression of matrix ion
adducts);

2. accelerating voltage;
3. reflectron voltage; and
4. intra and inter-well shot accumulation.

MALDI–TOF-MS for detection of pigmented
polyflavan-3-ols (i.e. derived PAC)

Recent advances in mass spectrometry have also enabled the
characterization of complex mixtures of anthocyanin–poly-
flavan-3-ol pigments in wine [80–83]. The pigmentation of
such fruit as cranberries and grapes is primarily attributed to
anthocyanins. However, results indicate that cranberries
contain oligomeric pigments that are similar to structures
found in wine (Fig. 5) [69]. Kennedy et al. [84] reported that
anthocyanins are incorporated into PAC during fruit ripen-
ing. Although there are few reports of anthocyanin–poly-
flavan-3-ol oligomers occurring in fruit and unfermented
beverages, there are well-documented accounts of complex
pigments forming in such alcoholic beverages as red wine
[85–87] and rose cider [88, 89]. During the aging and
storage of red wines, anthocyanins are converted to new
pigments by reactions with other phenolics, for example
polyflavan-3-ols. Condensation of an anthocyanin and a
polyflavan-3-ol via an ethyl bridge, arising from acetalde-
hyde, is one mechanism by which anthocyanin–polyflavan-
3-ol oligomers may occur (Fig. 1) [85, 86, 90–93].
Acetaldehyde is found naturally in wine, either as a by-

Fig. 3 Comparison of a trimer
PAC series MALDI-TOF mass
spectrum obtained with c-PAC
(experimental) and generated
with IsoPro (theoretical) for the
same composition as
determined by the
deconvolution method [79]
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product of yeast metabolism or as an oxidation product of
ethanol [85]. Using a rose cider model, Shoji et al. [88]
elucidated the structure of such oligomeric pigments by
high-resolution fast-atom-bombardment mass spectrometry
(FAB–MS) and 1H and 13C (NMR) analysis. The dimeric

pigments consisted of an anthocyanin linked by a CH3–CH
bridge to a flavan-3-ol. In addition, direct linkages between
anthocyanins and PAC in wines have been described [87].
Anthocyanin–vinyl–PAC linkages have also been discov-
ered and may occur as a result of the acetaldehyde conden-
sation reaction [83].

MALDI–FT-ICR-MS for improved detection of pigmented
polyflavan-3-ols (i.e. derived PAC)

MALDI–Fourier-transform ion cyclotron resonance (FT-
ICR) mass spectrometry is superior to MALDI–TOF-MS
in its ability to resolve c-PAC that are substituted with
anthocyanins [39]. Use of MALDI–TOF-MS revealed an
unresolved mass series between the c-PAC oligomers.
Analysis of the same sample by MALDI-FT-ICR identified
a series of c-PAC substituted with anthocyanins, that were
well resolved above baseline (Fig. 6). These compounds had
m/z that were consistent with pyranoanthocyanidins and
anthocyanidin moieties linked with PAC either directly or
via a vinyl bridge, as described by Tarascou et al. [43].

FT-ICR-MS has also been used to study PAC in lychees
[94], because of the high resolution and mass accuracy
associated with the superconducting magnet, which is more
stable than rf voltage control. When dealing with complex
mixtures, for example c-PAC, higher resolution (narrow
peak width) enables signals of two ions of similar m/z to
be detected as distinct ions. FT-ICR MS differs substantially
from other MS techniques, in that ions are not detected by
hitting a detector, for example an electron multiplier. Rather
they are detected by passing near detection plates. Masses
are not resolved in space or time (TOF) but only by cyclo-
tron (rotational) frequency that each ion possesses as it
rotates in a magnetic field [95]. All ions are detected simul-
taneously over a given period of time. The attributes of FT-

Fig. 4 Percentage of A-type
and B-type interflavan bonds in
c-PAC from dimers to
undecamers analyzed by using
matrix algebra deconvolution
for overlapping isotopic peaks
after MALDI–TOF-MS
analysis [79]

Fig. 5 MALDI-TOF positive reflectron mode mass spectra of the
anthocyanin–polyflavan-3-ol oligomers of “HyRed” cranberry fruit
and spray-dried juice. (a) Anthocyanins [M]+. (b) Anthocyanin linked
to a single flavan-3-ol through a CH3–CH bridge [M]+. (c) Anthocy-
anin linked to a polyflavan-3-ol of two degrees of polymerization
through a CH3–CH bridge, containing either an A-type or a B-type
interflavan bond [M]+ [69]
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ICR MS make it ideal for high-resolution detection of PAC
with large structural heterogeneity.

Effects of cranberry processing on c-PAC composition

Conventional harvest and storage of cranberries for juicing
involves cleaning, sorting, and then freezing in 500-kg bins
[96]. The rate of freezing in these bins is highly variable and
it may take longer than 60 days for the temperature at the
center of the bin to reach −18 °C. During this period, the
fruit will continue to respire and then shift to anaerobic
metabolism until frozen. Some microbial fermentation may
also occur. Both anaerobic plant metabolism and fermenta-
tion generate acetaldehyde [97], which participates in the
reaction between anthocyanins and c-PAC [98]. Slow freez-
ing increases solute-induced, osmotic, and structural fruit
damage [99]. This damage causes anthocyanins from the
exocarp to “bleed” into the mesocarp and most likely
increases reactions between anthocyanins and c-PAC.

Research applying MALDI–TOF-MS indicates that fruit
processing changes the structure of c-PAC (i.e., DP, types of
interflavan bonds, and substitution with anthocyanins) [27,
69]. For instance, juice extraction affects the distribution of
c-PAC in juice and press cake, with c-PAC in press cake of
higher DP than those in juice.

Storage and juice extraction also increases the extent to
which anthocyanins are linked to PAC through acetaldehyde
derived covalent bonds in both juice and press cake [69].
Cranberry juice is acidic and interflavan bonds are

susceptible to acid-catalyzed autoxidation that cleaves the
bond, and intermediates form new bonds with anthocyanins.
This rearrangement reaction is accelerated by heat.
Appearance of c-PAC-anthocyanin oligomers with low de-
gree of polymerization have been detected in cranberry juice
by MALDI–TOF-MS [69]. Appearance of c-PAC–anthocy-
anin oligomers with a high degree of polymerization were
detected in the press cake by MALDI–TOF-MS [27, 69].

Conclusion

The National Institute for Standards and Technology (NIST),
the National Center for Complementary and Alternative
Medicine (NCCAM), and the Office of Dietary Supplements
(ODS) are calling for validation and optimization of analytical
methods for quantitative determination of bioactive compo-
nents in dietary supplements. Polyphenolic compounds, for
example c-PAC, are of specific interest to NIST, NCCAM,
and ODS because polyphenols are present in many natural
products of plant origin that are used in complementary and
alternative medicine. Standardization of c-PAC levels and
structures is critical for products used in clinical trials to ensure
that participants are receiving bioactive test products, and to
enable accurate meta-analysis of intervention trials. Accurate
quantitative determination of c-PAC of all molecular sizes is
important, not only to regulators and manufacturers, but to
consumers who depend on the potency and bioactivity of the
different cranberry products they purchase for maintenance of

Fig. 6 MALDI–FT-ICR mass
spectrum, showing PAC and
antho-PAC. m/z=1017:
pyranocyanidin-arabinoside-
A2, m/z=1019:
pyranoanthocyanidin-
arabinoside-DP2B, m/z=1021:
A2-ethyl-cyanidin-arabinoside,
m/z=1023: DP2B-ethyl-
cyanidin-arabinoside, m/z=
1031: pyranopeonidin-
arabinoside-A2, m/z=1033:
pyranopeonidin-arabinoside-
DP2B, m/z=1035: A2-ethyl-
peonidin-arabinoside, m/z=
1037: DP2B-ethyl-peonidin-
arabinoside, m/z=1047:
pyranocyanidin-hexoside-A2,
m/z=1049: pyranocyanidin-
hexoside-DP2B, m/z=1061:
pyranopeonidin-hexoside-A2,
m/z=1063: pyranopeonidin-
hexoside-DP2B, m/z=1065:
A2-ethyl-peonidin-hexoside
[39]
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urinary tract health. As is apparent from this review, the
structural heterogeneity of “A-type” c-PAC makes accu-
rate quantification a difficult undertaking, requiring use
of appropriate standards and a knowledge of how c-PAC
structure affects bioactivity. However, as a result of
recent advances in MALDI-TOF and MALDI-FT-ICR
mass spectrometry, generation of c-PAC standards, and
improved understanding of the DMAC reaction kinetics,
the integrity (including authenticity, standardization, ef-
ficacy, and safety) of cranberry fruit, juice and dietary
supplements can now be determined.
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