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Over the past two decades, the role of free radi-
cals and their involvement in oxidative stress have 
been studied extensively in the pathophysiology 
of several age-related diseases, such as cancer, 
diabetes, cardiovascular and neurodegenerative 
diseases [1–4]. An increasing body of evidence 
suggests that oxidative stress due to excessive 
production of free radicals – both reactive oxy-
gen species (ROS) and reactive nitrogen species 
(RNS) – play a major role in the pathogenesis of 
these diseases [5,6]. Antioxidant therapy for the 
treatment of several chronic diseases has been 
under investigation in recent years, with some 
reported success [7]. The involvement of oxidative 
stress and the potential therapeutic use of anti-
oxidants have been extensively studied in several 
neurodegenerative diseases, including Alzheimer’s 
disease (AD), Parkinson’s disease (PD) and amy-
otrophic lateral sclerosis (Lou Gehrig’s disease), 
as well as stroke [7–9]. The potential therapeutic 
and neuroprotective effects of several antioxidant 
molecules in dietary sources, such as vitamin C, 
vitamin E, omega-3 fatty acids and selenium, 
have been investigated in both preclinical and 

clinical paradigms [1,10]. Polyphenolic compounds 
obtained from several natural sources exhibit 
potent antioxidant properties. Polyphenols such 
as catechins from green tea, curcumin from tur-
meric and resveratrol from grapes have shown 
significant antioxidant, anti-inflammatory and 
neuroprotective effects [11–19]. In this review, we 
highlight the role of oxidative stress in AD and 
evaluate the antioxidant and neuroprotective 
effects and the therapeutic potential of polyphe-
nolic compounds obtained primarily from dietary 
sources. Challenges, limitations, innovative con-
cepts and future directions in the development of 
this therapeutic strategy are also discussed. 

Free radicals including ROS and RNS pos-
sess both beneficial and harmful roles in biology. 
Free radicals mediate receptor activation, gene 
expression, and are involved in several cellular 
signaling systems. Oxidative damage occurs 
when the excessive production of free radicals is 
not counteracted by the endogenous antioxidant 
mechanisms – a phenomenon termed ‘oxidative 
stress’. At increased levels, free radicals dam-
age membrane lipids, nucleic acids and both 
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structural and functional proteins [2,20]. Oxidative stress can be 
defined as the imbalance between the production of free radicals 
and a biological system’s ability to readily detoxify the reactive 
intermediates and repair the resulting damage [4]. Simply put, “it 
is a disturbance in the pro-oxidant–antioxidant balance in favor 
of the former, leading to oxidative damage” [21]. Although there 
is a basal level of oxidative damage to lipids, proteins and nucleic 
acids, there exists an essential antioxidant system that prevents the 
formation of free radicals, and also repairs and replaces oxidized 
biomolecules. The failure of this system produces oxidative injury 
and disease [22]. Endogenous antioxidant defense mechanisms pri-
marily consist of enzymes such as superoxide dismutase, glutathi-
one peroxidase and catalase, as well as nonenzymatic antioxidants 
such as vitamin C and vitamin E.

Reactive oxygen species, such as superoxide, hydroxyl, hydro-
peroxyl (protonated superoxide), and RNS, such as nitric oxide 
(NO) and peroxynitrite (ONOO-), are the primary free radical 
species implicated in oxidative stress. Under normal physiological 
conditions, mitochondrial respiration and ATP synthesis rep-
resent the primary source of free radicals. ROS and RNS are 
generated as by-products of mitochondria-catalyzed reactions of 
the electron transport chain [23,24]. Cellular inflammation due 
to macrophage activation also produces a variety of free radicals, 
such as superoxide and NO [25]. The inducible form of the enzyme 
nitric oxide synthase (iNOS) is expressed as a result of microglial 
activation in response to stressful conditions, such as infection and 
trauma. Environmental pollutants, xenobiotics, toxins, metal-
catalyzed reactions and ultraviolet irradiation trigger free radicals 
resulting in oxidative stress [3,26]. 

Oxidative stress due to increased production of free radicals 
results in oxidative damage to biomolecules, such as lipids, pro-
teins and nucleic acids. Lipid peroxidation of the polyunsaturated 
fatty acid residues in cellular phospholipids produces malond
ialdehyde and 4-hydroxy-2-nonenal [27]. Oxidative damage to pro-
teins, including enzymes, transporters and ion channels, involves 
loss of histidine residues, bityrosine crosslinks and introduction of 
carbonyl groups and formation of protein-centered alkyl, alkoyl 
and alkylperoxyl radicals that undergo peptide-bond cleavage. 
The side chains of all amino acid protein residues are susceptible 
to ROS-/RNS-mediated oxidative damage [28]. The rapid reac-
tion of superoxide with NO results in formation of the highly 
reactive ONOO- species, which promotes nitrosation of cysteine 
sulfhydryl groups, as well as nitration of tyrosine and tryptophan 
residues. This irreversible nitration of tyrosine residues prevents 
the phosphorylation and adenylation of tyrosine residues of several 
regulatory proteins [3]. Oxidative stress affects the functioning of 
several transport proteins, such as Na+/K+-ATPase, resulting in 
increased intracellular Ca2+ levels, which in turn activates a pano-
ply of proteolytic enzymes [29]. The hydroxyl radical reacts with all 
components of the DNA molecule and damages the purine and 
pyrimidine bases as well as the deoxyribose sugar. Both nuclear 
and mitochondrial DNA are susceptible to oxidative damage, 
although the latter is more vulnerable because mitochondrial 
DNA molecules lack nucleotide excision machinery and are not 
protected by histones [30]. 

Oxidative damage results not only from an increase in free radi-
cals and subsequent oxidative stress but also from a failure of the 
antioxidant repair systems. Halliwell and Gutteridge define an 
antioxidant as “any substance that when present at low concentra-
tions compared with those of an oxidizable substrate such as lipids, 
proteins and DNA, significantly delays or prevents oxidation of that 
substrate” [2,31]. This definition essentially highlights the impor-
tance of the damage to the target studied, and the source of reac-
tive species used when the antioxidant action is examined. There 
is no universal ‘perfect’ antioxidant – the title essentially depends 
on the source, nature and severity of the oxidative insult. The use 
of antioxidants as a therapeutic strategy in both prevention and 
treatment of chronic diseases has been widely advocated [1,4,9,32]. 
Besides antioxidants, such as vitamin C and vitamin E, several 
synthetic compounds with potential antioxidant and free-radical 
quenching properties, such as the nitrone-based free radical trap 
a-phenyl-tert-butylnitrone, known as PBN, have been extensively 
studied as potential therapeutic agents. The pharmacological and 
potential therapeutic effects of these antioxidants have been exam-
ined in preclinical and clinical studies [32,33]. Several plant-derived 
compounds also possess potent antioxidant and free-radical scav-
enging properties. These natural antioxidants, many possessing 
polyphenolic, flavonoid, carotenoid and terpenoid structures, have 
demonstrated their usefulness in the prevention and treatment of 
several illnesses, such as cancer, diabetes, cardiovascular diseases 
and neurodegenerative disorders [1,10,19,34,35]. 

Oxidative stress & neurodegenerative diseases 
A large body of evidence has accumulated over the past few years 
that strongly implicates free radical-induced oxidative damage in 
the pathogenesis of several neurodegenerative diseases, such as 
AD, PD, dementia and stroke [2,9,36–39]. Post-mortem studies in 
patients suffering from neurodegenerative diseases have shown 
increased levels of oxidative markers of lipid, protein and DNA 
damage [40]. Both ROS and RNS have been implicated in the etiol-
ogy of degeneration [5,40]. The extremely high amount of oxygen 
and glucose consumption renders the brain especially sensitive to 
oxidative damage [41]. The CNS processes approximately 20% of 
basal oxygen consumption, although the brain constitutes only 
approximately 2% of total body weight. The brain is also extremely 
rich in more easily peroxidizable fatty acids and phospholipids and 
is also not particularly abundant in antioxidant enzymes. It has 
been shown that the brain has only 10% catalase activity compared 
with the liver. ROS production in the brain is essentially due to the 
mitochondrial respiratory chain, which is also the most abundant 
source of the superoxide anion. Other sources of neuronal ROS 
include mixed function oxidases, as well as several other oxidative 
processes, such as the oxidative deamination of catecholamines [42]. 

Besides ROS, RNS have also been implicated in the patho
physiology of neurodegenerative diseases. NO is a highly diffus-
ible gas that plays an important role in neurophysiological pro-
cesses. In the brain, endothelial and neuronal forms of nitric oxide 
synthase are essentially responsible for regulating NO production 
under normal physiological conditions. However, in response to 
stressful pathophysiological stimuli, such as infection, trauma 
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and neuronal injury, microglia and astrocytes become activated 
and secrete several mediators of inflammation, such as cytokines. 
This in turn leads to expression of iNOS, which results in mas-
sive NO production. NO reacts rapidly with superoxide to form 
ONOO-, which is one of the most reactive RNS [43]. ONOO- 
reacts with several biological macromolecules, such as membrane 
lipids, enzymes, transporters and other proteins [44]. ONOO- has 
been shown to react with carbon dioxide forming an adduct that, 
upon subsequent decomposition, forms various other RNS [45]. 

Several neurochemical mechanisms have been proposed that 
address the involvement of oxidative stress in several neuro
degenerative diseases. Mitochondrial dysfunction, resulting in 
impaired energy (ATP) production and increased free radical pro-
duction, has been implicated as a significant mechanism of neuro
degeneration. Thus, reduced activities of several mitochondrial 
processes, especially complex I, have been observed [46,47]. The role 
of mitochondrial respiration in free radical generation, oxidative 
stress and neurodegeneration has been critically reviewed by sev-
eral researchers [48–51]. Neurochemical mechanisms of oxidative 
stress-induced neuronal damage in neurodegenerative diseases 
and the potential neurotherapeutic properties of antioxidants have 
been presented in several excellent reviews [2,4,5,20,32,52]. 

Oxidative stress, mitochondria, antioxidants & AD
Alzheimer’s disease is the most common form of progressive 
dementia associated with the aging population. The already high 
incidence of this neurodegenerative disease is predicted to have a 
dramatic increase owing to an increasingly aging population in 
the world. It is estimated that the approximately 4 million cases of 
AD in the USA will rise to a staggering 13 million by 2050 [53,54]. 
In the past two decades, a significant amount of effort has been 
invested in preclinical and clinical paradigms to understand the 
etiology and pathophysiology of AD, with a view to producing 
effective therapeutic options. One of the most characteristic patho-
logical findings in AD brain is the accumulation of amyloid-b 
(Ab) peptide, derived from the amyloid precursor protein. AD also 
shows neurotransmitter deficiency, with the most characteristic 
observation being loss of cholinergic markers [55]. An overwhelm-
ing amount of evidence implicates oxidative stress in the patho
physiology and progression of AD. Formation of free radicals, both 
ROS and RNS, has been shown to contribute to the development 
of this disease [8,56–58]. Studies have found 
increased amounts of Fe3+ and Al3+ ions in 
the brain of AD patients, suggesting that 
redox processes play a catalytic role in the 
generation of free radicals [59]. Increased 
lipid peroxidation has been documented in 
AD, as evidenced by significantly increased 
malondialdehyde and 4-hydroxy-2-nonenal 
levels in multiple brain regions, as well as in 
the cerebrospinal fluid of AD patients com-
pared with normal subjects [60,61]. Several 
studies have reported evidence for protein 
oxidation in AD. Protein carbonyl moieties 
are increased in several brains regions, such 

as frontal lobe and hippocampus, in AD subjects compared with 
age-matched controls. Another study found elevated levels of nitro-
tyrosine in AD brains [62,63]. Besides lipids and proteins, nucleic 
acids are also susceptible to oxidative damage in AD. Mecocci et al. 
showed an increase in 8-hydroxy-2-deoxyguanosine, a biomarker of 
both nuclear and mitochondrial DNA in AD subjects [64]. Studies 
on the amyloid precursor protein transgenic mouse model of AD 
have consistently shown elevated levels of markers of oxidative 
stress [65,66]. The presence of Ab also increases the formation of 
free radicals and elevates markers of oxidative stress in numerous 
in vitro studies [67,68]. 

The role of mitochondria in the pathogenesis of AD has been 
extensively studied and neuronal mitochondrial damage has been 
suggested as the primary cause of AD [69]. AD subjects show 
significantly higher levels of damaged mitochondria than age-
matched controls [70,71]. Mitochondrial respiration contributes to 
free radicals, and mitochondrial impairments have been observed 
and implicated in AD [49,56,70]. In these cases, damaged mitochon-
dria are not able to maintain cellular energy demands, leading 
to increased free radical production, interruption of oxidative 
phosphorylation and, ultimately, decreased ATP levels [69]. Long 
and coworkers have reported that aged rats show decreased levels 
of endogenous antioxidants and decreased activities of mitochon-
drial complexes I, IV and V, and that this damage was restored 
by mitochondrial antioxidant therapy [72].

In AD, oxidative damage in the frontal cortex increases with 
the severity of the disease [73]. This increase in oxidative dam-
age correlated with a decrease in cellular antioxidant defense 
mechanisms [73]. The increase with oxidative damage has been 
linked to defective oxidative phosphorylation in the mitochon-
dria. These defects include reduced levels of complex IV activity 
(cytochrome C oxidase) [74,75] and reduced complex V activ-
ity [76], resulting in lower levels of ATP. In addition, Ab may be 
directly linked to apoptosis. Evidence in differentiated neuronal 
SK-N-BE cells demonstrated that Ab affected mitochondrial Bax, 
Bcl-2 and the release of cytochrome C, resulting in increased 
apoptosis (Figure 1) [77].

A considerable amount of effort has been invested in the past 
decade to examine the potential use of antioxidants as a therapeutic 
strategy in AD [1,4,52]. The pharmacological effects of several agents 
with antioxidant properties, such as acetyl-l-carnitine, b-carotene 

Figure 1. Mitochondrial respiration complexes associated with free radical 
production and reduced activity and/or expression.
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from carrots, lipoic acid, omega-3 fatty acids obtained from fish oil 
and selenium, as well as vitamin C and vitamin E, are the focus of 
several preclinical and clinical studies in AD [78–80]. Several plant-
derived products have received attention as potential therapeutics 
in AD. Most notable of these are the sesquiterpenic trilactone 
bilobalide and its biosynthetic precursor ginkgolide. Bilobalide is 
under investigation by several groups and is suspected to be a key 
agent that produces several of the reported neuroprotective effects 
of Gingko biloba extracts [81,82]. The aforementioned compounds 
fall outside of the scope of this review owing to their chemical 
structure type, and we will not detail their pharmacology further.

The therapeutic efficacy of vitamin E, the most studied anti
oxidant in AD, has been shown to be extremely disappointing. 
Only one study has shown vitamin E to be partially effective in AD 
and most studies have failed to observe any therapeutic or cognitive 
benefits due to vitamin E [83]. According to the conclusions of the 
Cochrane Database there is no evidence of the efficacy of vitamin E 
in the prevention or treatment of people with AD or mild cognitive 
impairment [84]. Some studies suggest that vitamin E treatment 
may even be detrimental in AD patients [85]. 

Components of vitamin E may have differential antioxidant 
effects in the AD brain. For example, 5-nitro-g-tocopherol was 
shown to be significantly increased in AD brain [86]. When 
g-tocopherol and a-tocopherol were evaluated for their ability 
to protect rat mitochondrial a-ketoglutarate dehydrogenase 
from peroxynitrite (generated by SIN-1), it was found that 
only g-tocopherol afforded protection [86]. These data suggest 
that g-tocopherol is a better scavenger of peroxynitrite and may 
account for its increased nitrated form in AD brain. 

In recent years, several plant-derived molecules, mostly from 
dietary sources, with antioxidant properties, such as organosulfur 
compounds primarily obtained from garlic, soy isoflavones, lyco-
pene from tomato, tea polyphenols and many other dietary agents, 
have shown promising neuroprotective effects in preclinical mod-
els of AD [19]. The potential therapeutic benefits of these dietary 
antioxidants in AD are currently under intense investigation 
across the globe [10,18]. Praticò provides an excellent summary of 
notable clinical studies that investigated the potential therapeutic 
benefits of antioxidant therapy in AD patients [57]. 

Dietary antioxidant polyphenols
Several epidemiological studies have highlighted the important 
role of fruits, vegetables, nuts and spices in the diet in lowering 
the risk of chronic illnesses, such as cancer and neurodegenerative 
diseases [87]. In recent years, several dietary agents have gained 
considerable attention as potential preventive and therapeutic 
agents for several serious maladies [88]. Almost three decades ago, 
the National Academy of Sciences recommended the daily con-
sumption of five or more servings of fruits and vegetables daily in 
its ‘Five-a-Day’ program [89]. The therapeutic potential of dietary 
agents is due to the presence of several bioactive molecules with 
potent antioxidant properties [34,90]. The Food and Nutrition 
Board of the National Research Council in the USA has defined 
a dietary antioxidant as a substance in foods that significantly 
decreases and counteracts the adverse effects of free radicals, such 

as ROS and RNS, on normal physiological function in humans [91]. 
Dietary antioxidants come from diverse and wide-ranging sources; 
however, most possess several unsaturated alternate double bonds, 
hydroxyl groups and more than one phenolic group. The multiple 
hydroxyl groups present in polyphenolic molecules react with per-
oxides forming quinines and reducing the peroxide moiety. It has 
been suggested that it is the aforementioned structural proper-
ties that underlie the potent antioxidant and free radical quench-
ing properties of these biomolecules [92]. Endogenous enzymatic 
and nonenzymatic antioxidants protect against ROS and RNS 
generated under normal physiological conditions. However, it is 
the exogenously administered antioxidants, under conditions of 
insult-induced excessive free radical production, that reduce the 
risk of tissue injury and consequential development of serious 
diseases in human populations [93].

The term polyphenols popularly refers to a diverse group of 
chemical substances found in the plant kingdom. More than 
8000 compounds having more than one phenol moiety have been 
identified and divided into approximately ten different classes, 
such as curcuminoids, flavonoids, phenyl propanoids, stilbenes 
and lignans [94]. Polyphenols are secondary metabolites and are 
essential for plant defense against viral, bacterial and fungal infec-
tions. They also protect plants from abiotic processes, ultraviolet 
irradiation, ozone, temperature fluctuations, wounding and tox-
ins [95]. Growing evidence regarding the health benefits of dietary 
products, such as fruits, vegetables, legumes, spices, honey, oils 
and popular beverages such as beer, wine and tea, can be attrib-
uted to polyphenols [96,97]. Polyphenolic compounds have been 
shown to be involved in apoptosis, gene transcription and signal 
transduction mechanisms, and also possess potent antioxidant 
properties. The aforementioned pharmacological effects afford 
polyphenols with preventive and therapeutic benefits in several 
chronic age-related illnesses [98,99]. Polyphenols have been exam-
ined for their potential therapeutic effects in neurodegenerative 
diseases, especially AD and PD [19,100]. 

A considerable amount of data, accrued in the past decade, has 
convincingly demonstrated the antioxidant, anti-amyloidogenic 
and neuroprotective effects of polyphenols in preclinical in vivo 
and in vitro models of AD. Anthocyanins obtained from ber-
ries; catechins and theaflavins – the tea polyphenols; curcumin 
obtained from turmeric; resveratrol present in peanuts, grapes 
and red wine; the dihydrochalcones aspalathin and nothofagin 
from rooibos; and mangiferin found in honeybush, are the most 
significant and important dietary polyphenols that have been 
investigated for their neuroprotective effects in paradigms related 
to the pathobiology underlying aging and AD [10–18,101–106]. 
Chemical structures of some major dietary polyphenols are 
depicted in Figure 2. The pharmacological effects of these poly-
phenols in models of oxidative stress in brain (presented in Table 1) 
strongly suggest that these polyphenols may also possess consid-
erable potential as prophylactic and therapeutic agents in AD. 
A succinct review highlighting the botanical and geographical 
sources, chemical characteristics, epidemiological evidence and 
other highlights of these important phytochemicals is presented 
in the following sections.
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Anthocyanins
Anthocyanins, such as cyanidin, delphinidin, malvidin and 
petunidin, are a group of water soluble polyphenols responsible 
for the red, blue and purple colors and antioxidant property of 
berries. These water soluble, pigmented polyphenolic compounds 
occur in high concentrations in several popular berry fruits of 
Vaccinium as well as other genera, such as bilberry, blackberry, 
blueberry, cranberry, raspberry and strawberry, as well as cher-
ries and currants. Significant levels of polyphenols have also 
been reported in a wide range of edible berries found all over the 
world, such as boysenberry, cloudberry, elderberry, huckleberry, 
lingonberry, mulberry and wineberry. Several epidemiological 
studies have highlighted the health benefits of anthocyanins in 
chronic illnesses, such as cancer, diabetes and neurodegenera-
tive diseases  [107–109]. The antioxidant and free radical quench-
ing properties of anthocyanins have been highlighted in recent 
years [110]. A review of scientific as well as popular literature reveals 
that the anticancer effects of anthocyanins have been most studied 
in recent years. However, the neuroprotective and antioxidant 
effects of anthocyanins present in several dietary sources, such as 
blueberries, have been documented in several preclinical patho
etiological models of neurodegenerative diseases and are high-
lighted in Table 1. A recent study showed that tart cherry juice, 
a rich source of anthocyanins, protected healthy older men and 
women against forearm ischemia–reperfusion-induced oxidative 
damage, while also decreasing several markers of oxidative stress 
compared with a control group [111]. 

Another major source of anthocyanins is pomegranate (Punica 
granatum) – recently touted as a ‘super fruit’. Pomegranate is an 
ancient fruit praised since biblical times for its curative properties. 
It has gained prominence in recent years as a potential therapeutic 
agent in several major illnesses and its antioxidant and therapeutic 
effects are under current investigation [112,113]. 

Catechins & theaflavins
Tea, made from the leaves of the Camellia sinensis plant, is, after 
water, the most widely consumed beverage in the world and espe-
cially popular in Asian cultures. White, green, oolong and black tea 
are obtained from the same botanical source and vary in degree of 
processing, namely drying and fermentation. Tea is a particularly 
rich source of polyphenolic compounds, known as catechins and 
theaflavins [16]. The degree of processing decreases the quantity of 
catechins and increases the theaflavin content. Hence, white and 
green teas have the highest levels of catechins, and theaflavins are 
mostly found present in black tea [114]. Several epidemiological stud-
ies suggest the regular consumption of tea as an important factor 
responsible for the lowered occurrence of several age-related diseases 
and longevity in several far eastern cultures, such as Japan. Tea poly-
phenols have been a subject of intense investigation to identify their 
potential therapeutic properties in various serious illnesses [115–116]. 
Of all the polyphenols present in tea, epigallocathechin-3-gallate, 
popularly known as EGCG, is the most widely used and studied 
tea polyphenol [12,15,17]. Catechins and theaflavins have been shown 
to possess significant antioxidant and neuroprotective effects in 
preclinical models of neurodegenerative diseases, especially AD Ta
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and PD [10,11,19,117,118]. Tea polyphenols, especially EGCG, have 
consistently demonstrated their antioxidant potential against free 
radicals, such as superoxide anion, as well as iron-induced [12–14] and 
age-associated lipid peroxide accumulation in the brain [119]. Besides 
their antioxidant effects, tea polyphenols have also been shown to 
effect several cellular and molecular targets in signal transduction 
pathways associated with cell death and cell survival [11,16–18]. One 
of the important pharmacological effects that make tea polyphenols, 
especially EGCG, attractive candidates in the pharmacotherapy of 
AD, is the beneficial effects on age-related cognitive deficits and 
memory loss [120]. In a recent study, EGCG showed accumulation in 
mitochondria and displayed protective effects against mitochondrial 
oxidative stress in rat neurons, making it an attractive molecule for 
mitochondrial antioxidant therapy in AD [121]. 

Curcumin 
Popularly known as Indian saffron, the curry spice turmeric con-
tains intense yellow colored curcuminoid polyphenols, such as 
curcumin, desmethoxycurcumin and bis-desmethoxycurcumin. 
Turmeric (Curcuma longa) is a rhizome grown in tropical regions 
of South Asia. Curcuminoids possess significant antioxidant and 
anti-inflammatory properties and have shown therapeutic prom-
ise in autoimmune, cardiovascular, pulmonary, neoplastic and 
neurodegenerative diseases, as well as age-related maladies [122]. 
Curcumin is one of the most investigated molecules obtained 
from a dietary agent. It was almost a decade ago that epide-
miological studies by Ganguli and coworkers suggested a link 
between reduced prevalence of AD in the Indian population 
with the consumption of turmeric in food [123]. Following this 

Figure 2. Dietary polyphenols. 
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observation several in vivo and in vitro studies have documented 
the neuroprotective effects of curcumin in preclinical models of 
AD and PD [18,124]. Curcumin showed protective effects greater 
than the classic antioxidant vitamin E against Ab-induced toxicity 
in PC12 cells [125]. Although the free radical quenching prop-
erty of curcumin has been firmly established, it shows several 
other pharmacological effects besides its antioxidant activity [126]. 
Curcumin has been shown to chelate redox-active metal ions, such 
as Cu2+ and Fe2+, preventing metal-induced Ab aggregation [127]. 
Curcumin treatment also upregulates Nrf-2 dependent genes 
that encode for several cytoprotective proteins and antioxidant 
enzymes [128]. Recently, Garcia-Alloza and coworkers showed that 
curcumin not only crosses the BBB but also binds to Ab and accel-
erates its clearance rate [129]. Based on these findings, curcumin is 
considered as a therapeutic option in the treatment of AD [130,131]. 

Dihydrochalcones
Rooibos (Aspalathus linearis) is a member of the legume family of 
plants, and indigenous only to a small area in the western Cape 
of South Africa. Its dried and fermented leaves and twigs are used 
to make herbal tea that has been popular locally for generations 
and is now exported and consumed in many countries. The anti-
oxidant activity of rooibos derives from flavonoids that include 
the dihydrochalcones aspalathin (2 ,́3,4,4 ,́6́ -pentahydroxy-3 -́
C-b-d-glucopyranosyldihydrochalcone) and its structural analog 
nothofagin (differing only in that it lacks the A ring catechol group, 
see structures depicted elsewhere) [132]. Inanami et al. mounted a 
study to examine the effect of long-term (>20 months) adminis-
tration of rooibos extract on lipid peroxidation in rat brain using 
the thiobarbituric acid reactive substances (TBARS) assay [103]. As 
alluded to earlier, increased lipid peroxidation is strongly associated 
with AD and aging in humans [60,61]. In the study by Inanami and 
coworkers [103], lipid peroxides were found to be significantly higher 
in the frontal and occipital cortex, the hippocampus and in cerebel-
lum of control groups of 24-month-old animals compared with 
juveniles (aged 5 weeks). However, rats fed rooibos extract added 
to their diet ad libitum from the age of 3 months until they were 
sacrificed at 24 months had no significant elevation of markers for 
lipid peroxidation. Remarkably, in an additional MRI study by the 
same authors, the signal intensities for age-related markers in the 
frontal cortex, hippocampus and cerebellum of rooibos-treated rats 
mimicked those in 5-week-old rats, yet the same areas in untreated 
24-month-old rats showed significant age and lipid peroxidation-
related elevation of these markers. Thus, these authors conclude 
that their observations suggested that age-related accumulation 
of lipid peroxides in the brain, which was closely correlated with 
the morphological changes observed by MRI, reveal that chronic 
rooibos administration prevented age-related accumulation of lipid 
peroxides in several regions of rat brain [103].

Resveratrol 
Resveratrol is a stilbene polyphenol present in several dietary and 
nondietary plant sources. It is found in significant amounts in ber-
ries, peanuts and grapes, as well as red wine [133,134]. It is a phyto-
alexin, its synthesis being induced by bacterial and fungal attack. 

Plants also produce resveratrol to counteract environmental stress, 
such as ultraviolet radiation and ozone exposure [135]. Resveratrol, 
the most widely studied molecule of dietary origin in recent years, 
gained significant prominence from the paradoxical observation 
made almost two decades ago that the French suffer a relatively low 
incidence of coronary heart disease, despite having a diet rich in 
saturated fats. It is believed that it is the moderate consumption of 
red wine (a rich source of resveratrol) that was responsible for this 
physiological phenomenon termed the ‘French paradox’  [136,137]. 
Resveratrol, a powerful antioxidant, has shown promise as a pre-
ventive as well as therapeutic agent in several inflammatory and 
oxidative stress-mediated illnesses, such as cardiovascular, neo-
plastic and neurodegenerative diseases [138,139]. Resveratrol shows 
pleiotropy in its pharmacological profile and, besides its promi-
nent antioxidant effects, acts on multiple cellular targets [140]. The 
mechanisms implicated in the anticancer, cardioprotective and 
neuroprotective effects of resveratrol include, but are not limited 
to, inhibition of both synthesis and release of proinflammatory 
mediators, inhibition of inflammatory enzymes, such as iNOS 
and COX-2 and inhibition of the NF-kB signaling pathway [141]. 
Han and coworkers have reviewed the neuroprotective effects of 
resveratrol in several in vitro and in vivo models of neuronal injury, 
including AD and PD [142]. Resveratrol afforded protection against 
insult, attenuated oxidative injury and reversed cognitive deficits. 
Several studies in recent years have shown the neuroprotective and 
anti-amyloidogenic effects of resveratrol in both in vivo as well as 
in vitro models of AD, as presented in Table 1 and reviewed by several 
researchers [10,18,19]. Resveratrol has been shown to be permeable 
across the BBB [143] and also to scavenge free radicals in mitochon-
dria [141], making it an extremely important molecule of choice for 
mitochondrial antioxidant therapy in AD.

Xanthones
A number of shrubs indigenous to the Cape Fynbos region of 
South Africa include the genus Cyclopia, the most common of these 
being Cyclopia intermedia, or the honeybush shrub. This species 
has been used for generations to produce honeybush herbal tea, 
which has been widely consumed in South Africa [132]. Several 
polyphenols, including the xanthones mangiferin and isomangif-
erin, as well as the flavanones hesperidin and eriocitrin, have been 
isolated from the honeybush. Of these compounds, mangiferin has 
been most widely studied in paradigms that relate to underlying 
pathophysiological mechanisms of AD. Sánchez et al. reported 
that mangiferin protected against 12-O-tetradecanoylphorbol-13-
acetate (TPA)-induced oxidative damage in mouse brain [144]. In 
addition, mangiferin offered significant (22%) protection against 
DNA fragmentation in brain compared with TPA controls and 
reduced lipid peroxidation in brain homogenates by 39%. Work 
by Gottlieb et al. showed that neuronal cell death caused by glu-
tamate in in vitro cell cultures was decreased in the presence of 
submicromolar concentrations of mangiferin [104]. In these cul-
tures, receptor-mediated calcium influx was attenuated, oxidative 
stress was mitigated and a significant curtailment of apoptosis 
was measured. In vivo, mangiferin diminished the generation of 
measured free radicals due to transient forebrain ischemia, and 
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mitigated neuronal loss measured post-mortem in the hippo
campal CA1 region in rats. Of importance is that mangiferin was 
administered after the insult [104]. Mangiferin may also improve 
long-term cholinergic-associated memory deficits, presumably by 
acetylcholinesterase inhibition or stimulation of cholinergic recep-
tors, and inhibition of activation of NF-kB. In studies by Jung 
et al., oral mangiferin significantly reversed scopolamine-induced 
passive avoidance test deficits in the mouse, improved escape laten-
cies in training trials and improved performance in the Morris 
water maze test [105]. In addition, the xanthone also reduced acetyl
choline and TNF-a levels induced by scopolamine in mouse brain, 
while simultaneously inhibiting NF-kB activation in microglial 
cells [105]. Studies by the group of Matute indicate that mangiferin 
reduces the formation of ROS and activates enzymatic antioxidant 
systems to restore the mitochondrial membrane potential  [106]. 
Simultaneously, the compound inhibits glutamate-induced activa-
tion of calpains to normalize levels of phosphorylated Akt kinase 
and Erk1/2 and cytosolic Bax. Additionally, mangiferin was shown 
to inhibit apoptosis-inducing factor release from mitochondria, 
and regulated the nuclear translocation of NF-kB  [106]. These 
combined results demonstrate that mangiferin exhibits promis-
ing antioxidant and antiapoptotic properties that may qualify the 
compound as a neuroprotecting agent in pathologies that involve 
excitotoxic neuronal death, including AD.

Expert commentary
The significant contribution of oxidative stress in the patho
physiology of AD highlights the critical role of the use of anti
oxidants as an important therapeutic strategy in the treatment of 
AD. The use of antioxidants from dietary agents remains a safe 
and effective treatment option that deserves serious attention. 
The virtual explosion of preclinical data in the past decade sup-
ports the neuroprotective properties of polyphenolic compounds, 
especially anthocyanins, catechins, curcumin, resveratrol, the 
dihydrochalcones aspalathin and nothofagin, and the xanthone 
mangiferin, as potentially important therapeutic agents for AD. 
However, a considerable amount of effort is required before the 
therapeutic potential of these polyphenols is realized.

The substantial literature of preclinical evidence highlighting 
the neuroprotective role of dietary polyphenols strongly suggests 
the need for translational research. Although the data are strongly 
suggestive of the therapeutic potential of these agents, only well-
designed clinical trials can critically evaluate their therapeutic 
efficacy. It is important that measurement of selective clinical 
markers of oxidative stress be carried out along with the evalua-
tion of the clinical end points. Furthermore, it should be kept in 
mind that the promising therapeutic effects of vitamin E against 
AD seen in preclinical studies could not be duplicated in several 
subsequent clinical trials [65,83]. Although dietary antioxidants 
as part of a daily diet are deemed safe, the issues of proper dose 
optimization and potential toxicity are also important consider-
ations during clinical studies. Epidemiological studies that eval-
uate the possible relationship between regular consumption of 
dietary antioxidants as part of a normal diet, and the development 
of AD may also contribute to the assessment of the therapeutic 

potential of dietary antioxidants. Considering the critical role of 
mitochondrial dysfunction and oxidative stress, it is highly desir-
able to test these agents for mitochondrial antioxidant therapy in 
the treatment of AD.

Although several polyphenolic antioxidant molecules have shown 
considerable neuroprotective effects in rodent models of amyloid 
pathology, this has not been successfully translated in human 
paradigms. Dietary polyphenols, such as curcumin and green tea 
catechins, show extremely low bioavailability in humans and it has 
been suggested to be an important reason for the poor clinical trial 
outcomes [145]. It has also been suggested that the low brain concen-
trations achieved by the aforementioned agents may act in concert 
with the endogenous antioxidants in providing neuroprotection 
and may also be responsible for lack of toxicity of polyphenols, 
which is observed with other administered antioxidants. 

Bioavailability and drug delivery are other areas that require 
development. A careful consideration of these aspects is par-
ticularly critical due to reported concerns about the poor bio
availability of polyphenolic antioxidants [146]. It is especially 
important to determine whether these agents are permeable to 
the BBB. Recently, the use of novel drug delivery systems has 
been suggested to improve bioavailability of dietary polyphenols. 
Formulations consisting of colloids, micelles, nanoparticles, cyclo-
dextrin complexes and lipid microparticles have been evaluated 
with some early success [147–149]. 

Preclinical studies evaluating the pharmacological effects of 
dietary polyphenols utilized both the pure chemical compounds, 
such as curcumin, resveratrol and mangiferin, as well as botanical 
extracts, such as green tea extract, pomegranate juice, grape skin 
extract and rooibos extract. It becomes difficult to interpret the 
results of studies that utilize botanical extracts since they contain 
a mixture of dietary antioxidants and other components, the rela-
tive concentrations of which may vary depending upon the source 
and method of preparation of these extracts. Therefore, chemi-
cal characterization of such extracts is of critical importance. 
It has been suggested that several dietary antioxidants may be 
therapeutically more effective when used in combination rather 
than in single pure form. Many studies reveal that several com-
pounds of dietary origin, effective in combination, were found 
to be ineffective when used in isolation [150]; thus, biochemical 
mechanisms that form the basis of this synergistic activity require 
systematic elucidation. 

In conclusion, dietary polyphenols are powerful antioxidants 
that have pleiotropic effects and show considerable promise as 
safe and effective agents in the treatment of AD. Nevertheless, 
a significant amount of work and systematic efforts are required 
before the therapeutic potential of these agents can be realized. 

Five-year view
Preclinical studies evaluating the neuroprotective effects of 
dietary polyphenols is expected to increase significantly in the 
next few years. It is also expected that preclinical data will lead 
to several clinical trials in selected population cohorts to exam-
ine the therapeutic efficacy, safety and bioavailability of these 
agents. In recent years, the use of natural products and nutritional 
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supplements for the prevention and mitigation of chronic illnesses 
has generated tremendous enthusiasm more among the popula-
tion and less so among clinicians. However, several polls suggest 
that, within the next decade, the medical community is expected 
to become more receptive to the use of natural products in health-
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