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Abstract

Oxidative stress and inflammation are significaniskr factors for
neurodegenerative disease. The Keapl-Nrf2-ARE mathve one of the most
promising defensive systems against oxidative stidsre, dozens of piperlongumine
analogues were designed, synthesized, and testedP@lIR cells to examine
neuroprotective effects against®t and 6-OHDA induced damage. Among thesd,
was found to be able to alleviate the accumulatibROS, inhibit the production of
NO and downregulate the level of IL-6, which indexhits potential antioxidant and
anti-inflammatory activity. Further studies prowbat6d could activate Nrf2 signaling
pathway, induce the translocation of Nrf2 from agitosol to nucleus and upregulate
the related phase Il antioxidant enzymes includt@O1, HO-1, GCLC, GCLM and
TrxR1. These results confirmed théd exerted antioxidant and anti-inflammatory
activities by activating Nrf2 signaling pathway. Mover, the parallel artificial
membrane permeability assay indicated #htcan cross the blood-brain barrier. In
general,6d is promising for further development as a therdéipedrug against

oxidative stress and inflammation related neurodegive disorders.

Keywords. Piperlongumine analogues; Oxidative stress; Newoteptive effect;

Keapl-Nrf2-ARE pathway
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1. Introduction

Neurodegenerative diseases (ND), including Alzh€snedisease (AD),
Parkinson's disease (PD), and multiple Sexual azier(MS), are general term for
diseases caused by chronic progressive degeneddtimentral nervous tissue [1 - 3].
These diseases have a common pathological featuch, as changes in the tissue
redox balance accompanied by the activation of agi@l cells [4]. The pathological
processes of neurodegenerative diseases are @sdowidh generation of reactive
oxygen species (ROS), which cause oxidative s{igs©Oxidative stress is supposed
to play a key role in the development and progogssif various diseases [5, 6]. For
AD, oxidative stress can aggravate the depositioAand phosphorylation of tau
protein, and promote Aand tau-mediated neurotoxicity. Furthermore, tres@nce of
AP and tau is also resulted in the increase of RQ3][6lhese consequences, however,
will further aggravate the oxidative stress responshich forms a vicious circle.
Moreover, oxidative stress leads to cellular dysfiom and demise, especially playing
a major role in the degeneration of dopaminergiroies in the pathogenesis of PD [8].
Consequently, preventing ROS production and reduciridative stress may be a
crucial therapeutic target for ND treatment.

The Keapl-Nrf2-ARE system plays a key role in adtent and
anti-inflammatory mechanisms, which is one of themcellular defense mechanisms
against oxidative stress. As a dominant regulatarell, Nrf2 fights against oxidative
stress by activating anti-oxidative stress protesaush as NQO1, GCLM, TrxR1, HO-1,

and GCLC, and phase Il detoxification enzymes 1&8]- Recently, related studies have
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shown that the Keapl-Nrf2-ARE pathway could be dbpiactivated during the
development of neurodegenerative diseases [12Fhwikirelated to the production of
ROS. In addition, Nrf2 also regulates the expressiof HO-1 to achieve
anti-inflammatory effect [13, 14]. In recent yearsrystal structure of Keapl-
sulthydryl composite has been published, and covateodification of cysteine-rich
Keapl protein by electrophilic molecules becomesimportant strategy for the
activation of Nrf2 [14]. The modulators are clagsifinto Michael acceptors, polyenes,
isothiocyanates, oxidizable, organosulfur compounidgalent arsenicals, diphenols,
heavy metal species and selenium-containing conmgsoyib5]. Dimethyl fumarate
(Tecfidera) is the first Nrf2-inducer approved byDA for the treatment of
remitting-relapsing multiple sclerosis [16, 17].uBh chemicals with an electrophilic
scaffold, especiallyr, B-unsaturated ketone structure, might be potenvatcdlis of
Nrf2 [18, 19]. Many natural products, such as restrel [20], butein [21], caffeic acid
[22] and curcumin [23], exhibit the potential totigate Nrf2. These scaffolds could
covalently bind to cysteine residues of Keapl, lteguin dissociation of Nrf2 from
Keapl, and translocation of Nrf2 from cytosol te tiucleus [24].

Piperlongumine (PL) is an alkaloid isolated fromdapepper [25]. According to
previously published studies, PL could increase RI@S level in cancer cells [26].
Researchers have found that PL has protectivetedigainst AD, such as lowering
cholinesterase levels, reducing neuroinflammation @nhibiting amyloid plaque
formation [27, 28]. Based on the previous reseaselgeral general structure-activity

relationships (SAR) have been identified. It reselat the presence of 7, 8-olefin is
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required. In addition, studies have shown that IBrohsubstitution may increase the
electrophilicity of 2, 3-olefins, thereby enhanciragtivity [29, 30]. But few
modifications on the position 2 and the lactam fd’L were reported. In this study,
the lactam ring, the position 2 of PL, and the atenring were changed to study the
SAR of PL. We reported herein the design, synthasid biological evaluation of a
series of PL analogues.
2. Results and discussion
2.1 Chemistry

PL analogues were synthesized by coupling acylricide and commercially
available lactamsSheme 1) according to the published procedures with minor
modifications [10]. All target compounds were cluaesized by'H NMR, *C NMR,
and HRMS.

Scheme 1. Synthesis of PL analods
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#Reagents and conditions: (a) NaH, THF, 0 °C, 30; ifih Trimethylacetyl chloride,
TEA, DCM, 0 °C, 30 min; (c) NaH, DCM, 0 °C, 30 min.
2.2 Protection of PC12 cells against H,0,- and 6-OHDA-induced cell damage by PL
analogues

The cytotoxicity of all compounds toward the PCEAswere determined by the
MTT assay. As shown iRigure S2, PL, PL-1, 6a, 6b, 6i and6l displayed significant
toxicity to the cells at high concentration (B®1), and there were no apparent toxicity
of the other tested compounds toward the PC12 ael&uM. Two classic cellular
models, 6-OHDA and $D, induced PC12 cell damage models, were established
evaluate the neuroprotective effect of the targetnmounds [30]. The specific
concentration of kD, (200 uM) and 6-OHDA (150uM) were chosen for the further
study, where cell viability was approximately 50%igure S1).

The biological evaluation suggested that the 2,08tpn Michael acceptor
moiety in PL could increase the cytotoxicity. Whte carbon atom of the lactam ring
of PL was replaced by theitrogen atom, such asPL-3 which showed better

neuroprotection activity than that &iL-2. It was concluded that removing the



119 B-unsaturated irb-valerolactam ring of PL could improve the neurdpotion. As
120 expected,PL-4 displayed lower cytotoxicity Higure S2A) and better protection
121  (Figure1l) in the initial screening. Few studies report thecamdant activity of PL by
122  replacing its lactam ring with 2-imidazolidone stiwres. We paid our attention on the
123 modifications of the PL lactam with substitutedd@zolidones, anBL -4 was selected
124 as a leading compound for the follow-up studies.
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126  Figure 1 Initial screening of PL analoguegainst 6-OHDA- or kD,-induced PC12
127 cell damageData are the mean + SD of three independent expatsn(**p) < 0.01
128 compared with the control group;pf < 0.05 compared with #D,-treated or
129 6-OHDA-treated group.
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Figure 2. The docking models of icomporid(A) and 6 (B) with the BTB domain of
Keapl (PDB: 4CXT).

Glide program in Schrodinger was utilized to prédhe potential binding model
betweenl and Keapl BTB domairF{gure 2A). The covalent docking results showed
that1 could form acovalently bond with residue CYS151 of Keapl, teezene ring
from 1 formedn-n stacking with residue HIE154, and the carbonylugrérom thea,
B-unsaturated ketone and the lactam carbonyl graumed hydrogen bonds with
residues GLY148, LYS131 and GLY145. The dockingiitssdisplayed that the residue
LYS150 as a hydrogen bond donor around the interfaacket is very close to the
ligand. With this in mind, compourlhaving a hydrogen bond acceptor wiasigned,
and the docking result showed that the added pr/dtagment did form hydrogen
bond with residue LYS150~(gure 2B). In this point, compounds 2, 3 and4 without
pivaloyl and compounds, 15, 20 and21 with pivaloyl were designed and synthesized.
The experimental results showed that the addedaqyivalay crucial roles in their
neuroprotective activities6( 15, 20 and 21 vs. 1, 4, 3 and 2, Tables 1 and 2). To
further verify the influence of added pivaloyl toet expression of Nrf2. PC12 cells
were treated with compoundsand6 for 24 h, and the expression of Nrf2 was detected
by western blot. As showed iRigure 3, the expression of Nrf2 was significantly
upregulated, and the upregulation of Nrf2 6ywas more obvious than that of
compoundL. The results suggested that the pivaloyl growit# to activate Nrf2.

To validate the SAR, a variety of additional argadbgueq1 - 28) with different

benzyl groups varying fronpara and ortho to meta substituents were synthesized
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(Tables 1 and 2). All the target compounds showed negligible ayxatity (Figure
S2A). Different substituted groups were introducedpteenyl. The 4'-F substituted
compound6 exhibited potent neuroprotection with cell vialyil(73.58%) better than
that of 14 and 13 (4'-F > 2'-F > 3'-F). The 4'-Cl substitute®l exhibited potent
neuroprotection better than that bf and18 (4'-Cl > 2'-Cl > 3'-Cl). It is well known
that the majority nature of heterocycles is serasdhydrogen bond donors and
receptors. In this study, heterocycles were utlliereplace the aromatic group in the
scaffold of PL. Several compounds substituted grf20), thiopheng21), pyridine
(22), naphthalend24), 1, 3-benzodioxolg25) were synthesized. Unfortunately, the
neuroprotection was not improved compared to thepounds containing phenyl.
Among the tested compounds, the compounds withtretegvithdrawing groups
showed better neuroprotective activity than thahwhe electron-donating groups. The
monosubstituted compounds(73.58%),13 (70.97%) andl4 (72.43%) show better
neuroprotective activity than the polysubstituteampounds16 (63.55%) and26
(59.15%). It is remarkable th&tshowed best protection against 6-OHDA an®H
induced PC12 cell damagédbles 1 and?2).

Table 1 The neuroprotection of PL analogues substituted different aryl group

Cell viability (%)

Compd. Structure
H,0, 6-OHDA

M odel 46.00+4.12  45.23+4.37

1 /@(\*Néw 68.57+2.88 69.13 + 3.4
F
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65.15 + 3.86

64.08 + 3.55

67.66 +4.15

53.56 + 1.29

64.2+1.74

60.00 +2.72

65.32 +4.72

56.32 +2

& Cell viability (%) of PC12 cells were detected e tMTT assay after 24 h of

incubation with compounds at the concentration @fu® with H,O, (200 uM) or

6-OHDA (150uM). Data are the mean + SD of three independergraxgnts.

Table 2 The neuroprotection of PL analogues substituted different aryl group

o) )
X 0O
L
el viability (%)? el viability (%)
Compd. R Compd. R
H,0, 6-OHDA H,0, 6-OHDA
Model 46.00+4.12 4523+437| 17 @\)\ 70.01+455 69.01 +2.39
Cl

6 J@/\ 7358+355 7223+272 18 (;/\ 69.21+1.87 68.32+4.06

F cl
7 /@A 70.15+3.86 69.21+074| 19 /@A 60.36 +2.42 56.73 +1.30

ON
8 Q/\ 72.05+215 71124323 20 @)\ 69.66 +4.15 68.31+4.72

Cl
9 J@)\ 7222+211 7079+282| 21 \S/ 69.23+3.86 68.21 +4.55

Br

HaCO
10 HGCOI;) 72184076 72324225 22 S 70.91+532 69.58+2.51

OCHs N~#

1 J@/\ 71.14+181 7032+3.09| 23 ©)\ 71.41+45 71.12+4.02

HsCO




175

176

177

178

179

180

181

182

183

184

185

12 @A 61.52+3.22 60.08+52] 24 " 72.33+3.54 71.79+5.49
o ®
13 @A 70.97 +2.54 69.32+4.19| 25 <°]©)\ 63.33+1.05 62.31+2.94
L 0
Cl
14 @ 7243+254 7233+120 26 @f\ 59.15+4.34 56.38+5.36
F F
15 F\T/@A 725+2.88 71.12+3.40| 27 @/YLM {, 73.22+2.73 72.13+6.40
F
F o o
16 /@A 63.55+1.64 61.77+254 28 @éikd{ﬂy 72.65+4.48 71.21+2.62
Br ©

& Cell viability (%) of PC12 cells were detected ByetMTT assay after 24 h of
incubation with compounds at the concentration @fu® with H,O, (200 uM) or

6-OHDA (150uM). Data are the mean + SD of three independergraxgnts.

400+ Ho
2
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Nri2 -— “ -110 g 200-
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Control 1 6 (20 uM) 0-
N A [
™

Figure 3 The expression of Nrf2 in PC12 cells after treathveith compoundd and®6.
(**p) < 0.05, Data are presented by mean + SD (n = 3).

As exhibited inTable 3, compounds6a, 6b, 6i, and 6l displayed obvious
cytotoxicity at low concentrationg={gure S2B). In addition, their neuroprotective
effect were eliminated or weakened, which may lated to their toxicity. When the
position 2 ofN-terminus was connected to the aromatic struciaweh a$k, 61 andgj,

the neuroprotective effects of them were reducetiemVcarbonyl was connected to
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piperidine 6€), N, N-dimethyl 6¢) and N-methyl, N-ethyl 6d), the neuroprotective
effects were significantly enhanced. It is remal&akthat 6d showed excellent
neuroprotective effect (75.01%). To verify whether p-unsaturated ketone is an
essential group for neuroprotection, compouRdss, 5 andém were synthesized and
evaluated their neuroprotective effects. As exmgkct®mmpoundsPL-4 (68.80%),1
(68.57%) andbd (75.01%) exhibited potency neuroprotective effethwell viability
better than that oPL-6 (55.78%),5 (53.56%) andém (59.50%), respectivelyln
general, we synthesized a seriesPbf analogues following the strategy shown in
Figure 4 and evaluated their neuroprotective activities.odgithemgd showed lower
cytotoxicity (Figure S2B), best neuroprotective effecigble 3), and was chosen for
the follow-up studies.

Table 3 The neuroprotection d?L analogues substituted with different groups

Cell viability (%)?

Compd. Structure
(H20,-induced) (6-OHDA-induced)
Model 46.96 + 4.12 45.65 + 4.37
[e] 0 o
6a S ﬂNJ}/ 38.05 + 3.20 30.23+4.35
F
o o
6b @M%NJL 43.96 +5.43 43.76 +5.01
F
o [e}
o)
6 jongess 73.82 +1.39 71.32 +2.87
F /
o o
o]
6d @/VLNJ(N»« 75.01 +2.02 75.44 + 2.29
F L/ /N’\

Q o
N O
6e @A)L“{f,N—QN 72.8+1.19 72.14 £ 2.60
F O
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6f w“&NJE 70.42 + 4.51 7227 +2.21
F

o fo)
69 @Mvﬁ(ﬂ{ 71.58 + 4.55 70.23 £3.72
F o J(i )
6h N NJ&\ 70.15 + 3.86 69.26 + 1.74
o,
F o /[2
o N (0]
6i F J@A)LLNJ&@ 43.25 + 4.15 37.12 +3.23
(o} o
_ W
6i K 62.25+2.11 60.79 + 2.82

i R p
6k FWL Jb 63.28 £0.76 60.32 £5.25

~SAGA 2
6l : u”b 55.14 + 4.81 52.32 +2.09
9 o o
6m O 59.5 + 4.20 62.45+ 1.20
F /N—\

Cell viability (%) of PC12 cells were detected bg tMTT assay after 24 h of
incubation with compounds at the concentration®fil with H,O, (200uM) or

6-OHDA (150uM). Data are the mean + SD of three independergraxgnts.

saturated and unsaturated
Pharmacophore C
'4 -

O’ ------- . o o
X Investigate SARs of PL N 0
AR - @A)Lh@—/(
N
F / N\
Pharmacophore A Pharmacophore B
Electron withdrawing group lactone,'carbamate 6d
Electron-donating group benzamide '
Hetero ring Unsaturated Amides

Figure 4 The design of the modifications of PL

2.3. Antioxidant effect of 6d

2.3.1. Defense of PC12 Cells against H,O, or 6-OHDA induced cell damage in a dose
dependent manner by 6d

Initially, we investigated the cytotoxicity of atompounds on the PC12 cells (a

rat pheochromocytoma cell line), BV2 cells (mouskroglia), and L02 cells (an
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immortal hepatic). As shown iRigure S3, no apparent toxicity was observed at 50
uM. In Figures 5A and5B, compared with control group, cells pretreatechved (5,

10 and 20uM) for 24 h followed by treatment with J@,- and 6-OHDA exhibited
stronger viability in dose-dependent manners. ltactiehydrogenase (LDH) is an
important indicator of membrane integrity [31]. Tonfirm the cytoprotection ddd,
the content of LDH leakage aftep®h- or 6-OHDA-treated was determined. As shown
in Figures 5C and5D, the content of LDH was up-regulated byQd or 6-OHDA, and
the release amount of LDH increased 2.8-fold arg@ifdld that of the control
respectively, which was the same as the expecwdtré\fter pretreatment witled,
the leakage of LDH was significantly reduced. Thewee results indicated that the
non-toxic concentration oéd could prevent the neurotoxicity induced byQdand

6-OHDA in PC12 cells.



220

221

222

223

224

225

226

227

228

229

230

231

125+ H,0,(200uM) 125+ 6-OHDA(150pM)

*okk
Hookok

Cell viability by MTT assay(% Control)
Cell viability by MTT assay(% Control)

T
N L) AQ N

L]
o o 2 A ® . \Q\(“ \\07“
(SN 6d(;M)

6d(uM)

@)
C

- SopuN
H,0,(200pM) 6-OHDA(150uM)

»
o
o

LDH Activity(% Control)
S

T P T ;

LDH Activity(% Control)

o

2004

[
o
o

2 1504

Z- 100

-
o
o

50

)
0

T T T
6d(uM)

5 O AD &

> N »
3 &0 \\9 ’ o \\0'
e 6d(uM) ¢ O

Figure 5. Protection of6d against HO,- (A) and 6-OHDA-induced (B) PC12 cell
damage, determined by MTT assay. Protectio®dfagainst HO,-induced (C) and
6-OHDA-induced (D) PC12 cell damage was measuredhbyLDH release assay.
Data are the mean + SD of three independent expatan(**p)< 0.01 and (***p)<
0.001 compared with the control groupp)(< 0.05, ('p) < 0.01 and ("p) < 0.001
compared with B, -treated or 6-OHDA-treated group.
2.3.2 Prevention of ROS accumulation in PC12 cells

Oxidative stress response to ROS is a key initiafarxidative damage induced
by H,O, and 6-OHDA. In order to study the protectionédfto the oxidative damage
in PC12 cells,the level of ROS was quantified by dichlorofluoreisc diacetate

(DCFH-DA) using flow cytometry [32, 33]. When PC¢tells were exposed to,B, or
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6-OHDA, the intracellular ROS fluorescence intensincreased significantly.
However, when pretreated with an increasing comagah of6d (5, 10 and 2QM),
the ROS levels decreased in a dose-dependent mimngeres 6A and6B). The result
suggested th&d effectively reduced pD,- and 6-OHDA-induced ROS accumulation.
2.3.3 Alleviation of H»O,- and 6-OHDA-induced intracellular mitochondrial
dysfunction by 6d

Mitochondria are important mediators of cell metayo and main producers of
ROS. The reduction of mitochondrial membrane paefdMMP) is a sign of early
apoptosis. The reduction of cell membrane poterta be detected by the red
fluorescence of JC-1 converted to green fluores ). Figures 6C and6D showed
that HO, and 6-OHDA reduced the MMP of PC12 cells, indiogtthat HO,- and
6-OHDA caused the mitochondrial dysfunction. Inttast, pretreatment of PC12 cells
with 6d before exposure to 4, or 6-OHDA could significantly increase the MMP.
These results showed thét had potent protection against®- or 6-OHDA-induced

mitochondrial dysfunction in PC12 cells.
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248 Figure 6. The effects oféd on HO.-induced (A) and 6-OHDA-induced (B)
249 intracellular ROS production in PC12 cells. Thdselere stained with DCFH-DA and

250 immediately determined by flow cytometry. The effeof 6d on HO,-induced (C)
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and 6-OHDA-induced (D) MMP reduction in PC12 ceMiVIP were detected by flow
cytometry after JC-1 staining. Data are presentgdnban + SD (n = 3). (***p)X
0.001 compared with the control groupp)(< 0.05, ('p) < 0.01 and ("p) < 0.001
compared with KD, -treated or 6-OHDA-treated group.

2.3.4 Alleviation of H,O,- and 6-OHDA-induced PC12 cell apoptosis

To investigate the anti-apoptosis ability o6d against HO,- and
6-OHDA-induced cell damage, quantified Annexin V-FITC and propidiiodide (P1)
were used to evaluate apoptotic cells by flow cyogn[35]. As shown irFigure 7A,
compared with the control group, the apoptosis cdté*C12 cells increased from
5.71% (control group) to 25.38% 4B, treated group) after treatment with®3 for 24
h. In contrast, the rates of apoptotic cells wegaicantly reduced when #D,-treated
PC12 cells were co-incubated wisd (5, 10 and 2QM), the cell apoptosis rate was
reduced to 16.45%, 7.62%, and 6.52%spectively. Similarly, inFigure 7B, the
apoptosis rate of PC12 cells increased from 3.28%tfol group) to 27.5% (6-OHDA
treated group) after treatment with 6-OHDA for 24ahd the cell apoptosis rate was
reduced to 19.17%, 15.07%, and 10.83% after tHe w@re pretreated witbd (5, 10
and 20uM).

Hoechst 33342 is a blue fluorescent dye that caetpate cell membranes and is
commonly used to detect apoptosis. After stainingages were captured using a
high-content imaging system. As shown kigures 7C and 7D, both HO, and
6-OHDA could cause PC12 cell apoptosis. The apmptaiclei were characterized by

highly fluorescent aggregates, while no obviouspagiic nuclei were observed in the



273  control group. Pretreatment of cells wi6d significantly reduced the number of
274 apoptotic nuclei, which indicated théd showed significant neuroprotective effect

275 against HO,- and 6-OHDA-induced apoptosis.
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277  Figure 7. Prevention of PC12 cells from,8.-induced (A) and 6-OHDA-induced (B)
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apoptosis byd. Apoptotic cells were detected by flow cytometfiea AnnexinV and
Pl double staining. (C, D) Images showed the apmptwuclei by Hoechst 33342
staining. The top panel is phase contrast pictiaed,the bottom panel is fluorescent
pictures. Scale bars: 10dn. Data are presented by mean + SD (n = 3). (*¥®).001
compared with the control groupp) < 0.05 and (p) < 0.01 compared with #D,- or
6-OHDA-treated group.
2.3.5 The reduction of H,O,-induced and 6-OHDA-induced Ca”* overload on PC12
cellsby 6d

Increased ROS will react with cellular proteinscleic acids,et al., to cause
cellular barriers to affect cellular €ainflux. C&* has been shown to mediate
cytotoxicity of oxidative stress. Fluo-3 AM fluoimnt probe can be used to detect the
concentration of Gdin the cell, and the relative intensity of i reflected by the
fluorescence intensity [36, 37]. After being stiaield with HO, or 6-OHDA for 24 h,
the intracellular C& was almost 3.3 times and 1.8 times, respectiViélyufes 8A, B).
Compared with the control group, the intracellufeee C&" fluorescence value
increased from 5537.87 (control group) to 17791(BBO, treated group) after
treatment with HO, for 24 h. In contrast, pretreatment of PC12 cefih 6d (5, 10
and 20uM) before exposure to 4@, sharply dropped the intracellular free *Ca
fluorescence value to 8721.73, 7793.41, and 6730:&pectively. Similarly, the
intracellular free CA fluorescence value increased from 3998.83 (comrolp) to
6708.18 (6-OHDA treated group) after treatment VéBt@®HDA for 24 h. Pretreatment

of PC12 cells withéd (5, 10 and 2QuM) before exposure to 6-OHDA significantly
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dropped the intracellular free €afluorescence value to 4910.91, 4204.33, and
4161.82, respectively. The experimental resultsvglbthat6d in PC12 cells could
prevent 6-OHDA- or HO,-induced C&' overload. It was in agreement with the results
of ROS, MMP and apoptosis above, which suggestat Gth could be used as a

potential neuroprotective agent for the treatmé&mO.
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Figure 8. Effects oféd on H:0,-induced (A) and 6-OHDA-induced (B) €aoverload
in PC12 cells. Data are presented by mean + SD &). £*p) < 0.05 and (***p) <
0.001 compared with the control groupp)(< 0.05 and (p) < 0.01 compared with

H.O,-treated or 6-OHDA-treated group.

2.3.6 The Activation of the Keapl-Nrf2-ARE Pathway and the Induction of the

Downstream Antioxidant Proteins Expression in PC12 Cells by 6d

As confirmed above,6d showed potent protection on PC12 cells against
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6-OHDA- or HO,-induced cell damage, alleviated ROS accumulataitgchondrial
dysfunction, C& influx, and cell apoptosis. We hypothesized tha antioxidant
activitie of6d is related to the activation of Nrf2o verify whether6d could activate
the Nrf2-Keapl-ARE pathway, the expression of Nrf2 d@sddownstream antioxidant
proteins were detected by Western blot. The prdésiel for Nrf2 was maximal after a
3 h treatment of with the highest concentratdn(20 uM), the protein levels for HO-1,
GCLM reached maximum at 12 h, and the protein kef@l TrxR1, NQO1 and GCLC
reached maximum at 24 HrigQure 9A). Western blot analysis demonstrated that
treatment withéd for 24 h resulted in a remarkable increase of th2-kegulated
proteins (NQO1, HO-1, TrxR1, GCLM, and GCLC) in asd-dependent manner
(Figure 9B) [38].

DPPH (diphenyl-1-picrylhydrazyl) and ABTS radicatasenging method was
used to assess the antioxidant activities of thesgounds in vitro where Trolox was
used as a positive [39, 4@d is incapable of intercepting either DPPH or ABT&ef
radicals Figure $4), which indicated thatd exerted neuroprotective effect as an
activator rather than direct radical scavenger.

The translocation of Nrf2 from cytosol to nucleus prerequisite for the
expression of Nrf2-dependent proteins. To confinat tvhethebd could transfer Nrf2
from the cytoplasm to the nucleus. First, we chddke nuclear and cytoplasmic Nrf2
expression. Nuclear Nrf2 accumulation increased imalky at 6 h. Cytosol Nrf2
accumulation increased maximally at 3 h and dedlafeer 6 h. These results indicated

that6d promoted the transfer of Nrf2 to the nucleus, Wwhiacilitates the binding of
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Nrf2 to ARE for the transcription procesgtigure 9C) [41]. Besides, to confirm

whether6d exerted the anti-inflammatory or antioxidant aityivoy activating Nrf2

signaling pathway, antioxidant assay was performeth the existence of Nrf2
inhibitor brusatol or the HO-1 inhibitor zinc prgkarphyrin IX (ZnPP) existed [30]. As
shown inFigures 9D and9E, 6d alleviated the KO, or 6-OHDA induced cell death at
20 uM, while this neuroprotective effect was almost lgeed in the group pretreated
with brusatol or ZNPP. This result demonstratedt tN&f2 was essential for the

neuroprotective effect @d in PC12 cells.
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Figure 9. 6d could increase the expression of nuclear and oltodNrf2, TrxR1,

NQO-1, HO-1, GCLM and GCLC in a time (A) and do®) @ependent manner.

Promotion of Nrf2 nuclear accumulation bg (C). Brusatol (D), ZnPP (E) affected

the protection obd. PC12 cells were incubated for 30 min in the preseoféd (20

uM) together with brusatol (10 nM) or ZNPP (10 nM)agp to stimulation with HO,

(150 uM) for 24 h, determined by MTT assay. Data are gmé=d by mean £ SD (n =

3).
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2.4 Anti-inflammatory effect of 6d

The excessive activation of microglia plays an intguat part in neuronal damage
and death caused by AD and PD neuroinflammatioh MO release is a vital feature
of microglia activation. Excessive NO productionncaause inflammation [43].
Besides, many researchers believe that HO-1 regguthé inflammatory process and is
related to the Nrf2 / ARE pathway [44 - 46]. Cotleely, activating Nrf2 is an
excellent method to reduce the inflammatory pro¢48k The anti-neuroinflammation
property was measured using the Griess method dmiexe the effects déd on the
production of NO. The results showed that after 18 h incubation with LPS
(1ug/mL), the level of NO increased sharply comparethe control group. However,
the levels of NO dose-dependently decreased whe B\Mcroglia cells were
pretreated withed before exposed to LP3igure 10A). It is well known that the
release of inflammatory factors contributes to deeelopment of inflammation. IL-6
is an important indicator to evaluate the activatategree of macrophages and the
progress of inflammatory response [47, 4&].significantly attenuated LPS-induced
production of IL-6 in BV2 microglia cells FHfgure 10B). The potential
anti-inflammatory effect may be related to the\ation of the Nrf2 signaling pathway.
We determined the expression of Nrf2 and its doast anti-oxidant proteins using
Western blot. As shown iRigure 10C, treatment of BV2 microglia cells witbd for
24h could significantly upregulate the expressidn tleese proteins with dose
dependent manner, which was similar with that inLPCells. Then, to investigate

whether activation of Nrf2 is responsible for theianflammatory effect obd, Nrf2
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was knockdown by siRNA. Then the control siRNA- &2 siRNA-transfected BV2
microglia cells were pre-treated wiid (20 pM) and stimulated with LPS for another
18 h. The level of Nrf2 decreased sharply in NiRNA-transfected BV2 microglia
cells Figure 10D). Furthermorefd (20 uM) could significantly reduce LPS-induced
NO production in control siRNA-transfected BV2 nagtia cells Figure 10E) [49 -
51]. However, the suppressive effectsedf (LM) was obviously suppressed in Nrf2
siRNA-transfected BV2 microglia cells. Similar résuwere observed in experiments
to determine the effects of Nrf2 knockout on thieitaition of IL-6 production Figure
10F). These results demonstrated tlgat exerted anti-inflammatory effect with a

Nrf2-dependent manner in BV2 microglia cells.
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Figure 10. Contribution of Nrf2 to the anti-inflammatory efteaf 6d. (A) 6d reduced
the production of LPS-stimulated inflammatory méatia NO in BV2 microglia cells.

(B) 6d reduced the production of LPS-induced IL-6 in BMiroglia cells. The levels
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of IL-6 were measured by ELISA kites. (6 dose dependently induced expression of
Nrf2 and its downstream antioxidant proteins in B¥fficroglia cells. (D) Nrf2
expression in Control siRNA- and Nrf2 siRNA-trarfd BV2 microglia cells. (***p)
< 0.001 compared with the control grouppj < 0.01 and ("p) < 0.001 compared
with LPS-treated group. Transfection of BV2 miciagkells with Nrf2 siRNA
reversed suppressive effectsof (20 uM) on NO (E), IL-6 (F) production following
LPS stimulation. **g0.01 and *g0.05 in comparison with control siRNA-transfected
cells. Data are presented by mean £ SD (n = 3).
2.6 Molecular docking study between 6d and Keapl

Keapl has strict regulation on the activation off2NrThe oxidative or
electrophilic agents covalently bind to the cysteiith Keapl protein, thereby
changing conformational of Keapl to prevent thegquibination of Nrf2, thus activate
Keapl-Nrf2-ARE pathway. According to previous rdpprother Michael receptors
may activate the Nrf2 pathway by reacting with C8$lor other reactive cysteine
residues in Keapl [4, 52]. Considering thap-unsaturated ketone 6t is a Michael
receptor moiety, which is possible to react wittstejne residues of keapl. So the
covalently docking study was performed used Glidseld onthe X-ray crystal
structure of BTB domain of KEAP1 in complex with OD (PDB: 4CXT) Figure
11). The result of covalent docking showed tldt could covalently bonding with
CYS151 of Keapl, the benzene ring formen stacking with residue HIE154, and the
carbonyl group o#, B-unsaturated ketone and carbonyl lactam formeddggir bonds

with residues GLY148, LYS131 and ARG135. Theethyl, N-methylformamide
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fragment formed hydrogen bonds with LYS150. Thevabiesults suggested théd
may covalently bind to Keapl, triggered the releafshirf2 from Keapl, and further
promoted Nrf2 translocate into nucleus, where itded to the ARE to initiate the
expression of Nrf2-dependent genes and

proteins.

IE 129

Figure 11. The docking model od with representative CYS in Keapl. 3D image of

covalent docking betweesd and CYS151 in the BTB domain (PDB: 4CXT).
2.7 In vitro blood-brain barrier (BBB) permeation assay

Favorable blood-brain barrier (BBB) permeability essential property for a
central nervous system (CNS) drug. To verify wheédecan penetrate the blood-brain
barrier, PAMPA-BBB assay was used. This method fash and efficient method to
evaluate the BBB permeability, established byetal, and is widely used in the initial
screening of drugs [53]. Eight clinical drugs withfferent blood-brain barrier
permeability were selected to set up the modable 4). A plot of experimental data
versus bibliographic values gave a good linearetation, Pe (exp.) = 1.080Pe (bibl.)
+ 1.046 (R = 0.9885) Figure S5). According to this equation and considering the
limit established by Di et al. for BBB permeatiahwas concluded that compounds

with Pe > 5.36x18cm $' can be considered to show good BBB permeation (ENS
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Based on the measured permeability (Pe = (6.78)>010%°cm s' cm / s),6d could
cross the BBB.
3. Conclusion

In conclusion, a series of novel Piperlonguminel@nees as antioxidant and
anti-inflammatory agents was designed and syntedsiamong these analoguésl
exhibited the most potent protective effect agagx@HDA- or HO,- induced PC12
cell damage. The biological evaluation showed @dkits a neuroprotective compound
via alleviation or neutralization of ROS accumudati mitochondrial dysfunction, cell
apoptosis and reduces ‘Caverload. Notablysd could reduce the production of NO
and IL-6 in LPS-stimulated BV2 microglia cells, iodting its potential
anti-inflammatory activity,. ROS scavenging and gytiection effect oféd was
implemented by activating Nrf2 and upregulatingtedl phase Il antioxidant enzymes,
such as HO-1, NQO1, GCLM, GCLC, and TrxR1. We alkecked the nuclear and
cytoplasmic expression of Nrf2, these results iatid thabd promoted the transfer of
Nrf2 to the nucleus. Interestingly, the protectefect of 6d could be significantly
weakened by Nrf2 inhibitor brusatol or HO-1 inhdsit ZnPP at non-toxic
concentrations, confirming that the antioxidant anti-inflammatory activity obd is
related to the activation of Nrf2. The result ofetlparallel artificial membrane
permeability assay indicated trggt would be inclined to cross the BBB. These results,
together with the relative safety profile, indicghtthat 6d is promising for further
development as a therapeutic drug against oxidatiress- and inflammation-related

neurodegenerative disorders.
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4. Experimental section
4.1. Chemistry
All conventional reagents and solvents are purchasesctly from commercial

companies and no further purification is requirednalytical thin-layer
chromatography was used to monitor the progresiseofeaction on a pre-coated silica
gel GF254 plate (Qingdao Haiyang Chemical Plantg@ao, China), and to detect
spots under ultraviolet light (254 nm). After themaction is worked up, the product is
isolated by rapid purification preparative liquidromatography (Biotage, Isolera One,
Sweden). The melting point was measured with an4Ximicro-melting point
instrument without correction. THe! NMR and**C NMR spectra were measured at
25 °C with a Bruker ACF-500 / 600 spectrometer, egférence was made to TMS.
The residual solvent line is designated as thenatestandard, the chemical shift is
expressed in ppnd), and the split mode is designed as s, singlaedpdblet; t, triplet;
m, multiplet. An Agilent 6520B Q-TOF mass spectroene(Agilent Technologies,
Santa Clara, California, USA) was used for higleheson electrospray ionization
(HRESI) mass spectrometry.
4.2 Preparation
4.2.1 Preparation of compounds PL-1~PL-6 andcompounds 1-5

The starting material, 5, 6-dihydrd4ipyridin-2-one, 2-piperidone, propyleneurea,
2-imidazolidone and 2-piperazinone (1 equiv.) wakleal to tetrahydrofuran or
dichloromethane under nitrogen, and added NaH (®vgdo the reaction mixture at

0 °C for 15 minutes. Then, (+) - cinnamyl chlorideequiv.) was added to the mixture
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with stirring at 20 °C for 30 min. The reaction wgsenched with saturated NaHgO
solution, and then extracted twice with ethyl atetdhe combined extracts were then
washed successively with .8, brine, and dried over anhydrous ,8@y. After
concentration under reduced pressure, the residsegquickly purified by using a flash
silica gel column (PE / EtOAC).

1-cinnamoyl-5,6-dihydropyridin-2(1H)-one (PL-1)

Yield 64%, white powder. m.p. 95-97 °&4 NMR (500 MHz, CDC}) § 7.75 (d,
J=15.7 Hz, 1H), 7.58 (dd, = 5.2, 2.0 Hz, 2H), 7.52 (d,= 15.5 Hz, 1H), 7.37 (dd},
= 5.2, 2.0 Hz, 3H), 6.93 (di,= 9.7, 4.2 Hz, 1H), 6.05 (di,= 9.8, 1.9 Hz, 1H), 4.04 (t,
J = 6.5 Hz, 2H), 2.48 (mJ = 6.3, 4.1, 1.9 Hz, 2HC NMR (125 MHz, CDGJ) 6
168.95, 165.77, 145.38, 143.61, 135.15, 130.02,7/72828.34, 125.90, 121.91, 41.62,
24.83. HRMS (ESIw'z 250.0840 [M+Nal (calcd for 250.0838, GH1sNNaO, ).
1-cinnamoyl piperidin-2-one (PL-2)

Yield 94%, white powder. m.p. 85-87° & NMR (600 MHz, CDC}) ¢ 7.71 (d,
J=15.6 Hz, 1H), 7.59 - 7.55 (m, 2H), 7.45 Jd 15.6 Hz, 1H), 7.37 (dd,= 5.1, 2.1
Hz, 3H), 3.80 (tdJ = 5.3, 4.4, 2.0 Hz, 2H), 2.61 (td= 6.1, 5.0, 3.7 Hz, 2H), 1.91 —
1.87 (m, 4H).13C NMR (150 MHz, CDGJ) ¢ 173.88, 169.76, 143.20, 135.05, 129.98,
128.74, 128.28, 122.06, 44.64, 34.95, 22.57, 20BMS (ESI) m/z 230.1169
[M+H] " (calcd for 230.1176, GH1eNO; ).
1-cinnamoyltetrahydropyrimidin-2H)-one PL-3)

Yield 25%, yellow powder. m.p. 189-191 °& NMR (500 MHz, CDCJ) 6 7.80

(d,J = 15.7 Hz, 1H), 7.74 (d} = 15.7 Hz, 1H), 7.62 (dd,= 7.2, 2.0 Hz, 2H), 7.40 (d,
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J=6.6 Hz, 3H), 3.96 - 3.91 (m, 2H), 3.43Jt 5.6 Hz, 2H), 2.06 (p] = 6.0 Hz, 2H).
3¢ NMR (125 MHz, CD{) ¢ 168.57, 142.79, 135.38, 129.75, 128.93, 128.68.262
122.13, 41.92, 40.78, 21.84. HRMS (EBI¥ 231.1125 [M+H] (calcd for 231.1128 ,
Ci13H15N20y).
1-cinnamoylimidazolidin-2-oneP(-4)

Yield 84%, white powder. m.p. 205-207 °& NMR (600 MHz, CDCJ) ¢ 8.03
(d, J = 15.8 Hz, 1H), 7.82 (d] = 15.8 Hz, 1H), 7.65 - 7.60 (m, 2H), 7.38 (dds 4.9,
2.4 Hz, 3H), 5.02 (s, 1H), 4.08 (ddi= 8.6, 7.3 Hz, 2H), 3.59 - 3.52 (m, 2K5C NMR
(150 MHz, CDC}) ¢ 165.95, 156.81, 144.22, 135.09, 130.11, 128.78,4%2 118.35,
42.65, 36.63. HRMS (ESHVz 217.0965 [M+H] (calcd for 217.0972, GH1eNO> ).
4-cinnamoylpiperazin-2-oné-5)

Yield 14%, yellow powder. m.p. 140-142 &l NMR (500 MHz, CDC)) J 7.74
(d, J = 15.3 Hz, 1H), 7.57 - 7.51 (m, 2H), 7.39 (dds 5.2, 2.0 Hz, 3H), 6.81 (d,=
15.3 Hz, 1H), 4.35 (s, 2H), 3.91 (s, 2H), 3.47Jd, 6.2 Hz, 2H)**C NMR (125 MHz,
CDCls) 6 165.39, 144.31, 134.79, 130.10, 128.91, 127.98,911 48.97, 40.74, 38.83.
HRMS (ESI)m/z 231.1123 [M+H] (calcd for 231.1128 , GH1sN20; ).
1- (3-phenylpropanoyl) imidazolidin-2-onBL(-6)

Yield 58%, yellow powder. m.p. 121-122 °@&4 NMR (500 MHz, DMSOedg) &
7.56 (s, 1H), 7.28 (] = 7.4 Hz, 2H), 7.23 (d] = 7.1 Hz, 2H), 7.18 () = 7.2 Hz, 1H),
3.78 - 3.72 (m, 2H), 3.32 (s, 2H), 3.11J& 7.8 Hz, 2H), 2.84 () = 7.8 Hz, 2H):C

NMR (125 MHz, DMSOek) 0 172.18, 156.48, 141.75, 128.76, 128.73, 126.33142
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36.81, 36.23, 30.66. HRMS (EShvz 241.0945 [M+Na] (calcd for 241.0947,
CiH1aNoNaoy).
4.2.2 General procedures for the preparation of (1-5)

Concentrated 2-Imidazolidone (1 equiv.) were addeabsolute dichloromethane
under nitrogen, and added NaH (3 equiv.) to theti@ma mixture was stirred atC for
15 minutes and then added to (+)-cinnamyl chlomdth different substituents (1
equiv.) to the reaction mixture was stirred at°0for 30 min. After the reaction was
completed, it was quenched with saturated NaklG@ution, and then the mixed
liquid was extracted twice with ethyl acetate. Toenbined extracts were then washed
with H,O and brine, and dried over anhydrous,®a;,. After concentration under
reduced pressure, the residue was quickly puriiedsing a silica gel column (PE /
EtOAC).

(E)-1-(3-(4- (trifluoromethyl) phenyl) acryloyl) imatkolidin-2-one 1)

Yield 63%, white powder. m.p. 195-197 °& NMR (500 MHz, CDCJ) ¢ 8.00
(d,J = 15.7 Hz, 1H), 7.82 (d = 15.7 Hz, 1H), 7.64 (dd,= 8.3, 5.4 Hz, 2H), 7.11 (@,
= 8.3 Hz, 2H), 5.35 (s, 1H), 4.12 {t= 7.9 Hz, 2H), 3.60 () = 7.9 Hz, 2H)**C NMR
(125 MHz, CDCY}) ¢ 165.82, 163.87(dJ .t = 249.5 Hz), 156.68, 142.93, 131.35,
130.36, 118.07, 115.90 (d,..+= 21.25 Hz), 42.66, 36.62. HRMS (ESI) m/z 235.0871
[M+H] * (calcd for 235.0877, GH1oFN,Oy).

(E)-1-(3-(thiophen-2-yl) acryloyl) imidazolidin-2-on@)
Yield 54%, white powder. m.p. 128-129 °tH{ NMR (600 MHz, CDC}) 6 7.85

(d,J = 15.5 Hz, 1H), 7.57 (d = 15.5 Hz, 1H), 7.49 (d] = 1.7 Hz, 1H), 6.65 (d] =



538 3.4 Hz, 1H), 6.46 (dd] = 3.4, 1.8 Hz, 1H), 5.35 (s, 1H), 4.06 (dcs 8.6, 7.3 Hz, 2H),
539 3.54 (dddJ = 8.7, 7.4, 0.9 Hz, 2H)}3C NMR (150 MHz, CDG)) § 165.83, 156.70,
540 151.69, 144.64, 130.56, 115.84, 114.92, 112.25644236.61. HRMS (ESIm/z
541 245.0351 [M+Na] (calcd for 245.0355, GH1oN,NaO:S).

542 (E)-1-(3-(furan-2-yl) acryloyl) imidazolidin-2-one3)

543 Yield 28%, yellow powder. m.p. 198-200 &l NMR (600 MHz, CDC}) J 7.87
544 (d,J=15.5 Hz, 1H), 7.59 (d} = 15.5 Hz, 1H), 7.51 (d| = 1.4 Hz, 1H), 6.67 (d] =

545 3.4 Hz, 1H), 6.48 (dd] = 3.4, 1.8 Hz, 1H), 5.37 (s, 1H), 4.10 — 4.06 2id), 3.56 (t,J
546 =8.0 Hz, 2H).13C NMR (150 MHz, CD{) 6 165.84, 156.72, 151.70, 144.66, 130.57,
547 115.85,114.93, 112.26, 42.65, 36.62. HRMS (E$2)229.0576 [M+Na] (calcd for
548  229.0584, GoHioN2NaGs).

549  (E)-1-(3-(4-(trifluoromethyl) phenyl) acryloyl) imidalidin-2-one §)

550 Yield 66%, white powder. m.p. 187-189 °& NMR (500 MHz, CDC}) 5 8.08
551 (d,J = 15.8 Hz, 1H), 7.85 - 7.77 (m, 3H), 7.62 Jds 7.6 Hz, 1H), 7.51 (§ = 7.6 Hz,
552 1H), 5.35 (s, 1H), 4.09 (f] = 7.8 Hz, 2H), 3.57 (&) = 7.8 Hz, 2H)X*C NMR (125
553 MHz, CDCk) ¢ 165.42, 156.55, 142.30, 135.88, 131.29, 129.30,4226125.02,
554 120.22, 42.63, 36.62. HRMS (ESHVz 307.0656 [M+Na] (calcd for 307.0665,
555  CizH11FsNoNaOy).

556  1-(3-(4- fluorophenyl) propanoyl) imidazolidin-2-er®)

557 Yield 56%, white powder. m.p. 121-122 °t&i NMR (500 MHz, CDC}) § 7.20
558 (dd,J=8.1, 5.7 Hz, 2H), 6.95 (§,= 8.7 Hz, 2H), 5.20 (s 1H), 3.97 - 3.91 (m, 2H),

559  3.48 (t,J = 8.0 Hz, 2H), 3.22 (] = 7.7 Hz, 2H), 2.95 (] = 7.6 Hz, 2H)}*C NMR
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(125 MHz, CDCH) 6 172.71, 161.39 (dl o+ = 242.13), 129.99, 115.06 (@c+=21.0),
77.26, 42.30, 37.00, 36.56, 29.78. HRMS (ESI) n%2.8851 [M+Na](calcd for
259.0853, GH13FNoNaG,).
4.2.3 General procedures for the preparation of 6-29

Firstly, the cinnamic acid analogues (1 equiv.)hwdifferent substituents are
added, dropwise stir in triethylamine ice bath id&r min. then add trimethylacetyl
chloride to protect the N-H at one end. After carication under reduced pressure, the
residue was quickly purified by using a silica gelumn (PE / EtOAc). Here, do not
contact water for reaction and products, and itdee® be quickly purified and
concentrated. Concentrated 2-imidazolidone (1 epwwere added to absolute
tetrahydrofuran or dichloromethane under nitrogeemy added NaH (3 equiv.) to the
reaction mixture was stirred at 0 °C for 15 minufdsen add the above products to the
reaction mixture was stirred at 0 °C for 30 mintekfthe reaction was completed, used
quenching with saturated NaH@®olution, and then the mixed liquid was extracted
twice with ethyl acetate. The combined extractsewben washed with @ and brine
and dried over anhydrous pBO,. After concentration under reduced pressure, the
residue was quickly purified by using a silica gelumn (PE / EtOAC).
(E)-1-(3-(4- fluorophenyl) acryloyl)-3-pivaloylimidatidin-2-one 6)

Yield 62%, white powder. m.p. 146-148 °t NMR (500 MHz, CDC}) & 7.87
(d, J = 15.7 Hz, 1H), 7.82 (d,= 15.8 Hz, 1H), 7.63 (dd, J = 8.6, 5.4 Hz, 2HD97(t,J
= 8.6 Hz, 2H), 3.97 — 3.91 (m, 2H), 3.90 — 3.86 @H), 1.41 (s, 9H)**C NMR (125

MHz, CDCk) ¢ 179.51, 166.12, 164.08 (d.: = 250.13 Hz), 150.82, 144.32, 131.11,
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130.56, 117.74, 116.04 (d,.« = 21.75 Hz), 41.65, 41.23, 39.31, 26.44. HRMS (ESI)
m/z 319.1445 [M+H] (calcd for 319.1452, gH20FN,Os).
(E)-1-(3-(4-nitrophenyl)acryloyl)-3-pivaloylimidazalin-2-one (7)

Yield 64%, yellow powder. m.p. 196-197 & NMR (500 MHz, CDC}) § 8.26
(d, J = 8.7 Hz, 2H), 8.05 (d] = 15.8 Hz, 1H), 7.86 (d] = 15.8 Hz, 1H), 7.77 (d] =
8.7 Hz, 2H), 3.96 (ddd] = 9.3, 6.1, 2.2 Hz, 2H), 3.90 (ddii= 9.8, 6.0, 2.2 Hz, 2H),
1.42 (s, 9H).13C NMR (125 MHz, CDGJ) ¢ 179.39,165.37, 150.77, 148.58, 142.24,
140.88, 129.09, 124.14, 122.20, 41.67, 41.27, 32@38. HRMS (ESI/z 368.1206
[M+Na]" (calcd for 368.1217, GH1gNsNaGy ).
(E)-1-(3-(4-chlorophenyl) acryloyl)-3-pivaloylimidaidin-2-one @)

Yield 48%, white powder. m.p. 155-157 °*t{ NMR (600 MHz, CDCJ) § 7.91
(d, J = 15.8 Hz, 1H), 7.81 (dl = 15.7 Hz, 1H), 7.57 (d = 8.5 Hz, 2H), 7.38 (d] =
8.5 Hz, 2H), 3.94 (ddd] = 8.9, 6.2, 1.5 Hz, 2H), 3.88 (ddil= 9.3, 6.2, 1.5 Hz, 2H),
1.41 (s, 9H).13C NMR (150 MHz, CDGJ) ¢ 179.48, 166.00, 150.78, 144.11, 136.40,
133.29, 129.75, 129.15, 118.51, 41.64, 41.22, 32@%1. HRMS (ESIM/z 335.1146
[M+H] *(calcd for 335.1157, GH2CIN,O3 ).
(E)-1-(3-(4-bromophenyl) acryloyl)-3-pivaloylimidazdin-2-one 9)

Yield 62%, white powder. m.p. 178-180 °tf NMR (500 MHz, CDGC}) § 7.92
(d, J = 15.7 Hz, 1H), 7.79 (d] = 15.7 Hz, 1H), 7.57 - 7.46 (m, 4H), 3.97 - 3.91, (
2H), 3.91 - 3.84 (m, 2H), 1.41 (s, 9HFC NMR (125 MHz, CDG)) 6 179.00, 165.51,
150.31, 143.70, 133.24, 131.64, 129.48, 124.30,1¥1811.17, 40.75, 38.81, 25.94.

HRMS (ESI)miz 401.0461 [M+Na](calcd for 401.0471, GH1oBrN,NaOs).
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(E)-1-pivaloyl-3-(3-(3,4,5-trimethoxyphenyl) acrylgyimidazolidin-2-one 10)

Yield 45%, white powder. m.p. 114-116 €l NMR (500 MHz, CDGC}) J 7.78 (s,
2H), 6.85 (s, 2H), 3.92 (s, 8H), 3.88 (U= 8.4 Hz, 5H), 1.41 (s, 9H}’C NMR (125
MHz, CDCk) 6 179.48, 166.14, 153.40, 150.77, 145.67, 140.5@.313 117.20,
105.96, 60.95, 56.30, 41.60, 41.24, 39.33, 26./3VI8 (ESI)nVz 391.1858 [M+H]
(calcd for 391.1864, £H27N20¢ ).

(E)-1-(3-(4-methoxyphenyl) acryloyl)-3-pivaloylimidadin-2-one (1)

Yield 56%, white powder. m.p. 148-150 °tHf NMR (500 MHz, CDC}) 6 7.85
(d, J = 15.7 Hz, 1H), 7.80 (d] = 15.7 Hz, 1H), 7.60 (d] = 8.8 Hz, 2H), 6.92 (d] =
8.8 Hz, 2H), 3.95 - 3.91 (m, 2H), 3.89 - 3.85 () 23.85 (s, 3H), 1.42 (s, 9HYC
NMR (125 MHz, CDC}) ¢ 179.54, 166.47, 161.64, 150.82, 145.50, 130.37,6R?
115.45, 114.31, 55.40, 41.62, 41.19, 39.30, 26HMRMS (ESI) m/z 353.1465
[M+Na]" (calcd for 353.1472, gH2oNoNaQy ).
(E)-4-(3-0x0-3-(2-0x0-3-pivaloylimidazolidin-1-yl) pp-1-en-1-yl) benzonitrilel@)

Yield 72%, white powder. m.p. 193-195 & NMR (500 MHz, CDGC}) & 8.02
(d, J = 15.8 Hz, 1H), 7.81 (dl = 15.8 Hz, 1H), 7.73 - 7.68 (m, 4H), 3.95 (ddd 9.3,
6.1, 2.2 Hz, 2H), 3.90 (ddd, = 9.7, 6.1, 2.2 Hz, 2H), 1.41 (s, 9HJC (125 MHz,
CDCl) ¢ 179.41, 165.48, 150.78, 142.82, 139.07, 128.83,512 118.43, 113.50,
41.68, 41.27, 39.30, 26.40. HRMS (E8&t)z 348.1314 [M+Na] (calcd for 348.1319,
CiaH10NsNaOy).

(E)-1-(3-(3- fluorophenyl) acryloyl)-3-pivaloylimidaidin-2-one (3)

Yield 68%, white powder. m.p. 167-169 °& NMR (500 MHz, CDC}) & 7.94
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(d,J = 15.7 Hz, 1H), 7.82 (d} = 15.7 Hz, 1H), 7.42 — 7.33 (m, 3H), 7.11X& 7.8 Hz,
1H), 3.95 (dd,) = 8.3, 5.5 Hz, 2H), 3.92 — 3.88 (m, 2H), 1.439H). 1°C NMR (126
MHz, CDCk) ¢ 179.47, 165.88, 163.03 (d,.+ = 245.0Hz), 150.74, 144.05, 137.07,
130.42, 124.59, 119.38, 117.36 {d»; = 29.13Hz), 114.70 (d] o5 = 21.75Hz), 41.63,
41.21, 39.26, 26.40. HRMS (ESPHvz 319.1445 [M+H] (calcd for 319.1452,
C17H20FN20O3 ).
(E)-1-(3-(2-fluorophenyl) acryloyl)-3-pivaloylimidatidin-2-one (4)

Yield 61%, white powder. m.p. 160-162 °tHf NMR (500 MHz, CDC}) 6 8.27
(d, J = 15.7 Hz, 1H), 7.91 (d] = 15.7 Hz, 1H), 7.79 - 7.76 (m, 1H), 7.44 - 7.40, (
1H), 7.34 - 7.28 (m, 2H), 3.97 - 3.93 (m, 2H), 3:93.86 (m, 2H), 1.41 (s, 9H}’C
NMR (125 MHz, CDC}) ¢ 179.48, 165.79, 150.79, 141.24, 135.36, 133.11,1B3
130.13, 128.13, 127.06, 120.52, 41.63, 41.25, 32@%1. HRMS (ESIi/z 319.1445
[M+H] * (calcd for 319.1452, GHo0FN,05).
(E)-1-pivaloyl-3-(3-(4-(trifluoromethyl) phenyl) aciyyl) imidazolidin-2-one 15)

Yield 38%, white powder. m.p. 114-116 °t& NMR (600 MHz, CDC}) § 8.00
(d, J = 15.8 Hz, 1H), 7.89 (d] = 15.8 Hz, 1H), 7.85 (dl = 5.7 Hz, 2H), 7.67 (d] =
7.8 Hz, 1H), 7.56 (t) = 7.8 Hz, 1H), 3.99 - 3.95 (m, 2H), 3.94 - 3.9Q @Hl), 1.44 (s,
9H). 3¢ NMR (150 MHz, CDGJ) ¢ 179.49, 165.77, 150.74, 143.68, 135.54, 131.52,
129.42, 126.85, 125.31, 119.83, 41.66, 41.25, 328@0. HRMS (ESImM/z391.1238
[M+Na]" (calcd for 391.1240, {gH19FsN>NaGs).

(E)-1-(3-(4-bromo-2-fluorophenyl) acryloyl)-3-pivalbyidazolidin-2-one 16)



647 Yield 66%, white powder. m.p. 110-112 €. NMR (500 MHz, CDCJ) 6 8.15
648 (d,J=15.7 Hz, 1H), 7.82 (dl = 15.6 Hz, 1H), 7.76 (] = 7.1 Hz, 1H), 7.37 (d] =

649 7.9 Hz, 1H), 7.09 () = 8.2 Hz, 1H), 3.97 - 3.92 (m, 2H), 3.89 (@t 9.3, 4.4 Hz, 2H),
650 1.41 (s, 9H).13C NMR (125 MHz, CDd) 6 179.45, 165.57, 164.21, 162.21, 150.83,
651 142.57, 131.28, 129.56 (d.:= 8.88 Hz), 126.12, 120.73, 120.53, 115.31)(d,=

652 21.38 Hz), 41.65, 41.27, 39.30, 26.42. HRMS (ES1419.0366 [M+Na] (calcd for
653 419.0377, GH1sBrFN,NaGs ).

654 (E)-1-(3-(2-chlorophenyl) acryloyl)-3-pivaloylimidatidin-2-one (7)

655 Yield 49%, white powder. m.p. 162-164 €. NMR (600 MHz, CDC)) 5 7.94
656 (d,J = 15.7 Hz, 1H), 7.80 (d] = 15.7 Hz, 1H), 7.63 (s, 1H), 7.52 (= 7.3 Hz, 1H),
657 7.41 - 7.34 (m, 2H), 4.00 - 3.94 (m, 2H), 3.93873(m, 2H), 1.44 (s, 9H}*C NMR
658 (125 MHz, CDC}) ¢ 179.47, 165.78, 150.79, 141.24, 135.36, 133.11,183 130.13,
659 128.12, 127.06, 120.51, 41.25, 39.29, 26.41. HRMSIY m/z 335.1152 [M+H]
660 (calcd for 335.1157, BH20CIN2O3 ).

661 (E)-1-(3-(3-chlorophenyl) acryloyl)-3-pivaloylimidatidin-2-one (L8)

662 Yield 64%, white powder. m.p. 174-176 °& NMR (600 MHz, CDCJ) & 7.94
663 (d,J = 15.7 Hz, 1H), 7.80 (d] = 15.7 Hz, 1H), 7.63 (s, 1H), 7.52 (= 7.3 Hz, 1H),
664 7.41 - 7.34 (m, 2H), 3.99 - 3.89 (m, 4H), 1.449H).°C NMR (150 MHz, CDG)) &
665 179.49, 165.87, 150.73, 143.92, 136.58, 134.87,3530130.11, 128.18, 126.81,
666 119.34, 41.65, 41.22, 39.28, 26.40. HRMS (E®} 335.1152 [M+H] (calcd for
667 335.1157, GH20CIN2Og).

668 (E)-1-pivaloyl-3-(3-(p-tolyl) acryloyl) imidazolidir2-one (9)
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Yield 52%, white powder. m.p. 170-172 °t NMR (600 MHz, CDG}) § 7.89
(d, J = 15.7 Hz, 1H), 7.85 (dl = 15.7 Hz, 1H), 7.55 - 7.53 (m, 2H), 7.21 Jd 7.9 Hz,
2H), 3.94 (ddd] = 9.1, 6.4, 1.4 Hz, 2H), 3.87 (dd#i= 9.1, 6.4, 1.5 Hz, 2H), 2.39 (s,
3H), 1.42 (s, 9H)*C NMR (150 MHz, CDG)) 6 179.54, 166.42, 150.77, 145.81,
141.04, 132.05, 129.60, 128.65, 116.79, 41.62,048B2.29, 26.42, 21.57. HRMS (ESI)
Mz 315.1701 [M+H] (calcd for 315.1703, fgH23N203).
(E)-1-pivaloyl-3-(3-(thiophen-2-yl) acryloyl) imidaidin-2-one @0)

Yield 49%, white powder. m.p. 179-181 °tHf NMR (500 MHz, CDC}) 6 7.76
(d, J = 15.5 Hz, 1H), 7.62 (d = 15.5 Hz, 1H), 7.52 (d] = 1.6 Hz, 1H), 6.69 (d] =
3.4 Hz, 1H), 6.49 (dd] = 3.4, 1.8 Hz, 1H), 3.93 (ddd = 10.0, 6.6, 2.4 Hz, 2H), 3.89 -
3.84 (m, 2H), 1.41 (s, 9H}’C NMR (125 MHz, CDG)) § 179.54, 165.98, 150.68,
140.18, 137.96, 131.45, 128.95, 128.16, 116.65%34141.20, 39.28, 26.43. HRMS
(ESI)m/z291.1332 [M+H] (calcd for 291.1339, gH1oN204 ).

(E)-1-(3-(furan-2-yl) acryloyl)-3-pivaloylimidazolidi-2-one 21)

Yield 53%, white powder. m.p. 142-143°¢1 NMR (500 MHz, CDC}) J 7.76 (d,
J=15.5 Hz, 1H), 7.62 (dl = 15.5 Hz, 1H), 7.52 (d] = 1.6 Hz, 1H), 6.69 (d] = 3.4
Hz, 1H), 6.49 (dd,) = 3.4, 1.6 Hz, 1H), 3.96 - 3.84 (m, 4H), 1.4198). °C NMR
(125 MHz, CDC}) ¢ 179.55, 166.13, 151.52, 150.67, 145.03, 131.72,7B1 115.44,
112.44, 41.62, 41.19, 39.29, 26.44. HRMS (E8ly 307.1106 [M+H] (calcd for
307.1111, GsH19N20O3S).

1-cinnamoyl-3-pivaloylimidazolidin-2-on&2)
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Yield 62%, white powder. m.p. 141-143°¢1 NMR (500 MHz, CDC}) J 7.99 (d,
J=15.7 Hz, 1H), 7.92 (dl = 15.7 Hz, 1H), 7.70 - 7.67 (m, 2H), 7.47 - 7.48 GH),
4.01 - 3.97 (m, 2H), 3.95 - 3.90 (m, 2H), 1.469H). 1*C NMR (125 MHz, CDG)) &
179.54, 166.27, 150.79, 145.68, 134.82, 128.88,61228.18.00, 41.65, 41.23, 39.31,
26.45. HRMS (ESIVz 301.1537 [M+H] (calcd for 301.1547, GH21N,05).
(E)-1-pivaloyl-3-(3-(pyridin-3-yl) acryloyl) imidazadlin-2-one 23)

Yield 32%, white powder. m.p. 167-179 & NMR (500 MHz, CDGC}) & 8.87
(d, J = 2.2 Hz, 1H), 8.67 (dd] = 4.9, 1.6 Hz, 1H), 8.09 - 8.02 (m, 2H), 7.88 Jc;
15.8 Hz, 1H), 7.42 (dd] = 7.9, 4.9 Hz, 1H), 4.00 (ddd,= 9.8, 6.5, 2.4 Hz, 2H), 3.94
(ddd,J = 9.6, 6.5, 2.4 Hz, 2H), 1.46 (s, 9HJC NMR (125 MHz, CDGJ) 5 179.44,
165.53, 150.77, 150.55, 149.70, 141.32, 135.01,863023.91, 120.47, 41.66, 41.25,
39.27, 26.40. HRMS (ESHVz 302.1489 [M+H] (calcd for 302.1499, GH20N303).
(E)-1-(3-(naphthalen-1-yl) acryloyl)-3-pivaloylimidalidin-2-one @4)

Yield 63%, white powder. m.p. 165-167 °& NMR (500 MHz, CDCJ) & 8.74
(d, J = 15.5 Hz, 1H), 8.28 (d] = 8.4 Hz, 1H), 8.04 (d] = 15.5 Hz, 1H), 7.93 (df] =
15.2, 7.4 Hz, 3H), 7.61 (8, = 7.2 Hz, 1H), 7.55 (q] = 7.6 Hz, 2H), 4.00 (dd] = 9.1,
5.9 Hz, 2H), 3.92 (dd] = 9.2, 5.8 Hz, 2H), 1.44 (s, 9HFC NMR (125 MHz, CDCJ)

0 179.51, 166.19, 150.80, 142.40, 133.70, 132.03,6631130.77, 128.73, 126.90,
126.19, 125.56, 125.50, 123.42, 120.44, 41.64,541B9.32, 26.43. HRMS (ESijz
351.1696 [M+H] (calcd for 351.1703, £H»3N,0s ).

(E)-1-(3-(benzo[d] [1,3] dioxol-5-yl) acryloyl)-3-paloylimidazolidin-2-one Z5)
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Yield 52%, white powder. m.p. 228-230 °tHf NMR (600 MHz, CDC}) 6 7.78
(d,J = 1.4 Hz, 2H), 7.18 (d] = 1.7 Hz, 1H), 7.10 (dd] = 8.0, 1.7 Hz, 1H), 6.83 (d,
= 8.0 Hz, 1H), 6.02 (s, 2H), 3.95 - 3.91 (m, 2HBB(ddd,J = 9.1, 6.2, 1.5 Hz, 2H),
1.41 (s, 9H).13C NMR (150 MHz, CDGJ) ¢ 179.53, 166.33, 150.77, 149.84, 148.30,
145.47, 129.29, 125.19, 115.87, 108.53, 106.98,5041.61, 41.17, 39.27, 26.40.
HRMS (ESI)m/z 315.1435 [M+H] (calcd for 315.1445, H»:N50s ).
(E)-1-(3-(2-chloro-6-fluorophenyl) acryloyl)-3-pivajmidazolidin-2-one 26)

Yield 70%, white powder. m.p. 155-157 “€. NMR (600 MHz, Chlorofornd) & 8.10
(d,J = 16.1 Hz, 1H), 8.02 (dl = 16.1 Hz, 1H), 7.25 (s, 2H), 7.08 — 7.04 (m, 13185
(dd, J = 9.2, 5.7 Hz, 2H), 3.90 — 3.87 (m, 2H), 1.409sl). *C NMR (150 MHz,
CDCls) ¢ 179.53, 166.19, 162.83, 161.13, 150.61, 136.35,083 130.81, 130.74,
125.94, 125.03 (d] ot = 15 Hz), 122.13 (d] ot = 2.3 Hz), 114.91 (d] o = 22.5 Hz),
41.63, 41.26, 39.30, 26.39. HRMS (E&#)z 353.1060 [M+H] (calcd for 353.1063,
C17H19CIFN2O3).

(E)-1-(2-methyl-3-phenylacryloyl)-3-pivaloylimidazdiin-2-one 27)

Yield 72%, white powder. m.p. 112-114 °t&i NMR (500 MHz, CDCY) § 7.44 -
7.37 (m, 4H), 7.30 (tJ = 7.2 Hz, 1H), 6.90 (d] = 1.8 Hz, 1H), 3.94 - 3.90 (m, 2H),
3.90 - 3.86 (m, 2H), 2.18 (d = 1.5 Hz, 3H), 1.36 (s, 9H}’C NMR (125 MHz,
CDCls) ¢ 179.38, 172.79, 149.99, 135.79, 134.67, 132.61,5B29128.34, 128.02,
41.58, 41.54, 39.69, 26.34, 15.73. HRMS (EBI¥ 315.1698 [M+H] (calcd for
315.1703, GgH23N203).

(2)-1-(3-phenyl-2-(prop-1-en-2-ylamino) acryloyl)-3vploylimidazolidin-2-one Z8)
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Yield 46%, white powder. m.p. 144-146 *%&1 NMR (600 MHz, CDCJ) J 7.47 -
7.40 (m, 5H), 7.35 () = 7.4 Hz, 1H), 6.39 (s, 1H), 3.96 - 3.84 (m, 4”106 (s, 3H),
1.34 (s, 9H).13C NMR (150 MHz, CDGJ) ¢ 179.10, 168.02, 166.38, 149.89, 133.71,
130.13, 129.07, 128.93, 128.70, 121.84, 41.73,44138.33, 26.28. HRMS (ESijvz
380.1573 [M+Na] (calcd for 380.1581, gH2sNsNaOy ).

4.2.4 General procedures for the preparation of 6a-6n

Concentrated K)-1-(3-(4-fluorophenyl)acryloyl)imidazolidin-2-ong(1 equiv.)
were added to absolute dichloromethane under mitrognd added NaH (3 equiv.) to
the reaction mixture was stirred at® for 15 minute and then added to small molecule
acid chloride(1 equiv.) to the reaction mixture vesisred at 2°C for 30 min. After
the reaction was completed, used quenching withrai@d NaHC@solution, and then
the mixed liquid was extracted twice with ethyl @ate. The combined extracts were
then washed with ¥ and brine, and dried over anhydrous ,®@,. After
concentration under reduced pressure, the residage quickly purified by using a
silica gel column (PE / EtOAC).

(E)-1-(3-(4-fluorophenyl) acryloyl)-3-methacryloyli@zolidin-2-one §a)

Yield 22%, white powder. m.p. 165-167 °tHf NMR (600 MHz, CDC}) 6 7.86
(d, J = 16.2 Hz, 1H)¢ 7.83 (d,J = 16.2 Hz, 1H), 7.65 - 7.61 (m, 2H), 7.09Jt 8.6
Hz, 2H), 5.47 - 5.46 (m, 1H), 5.42 (s, 1H), 4.04.01 (m, 2H), 3.94 - 3.91 (m, 2H),
2.12 - 2.09 (m, 3H)*C NMR (150 MHz, CDGJ) 6 171.46, 164.13(d) s = 250.35

Hz), 163.29, 151.22, 144.78, 140.43, 130.56, 119473.35, 116.02 (dl += 21.9 Hz),
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39.41, 19.37. HRMS (ESI)m/z 325.0950 [M+Na] (calcd for 325.0959,
C1aH1sFNoNaOy).
(E)-1-acryloyl-3-(3-(4-fluorophenyl) acryloyl) imidakdin-2-one(6b)

Yield 29%, white powder. m.p. 149-150 “€l. NMR (500 MHz, CDC}) § 7.84
(s, 2H), 7.65 — 7.59 (m, 2H), 7.51 (db= 17.0, 10.5 Hz, 1H), 7.09 @,= 8.6 Hz, 2H),
6.57 (dd,J = 17.0, 1.7 Hz, 1H), 5.91 (dd,= 10.4, 1.8 Hz, 1H), 4.01 - 3.97 (m, 2H),
3.97 - 3.93 (m, 2H}*C NMR (125 MHz, CDGJ) 6 165.88, 165.78, 164.16 (A=
250.5 Hz), 151.89, 144.66, 131.30, 130.96, 130128,11, 117.50, 116.10 (d,ct=
21.9 Hz), 39.17, 38.94. HRMS (ESt)¥z 311.0791 [M+Na] (calcd for 311.0802,
C1sH13FNoNaOy).
(E)-3-(3-(4-fluorophenyl) acryloyl)-N, N-dimethyl-2x@imidazolidine-1-carboxamide
(6¢)

Yield 24%, yellow powder. m.p. 135-137 &l NMR (500 MHz, CDC}) § 7.87
(d, J = 15.7 Hz, 1H), 7.80 (d} = 15.8 Hz, 1H), 7.60 (dd,= 8.6, 5.4 Hz, 2H), 7.07 (,
= 8.6 Hz, 2H), 3.98 (1) = 7.8 Hz, 2H), 3.81 (1] = 7.7 Hz, 2H), 3.06 (s, 6HY’C NMR
(125 MHz, CDC}) ¢ 166.72, 165.58, 164.26 (d,.= 250.75 Hz), 151.73, 145.19,
130.82, 130.55, 117.00, 116.170d,s= 21.88 Hz), 43.94, 39.57, 39.01. HRMS (ESI)
Mz 306.1244 [M+H] (calcd for 306.1248, gH17FN;O5).
(E)-N-ethyl-3-(3-(4-fluorophenyl)acryloyl)-N-methyl-8xoimidazolidine-1-carboxami
de 6d)

Yield 16%, white powder. m.p. 108-109 & NMR (600 MHz, DMSO-d6)

7.84 (d,J = 15.9 Hz, 1H), 7.73 (g} = 8.4, 7.6 Hz, 3H), 7.29 (8, = 8.8 Hz, 2H), 3.86 (t,
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J=7.7 Hz, 2H), 3.67 (§ = 7.7 Hz, 2H), 3.38 — 3.34 (m, 2H), 2.95 (s, 3H),2 (t,J =
7.1 Hz, 3H)X*C NMR (125 MHz, CDG)) § 165.70, 164.025 (d, .= 249.88 Hz),
153.75, 152.40, 143.97, 131.11, 130.47, 117.73,991@1,J .+ = 22.5 Hz), 40.71,
40.12, 31.47, 30.23, 29.35. HRMS (ESI) m/z 320.1406H] " (calcd for 320.1405,
Ci16H19FN3O3).
(E)-1-(3-(4-fluorophenyl) acryloyl)-3-(piperidine-ladbonyl) imidazolidin-2-onegg)

Yield 21%, white powder. m.p. 108-109 “€l. NMR (600 MHz, CDC}) 5 7.88
(dd,J = 15.8, 1.6 Hz, 1H), 7.82 (dd,= 15.8, 1.6 Hz, 1H), 7.63 (dd,= 7.2, 2.1 Hz,
2H), 7.09 (tdJ = 8.5, 1.7 Hz, 2H), 3.99 (§ = 8.1 Hz, 2H), 3.85 (d] = 8.0 Hz, 2H),
3.53 (s, 4H), 1.68 (s, 6H}*C NMR (150 MHz, CDG)) 6 165.72, 163.99 (dJ cs
=249.9 Hz), 152.79, 152.31, 143.96, 131.07, 13Q147,71, 115.98 (d] c.+= 22.5 Hz),
40.73, 40.02, 31.45, 30.20, 24.31. HRMS (EBIY 346.1554 [M+H] (calcd for
346.1561, GgH21FN3O3).
(E)-1-acetyl-3-(3-(4-fluorophenyl) acryloyl) imidazdin-2-one 6f)

Yield 19%, white powder. m.p. 204-205 °t&i NMR (500 MHz, CDC}) 6 7.85
(s, 2H), 7.64 (dd) = 8.6, 5.5 Hz, 2H), 7.11 (@,= 8.6 Hz, 2H), 3.97 (ddl= 9.3, 5.5
Hz, 2H), 3.90 (ddJ = 9.3, 5.5 Hz, 2H), 2.59 (s, 3HFC NMR (126 MHz, CDG)) ¢
170.81, 165.85, 164.12 (d.+=250.35 Hz), 152.01, 144.55, 130.96, 130.44, 117.42
116.07 (d,J .s=21.75 Hz), 38.99, 38.66, 24.14. HRMS (E®I¥ 299.0792 [M+Nal]
(calcd for 299.0802, ZH13FN2NaG; ).

(E)-1-(3-(4-fluorophenyl) acryloyl)-3-propionylimida#idin-2-one 6g)
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Yield 32%, white powder. m.p. 163-164 °tHf NMR (500 MHz, CDC}) 6 7.86
(d,J = 2.1 Hz, 2H), 7.64 (ddl = 8.5, 5.5 Hz, 2H), 7.11 (§,= 8.6 Hz, 2H), 4.00 — 3.94
(m, 2H), 3.93 — 3.88 (m, 2H), 3.00 (@= 7.3 Hz, 2H), 1.23 (t) = 7.3 Hz, 3H)C
NMR (125 MHz, CDCGY) o 174.69, 165.88, 164.10 (d, o+ =250.25 Hz), 151.94,
144.44, 130.96, 130.43, 117.51, 116.05)(d; =21.75 Hz), 39.10, 38.78, 29.74, 8.42.
HRMS (ESI)nz 313.0949 [M+Nal (calcd for 313.0959 , &H1sFN,NaOs).
(E)-1-butyryl-3-(3-(4-fluorophenyl) acryloyl) imidaidin-2-one @h)

Yield 29%, white powder. m.p. 131-132 °& NMR (500 MHz, CDC}) § 7.85
(d, J = 2.3 Hz, 2H), 7.63 (ddl = 8.5, 5.5 Hz, 2H), 7.10 (§,= 8.5 Hz, 2H), 3.98 — 3.93
(m, 2H), 3.92 — 3.87 (M, 2H), 2.96 Jt= 7.4 Hz, 2H), 1.74 (h] = 7.4 Hz, 2H), 1.02 (t,
J = 7.4 Hz, 3H).2°C NMR (125 MHz, CDCJ) 6 173.82, 165.88, 164.09 (d, cs
=250.02 Hz), 151.89, 144.42, 130.98, 130.50, 11758.04 (d,J .+ =21.75 Hz), 39.05,
38.74, 38.01, 17.75, 13.75. HRMS (E8&i)z 327.1105 [M+Na] (calcd for 327.1115,
C1aH17FNoNaOy).

(E)-1-(3-chloropropanoyl)-3-(3-(4-fluorophenyl) aaoyl) imidazolidin-2-one i)

Yield 26%, yellow powder. m.p. 190-192 °t NMR (500 MHz, CDCJ) 6 7.90
(d, J = 15.6 Hz, 1H), 7.83 (d = 15.6 Hz, 1H), 7.66 (dd,= 8.7, 5.4 Hz, 2H), 7.15 (3,
= 8.7 Hz, 2H), 4.82 (s, 2H), 4.10 - 4.04 (m, 2HP3A- 3.97 (m, 2H)**C NMR (125
MHz, CDCk) ¢ 166.70, 165.56, 164.24 (d,.+=250.75 Hz), 151.71, 145.21, 130.78,
130.53, 117.00, 116.15 (d, . =21.88 Hz), 43.92, 39.55, 38.99. HRMS (E&il
333.0402 [M+Na] (calcd for 333.0413, GH1,CIFN,NaO).

(E)-1-(3-(4-fluorophenyl) acryloyl)-3-(thiophene-2+banyl) imidazolidin-2-onef])
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Yield 36%, white powder. m.p. 145-147 °& NMR (500 MHz, CDCJ) § 7.91
(dd,J = 3.9, 1.1 Hz, 1H), 7.83 (s, 1H), 7.83 (s, 1HHS7(dd,J = 5.0, 1.1 Hz, 1H), 7.59
(dd,J = 8.7, 5.4 Hz, 2H), 7.15 (dd,= 5.0, 3.9 Hz, 1H), 7.06 (§,= 8.6 Hz, 2H), 4.04
(d, J = 1.4 Hz, 4H).3*C NMR (125 MHz, CDGJ) ¢ 165.85, 164.26 (d] .+ =250.50
Hz), 162.82, 151.62, 144.68, 135.70, 134.83, 133130.91, 130.52, 127.36, 117.49,
116.02 (dJ ¢=250.50 Hz), 40.65, 39.48. HRMS (ESW)z 345.0695 [M+H] (calcd
for 345.0704 , g/H13FN2O3S).

(E)-1-benzoyl-3-(3-(4-fluorophenyl) acryloyl) imidalin-2-one k)

Yield 34%, white powder. m.p. 210-212 °t NMR (500 MHz, CDGC}) & 7.82
(d,J = 15.7 Hz, 1H), 7.71 (dl = 15.7 Hz, 1H), 7.67 (dl = 7.5 Hz, 2H), 7.60 - 7.52 (m,
3H), 7.47 (t,J = 7.7 Hz, 2H), 7.03 (&) = 8.6 Hz, 2H), 4.06 (s, 4H)’C NMR (125
MHz, CDCk) ¢ 170.29, 165.83, 164.09 (d,.+=250.50 Hz), 151.56, 144.74, 133.72,
132.24, 130.62, 130.55, 128.84, 127.98, 117.42,951%d,J .+ =21.75 Hz), 40.10,
39.44. HRMS (ESI/z 339.1125 [M+H] (calcd for 339.1139, GH1sFN,O5).
(E)-4-(3-(3-(4-fluorophenyl) acryloyl)-2-oxoimidazdine-1-carbonyl) benzonitrile
(61)

Yield 35%, white powder. m.p. 248-250 °tHf NMR (500 MHz, CDC}) 6 7.83
(d, J = 15.7 Hz, 1H), 7.76 (d] = 8.3 Hz, 2H), 7.71 (d] = 8.2 Hz, 2H), 7.64 (d] =
15.7 Hz, 1H), 7.54 (dd] = 8.6, 5.4 Hz, 2H), 7.05 (8, = 8.6 Hz, 2H), 4.07 (q] = 2.3
Hz, 4H).*C NMR (125 MHz, CDGJ) § 168.55, 165.60, 164.20 (d.:=250.75 Hz),

151.34, 145.27, 137.89, 131.77, 130.67, 130.57,112917.99, 116.93, 116.06 (@,
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ot =21.88 Hz), 115.38, 39.78, 39.44. HRMS (EBVy 386.0905 [M+Na] (calcd for
386.0911, GoH1,FNsNaGs).
N-ethyl-3-(3-(4-fluorophenyl)propanoyl)-N-methyl&xoimidazolidine-1-carboxamid
e (Bm)

Yield 30%, white powder. m.p. 156-158 °tH{ NMR (600 MHz, CDGJ) 5 7.21
(dd,J = 8.3, 5.5 Hz, 2H), 6.97 (§,= 8.7 Hz, 2H), 3.87 (] = 7.8 Hz, 2H), 3.78 (d] =
8.1 Hz, 2H), 3.44 (d) = 7.1 Hz, 2H), 3.23 (] = 7.6 Hz, 2H), 3.00 (s, 3H), 2.97 {t=
7.6 Hz, 2H), 1.22 (dJ = 7.2 Hz, 3H)*C NMR (125 MHz, CDGJ) § 172.62, 161.43
(d,J:=242.38 Hz), 153.71, 152.19, 136.39, 129.92, 11&13.:=21.00 Hz), 41.69,
40.62, 39.72, 37.49, 29.62, 27.15, 12.31. HRMS BE®t 344.1383 [M+Na] (calcd
for 344.1381, GsH20FN3O3 ).
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Table 1 The neuroprotection of PL analogues substituted different aryl group

Cell viability (%)

Compd. Structure
H,0, 6-OHDA
M odel 46.00 £4.12 45,23 +4.37
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5 53.56 +1.29  56.32 +2

@Cell viability (%) of PC12 cells were detected thetMTT assay after 24 h of
incubation with compounds at the concentration @u® with H,O, (200 uM) or

6-OHDA (150uM). Data are the mean + SD of three independergraxgnts.



Table 2 The neuroprotection of PL analogues substituted different aryl group
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&Cell viability (%) of PC12 cells were detected thetMTT assay after 24 h of

incubation with compounds at the concentration @u® with H,O, (200 uM) or

6-OHDA (150uM). Data are the mean + SD of three independergraxgnts.

Table 3 The neuroprotection d?L analogues substituted with different groups

Cell viability (%)?

Compd. Structure
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@Cell viability (%) of PC12 cells were detected thetMTT assay after 24 h of

incubation with compounds at the concentration @u® with H,O, (200 uM) or



6-OHDA (150uM). Data are the mean + SD of three independergraxgnts.
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Figure 7. Prevention of PC12 cells from,8.-induced (A) and 6-OHDA-induced
(B) apoptosis by6d. Apoptotic cells were detected by flow cytometrifean
AnnexinV and PI double staining. (C, D) Images sbdvwhe apoptotic nuclei by
Hoechst 33342 staining. The top panel is phaseastnpictures, and the bottom
panel is fluorescent pictures. Scale bars: A0 Data are presented by mean +
SD (n = 3). (***p) < 0.001 compared with the control grougp)(< 0.05 and (p)

< 0.01 compared with ¥D,- or 6-OHDA-treated group.
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Figure 8. Effects of6d on HO-induced (A) and 6-OHDA-induced (B) €a
overload in PC12 cells. Data are presented by ntedD (n = 3). (*p)< 0.05 and

(***p) < 0.001 compared with the control groupp)(< 0.05 and (p) < 0.01



compared with BO,-treated or 6-OHDA-treated group.
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Figure 9. 6d could increase the expression of nuclear and cljtobIrf2, TrxR1,
NQO-1, HO-1, GCLM and GCLC in a time (A) and do83 lependent manner.
Promotion of Nrf2 nuclear accumulation 8gd (C). Brusatol (D), ZnPP (E)
affected the protection @d. PC12 cells were incubated for 30 min in the prese
of 6d (20 uM) together with brusatol (10 nM) or ZNPP (10 nMjigp to

stimulation with HO, (150 uM) for 24 h, determined by MTT assay. Data are



presented by mean £ SD (n = 3).
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Figure 10. Contribution of Nrf2 to the anti-inflammatory efteof 6d. (A) 6d

reduced the production of LPS-stimulated inflammatmediators NO in BV2



microglia cells. (B)6d reduced the production of LPS-induced IL-6 in BV2
microglia cells. The levels of IL-6 were measurgdHLISA kites. (C)6d dose
dependently induced expression of Nrf2 and its diimeam antioxidant proteins
in BV2 microglia cells. (D) Nrf2 expression in Cooit SiRNA- and Nrf2
siRNA-transfected BV2 microglia cells. (***p3 0.001 compared with the control
group; ('p) < 0.01 and ("p) < 0.001 compared with LPS-treated group.
Transfection of BV2 microglia cells with Nrf2 siRNieversed suppressive effects
of 6d (20 uM) on NO (E), IL-6 (F) production following AS stimulation.
**p<0.01 and *g0.05 in comparison with control siRNA-transfectesll€ Data

are presented by mean £ SD (n = 3).
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Figure 11. The docking model oéd with representative CYS in Keapl. 3D image

of covalent docking betwedd and CYS151 in the BTB domain (PDB: 4CXT).



Scheme 1. Synthesis of PL and its anal8gs

L
N
N NH
PL-3 k)
(0] O
0 0
X N 5 6 1 8\ 5 1
. e N N
4 2 4
P2 L PLA4 3
a .0 e a ’
o o 0 0
8 N N “.
AY O o
5 1 6 2 a ; a
v | - NH
4 2 5 3 . Pt
3 PL-1 4 TEmeeeenT PL-5 o)
0] J(()
Cl a N
—> A
O
HN-? PL-6
NH
0 0
a
RA)LCI — % R&/\,t(/NH
0 4 0O o
0 0
b c NS O
RA)LOH — R/%)Lo —>O R/\)LNJ(N_gL
HNJ( 6-28
(o) 0 |\/NH
X NJ(NH (0] 0]
k/ _C> /©/§)‘\NJ(N_R
F LN
F 6a-6l

(@] (0] o) (6] 0
b, 0}
/@/\)LOH _°> /@/\)LN&(/NH;» /©/\)L'\i(/N—4
F F 5 F 6m N\
® Reagents and conditions: (a) NaH, THF, 0 °C, 30ntb); Trimethylacetyl

chloride, TEA, DCM, 0 °C, 30min; (c) NaH, DCM, 0 7@0min.



Highlights

> A saries of piperlongumine derivatives were synthesized as

neuroprotective agents by structure-based design.

» 6d showed potent protection on PC12 cells against 6-OHDA- and
H,Ox-induced cell damage, aleviated ROS accumulation,
mitochondrial  dysfunction, Ca&* influx, and cell apoptosis.

Meanwhile, 6d aso showed good anti-inflammatory activity.

» Mechanism study proved that 6d could activate keapl/Nrf2 signaling
pathway, and upregulate downstream antioxidant enzymes such as

NQO1, HO-1, GCLC, GCLM, and TrxR1.

» The paralld artificial membrane permeability assay indicated that 6d

would be potent to cross the blood-brain barrier.
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