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Echinacoside (ECH), the major active constituent of Cistanche deserticola, was found to
exert neuroprotection through neurotrophic and anti-inflammatory functions in Parkinson’s
disease (PD) models. However, a clear intermediate molecule or pathway that unifies these
two effects has to be found. In this study, our results demonstrate that ECH can protect DA
neurons in PD mice with Western blot and immunohistochemistry staining. The
quantitative real-time polymerase chain reaction was adapted to confirm its anti-
inflammatory function with decreased cytokines (interleukin- (IL-) 6, IL-1β, and TNF-α)
in PD mice and LPS-induced BV2 cells. Further studies found that ECH inhibited the IL-6/
JAK2/STAT3 pathway and decreased phosphorylation of STAT3 on tyr705 by Western
blot. It can also increase p-STAT3 (ser727) and brain-derived neurotrophic factor (BDNF)
expression in PD mice and LPS-induced BV2 cells. This study revealed that ECH exerts
neurotrophic and anti-inflammatory effects by regulating the IL-6/JAK2/STAT3 pathway
and the phosphorylation of STAT3, promoting the mutually beneficial influence of the two
effects to maximize its neuroprotective function.
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INTRODUCTION

Parkinson’s disease (PD) is the second most common
neurodegenerative disease, and its most prominent
pathological features are the progressive loss of dopaminergic
(DA) neurons in substantia nigra (SN) and the Lewy body formed
by misfolded α-synuclein (Poewe et al., 2017). While its
pathogenesis has not been determined, emerging evidence
suggests that microglia-induced chronic neuroinflammation
contributes to PD pathogenesis and progression (Ho, 2019).

Previous studies have shown that a microglia activation-
triggered release of inflammatory cytokines aggravates the
degeneration of DA neurons in the SN (Wang Q et al., 2015).
Interleukin-1β (IL-1β) is the most notable pro-inflammatory
cytokine involved in neurodegeneration and receives the most
attention (Gordon et al., 2018). However, the role of interleukin-6
(IL-6) cannot be underestimated (Spooren et al., 2011). Increased
IL-6 levels can be observed in serum of PD patients (Sliter et al.,
2018), 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine- (MPTP-)
mediated PD mice (Rojo et al., 2010), 1-methyl-4-phenyl-1,2, 3,
6-tetrahyd-ropyridiniumion- (MPP+-) induced SHSY5Y cells
(Yao et al., 2019), and BV2 cells (Chen et al., 2015). In vitro
study, IL-6 causes neuronal cell death (Conroy et al., 2004), and
both consecutive low doses (5 × 10 ng/ml) and a single high dose
(50 ng/ml) of IL-6 can increase the expression of PD-related
protein, α-synuclein (Bick et al., 2008). In vivo, the upregulation
of IL-6 exacerbates dopaminergic degeneration in 6-
hydroxydopamine- (6-OHDA-) induced PD rats (Ma et al.,
2020). A four-year prospective study also demonstrated that
IL-6, not tumor necrosis factor-α (TNF-α), contributes to
mortality in PD Patients (Dufek et al., 2015). Therefore, IL-6
is crucial to neuroinflammation and has emerged as a pivotal
player in PD.

During the signal transduction process, IL-6 binds to its
receptor and induces the homodimerization of glycoprotein
130 (gp130), mediating the activation of the Janus kinases/
signal transducer and activator of transcription proteins
(JAKs/STATs) (Garbers et al., 2015). Multiple investigations
have shown that IL-6 signaling in the central nervous system
(CNS) is orchestrated by STAT-3 (Spooren et al., 2011) with a
JAK2-dependent mechanism (Planas et al., 2006). The JAK2/
STAT3 activation contributes to cerebral ischemia-perpetuated
neuronal damage. However, the intracerebral injection of siRNA
specific for STAT3 improves neurological function (Satriotomo
et al., 2006). This signal pathway can also be triggered by exposure
to manganese in microglia, leading to neuronal loss (Yin et al.,
2018). However, microRNA-93 (Wang et al., 2021) and (E)-2-
methoxy-4-(3-(4-methoxyphenyl) prop-1-en-1-yl) phenol (Choi
et al., 2019) can engender the downregulation of STAT3 to
abrogate the MPTP-induced dopaminergic neurodegeneration.
Similarly, nitidine has been shown to inhibit the phosphorylation
of JAK2/STAT3 and block STAT3 nuclear translocation, exerting
neuroprotective effects in PD models (Wang et al., 2016).
Therefore the IL-6/JAK2/STAT3 pathway may be the key to
PD treatment.

Echinacoside (ECH), the major active constituent of Chinese
herb Cistanches Herba (Cistanche deserticola Y. C. Ma),

reportedly exerts neuroprotective properties in PD models (Chen
et al., 2007; Geng et al., 2007; Zhang et al., 2017). There is evidence
that ECH also decreases IL-6 expression in the MPTP-induced PD
mice (Zhang et al., 2021), ischemia/reperfusion injured rat (Li et al.,
2018b), and cervical spondylotic myelopathy rat model (Zhou et al.,
2020) and significantly diminishes IL-6 level in 6-OHDA-treated
PC12 cells (Wang YH et al., 2015) and lipopolysaccharides- (LPS-)
induced BV2 cells (Zhou et al., 2020). Additionally, ECH inhibits the
phosphorylation of STAT3 on tyrosine 705 (tyr705) in the LPS-
treated rat intestinal epithelial cells (Li et al., 2018a). Both the local
knockdown of STAT3 and inhibition of JAK2/STAT3 (tyr705) can
restrain acetylated histone 3 (ac-H3) and ac-H4 levels on the
promoter of the nucleotide-binding oligomerization domain,
leucine-rich repeat, and pyrin domain containing 3 (NLRP3) and
decrease the expression of NLRP3 (Zhu et al., 2021), whose
activation can also be alleviated by ECH (Zhou et al., 2020).
Given these outstanding findings, we hypothesized that ECH’s
neuroprotective role is intertwined with the IL-6/JAK2/STAT3
pathway and explored the hypothesis.

MATERIALS AND METHODS

Animals and Drug Administration
The experimental protocols were carried out according to the
guidelines for animal experiments of the Shanghai Public Health
Center Laboratory Animal Welfare and Ethics Committee (no.
2019-A026-01) to minimize animal suffering. C57BL/6 mice were
from the Shanghai Jiesijie Experimental Animal Co., Ltd. (China),
housed under a controlled environment (12 h light/dark cycle,
22 ± 2°C, and 55% ± 5% humidity), and provided with food and
water ad libitum. MPTP·HCL (30 mg/kg, Selleck, United States)
were administrated once a day for seven consecutive days to make
the subacute mouse model of PD in this study. After two weeks of
adaptive feeding, the mice were randomly divided into five
groups, namely, normal group (N), MPTP group, MPTP +
LECH (LE, 10 mg/kg/d) group, MPTP + MECH (ME,
20 mg/kg/d) group, and MPTP + HECH (HE, 30 mg/kg/d)
group. Three doses of ECH treatment were administered the
respective pre-treatment ECH (intraperitoneal injection, i.p.)
every 24 h for 14 consecutive days, with the first day of
administration designated as day 1. The mouse PD models for
the three treatment groups and the MPTP group were generated
by seven consecutive i.p. of MPTP (30 mg/kg, Selleck,
United States) once a day from day 8 to day 14, as shown below.

Open Field Test
The spontaneous locomotor activity of mice was measured with
an open field test. Before each behavioral test, the experimental
box was scrubbed with 75% ethanol solution to ensure odorless.
Then, mice in the different groups were placed into the box, and
their behavioral parameters were recorded with a video analyzer
for 10 min. The animal behavioral analysis software
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EthoVisionXT12 (Noldus, the Netherlands) was opened to
automatically record the animal movement path, total
distance, and other information related to mouse movement.

Rotarod Test
Mouse motor coordination was evaluated with rotarod apparatus
Rotamex-5 Rota Rod (Columbus Instruments, United States). Before
the test, all mice were trained on the rotarod (12 rpm) to achieve
stable performance. During the test, the mice were placed on the
rotarod. Then, it was conducted at a uniformly accelerating speed
from 4 to 30 rpm in 300 s. Recording was stopped when the mouse
fell off the rotating rod. Repeat the rotarod test three times and take
the average time of each mouse to measure its motor ability.

Pole Test
The pole test was conducted with a rough-surfaced wooden pole
(1 cm in diameter, 55 cm in height) to evaluate the bradykinesia
of mice. The pole was covered with black tape to prevent the mice
from skidding, and a wooden ball (2 cm in diameter) was fixed on
the top of the pole. In the beginning, the wooden pole was placed
vertically, and a mouse was placed at the top of the pole. Then, it
would climb down along the pole to the bottom, and the time
used during this period was recorded. The climbing time of mice
before ECH treatment (0 days) and after MPTP injection
(14 days) was recorded, and the time difference between the
two pole tests of the same mouse was calculated.

Immunohistochemistry Staining
After fixing (4% paraformaldehyde) and dehydration (20% and 30%
sucrose solution), brain tissues were sliced into sections with a freezing
microtome (Leica Biosystems, Germany) from Bregma −2.00mm to
Bregma −3.52mm (20 μm for each) and stored in −80°C refrigerator.

After the sections were restored to room temperature, they
were treated with 0.3% Triton X-100 to penetrate cytomembrane
and 0.3% hydrogen peroxide (H2O2) to block the endogenous
peroxidase activity. Then, they were blocked with bovine serum
albumin (BSA) for 30 min and incubated with TH antibody (1:
100) overnight at 4°C. On the following day, they were incubated
with secondary antibodies (1 h, 37°C) and stained with fresh DAB
solution. After placing hematoxylin and hydrochloric acid
alcohol, they were dehydrated and dried with gradient alcohol
and xylene and sealed with neutral balsam. The images were
obtained with the cellSens standard system (Olympus, Japan).

Immunofluorescence Staining
Immunofluorescence staining was performed with overnight
incubation using diluted primary antibodies against IBA-1(1:
100, Novus) at 4°C. On the following day, second antibodies
were applied to sections and incubated for one hour at room
temperature after washing with PBS (three times, 5 min). Then
nuclei of cells were counterstained with Hoechst33343 for 2 min.

Quantitative Real-Time Polymerase Chain
Reaction
Total RNA was extracted from SN tissues and BV2 cells with
TRIzol reagent according to the standard protocol, respectively,

and its purity and concentration were measured with a nucleic
acid analyzer (Thermo, United States). Then, it was reverse-
transcribed with PrimeScript™ RT reagent Kit with gDNA eraser
(Code no. RR047A, Takara, Japan), including genomic DNA
remove reaction and reverse transcription reaction. The former
system (10 μL) contained 5 × gDNA eraser buffer (2 μL), gDNA
eraser (1 μL), total RNA (calculated according to concentration),
and RNase-free dH2O (up to 10 μL), and the latter (total 20 μL)
included the reaction liquid from last step (10 μL), PrimeScript
RT Enzyme Mix I (1 μL), RT Primer Mix *4 (1 μL), 5 ×
PrimeScript Buffer 2 (4 μL), and RNase-free dH2O (4 μL).
The RT-qPCR system was configured with TB Green®
Premix Ex Taq™ (Tli RNaseH Plus) (Code no. RR420A,
Takara, Japan) on ice, and the RT-qPCR was run with
CFX96 Real-Time PCR Detection System (Bio-Rad,
United States). The mRNA levels of target genes were
normalized to that of β-actin in the same sample. The primer
sequences in RT-qPCR are shown in Table 1.

Cell Culture
BV2 cells, provided by the State Key Laboratory of Medical
Neurobiology, Fudan University, were maintained in high-
glucose Dulbecco’s modified Eagle’s medium (DMEM,
HyClone) with 10% fetal bovine serum (FBS, HyClone,
United States), 100 U/mL penicillin, and 100 g/ml
streptomycin in a 5% CO2 incubator (37°C).

Chemicals and Reagents
Echinacoside was purchased from Selleck and dissolved into 5, 10,
and 20 mg/L. LPS were from Sigma. STAT3 inhibitor, S3I-201,
was purchased from Selleck. Opti-MEM was from Gibco.
Antibodies used in this study such as those against tyrosine
hydroxylase (TH), against α-synuclein, and against brain-
derived neurotrophic factor (BDNF) were purchased from Cell
Signaling Technology (CST, United States); that against ionized
calcium-binding adapter molecule 1 (IBA-1, goat) was from
Novus Bio; those against STAT3, p-STAT3(tyr705),
p-STAT3(ser727), donkey anti-rabbit IgG (Alexa Fluor® 594),
and donkey anti-goat IgG (Alexa Fluor® 488) were from Abcam
(United States); and those against IL-6, p-JAK2 (tyr1007/1008),
JAK2, and β-actin were from ABclonal (China). SDS-PAGE gel
preparation and cocktail protease inhibitor were purchased from
Servicebio (China). Universal antibody diluent and serum-free
cell freezing medium were purchased from New Cell and
Molecular Biotech (NCM, China). Protein Ladder and
SuperSignal West Pico PLUS Chemiluminescent Substrate
were purchased from Thermo (United States).

TABLE 1 | Real-time PCR primer sequences.

Gene Forward (59-39), reverse
(39-59)

IL-1β CACTACAGGCTCCGAGATGAAC TCCATCTTCTTCTTTGGGTATTGC
TNF-α ACCCTCACACTCACAAACCA ATAGCAAATCGGCTGACGGT
IL-6 TTCTTGGGACTGATGCTGGTG CACAACTCTTTTCTCATTTCCACGA
β-Actin GTGACGTTGACATCCGTAAAGA GTAACAGTCCGCCTAGAAGCAC
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Cell Viability
Cell survival was assayed with cell counting kit-8 (CCK8)
according to the manufacturer’s instructions (Beyotime). BV2
microglial cells were plated into 96-well plates. After planning
LPS and ECH intervention, CCK-8 solution was added into each
well, followed by incubation at 37°C for 2 h. The absorbance of
different wells was measured at 450 nm with a Microplate
photometer (Thermo, United States).

Western Blot Analysis
The proteins of SN tissues and BV2 cells were extracted with
lysates supplemented with protease inhibitor cocktail and
phosphatase inhibitor, and the protein expression was
measured with Western blot. Then, the concentrated gel and
separated gel were prepared according to the instructions. The
proteins were separated on 10%–12% SDS-PAGE (80V, 0.5 h;
then 120 V, 1 h) and transferred to 0.22 μm PVDF membrane.
Membranes were blocked with BSA (5%, 1 h, room
temperature) and then incubated with primary antibodies
(4°C, overnight). On the following day, secondary antibodies
(1 h, room temperature) were applied to the membrane,
followed by three-time washes with Tris-buffered saline and
Tween 20 (TBST, 10 min each). Bands were visualized with
ChemiScope 6000 Exp (Clinx Science Instruments, China) and
normalized against β-actin with Image-Pro Plus software
(Media Cybernetics, United States).

Statistical Analysis
Statistical analyses of data were performed with the SPSS 19.0
software program (Chicago, IL, United States). The significance
of differences between groups was evaluated with the one-way
analysis of variance (ANOVA) and Dunnett’s t-test, and p < 0.05
was considered significant.

RESULT

Echinacoside Protected Mice Against
MPTP-Induced Behavioral Dysfunction
We assessed the establishment of neurobehavior in mice with
the open field, rotarod, and pole tests. For the open field test, we
recorded the autonomous activity tracks of mice with
EthoVision XT12, as shown in Figure 1A. Compared with
the control group, the motor complexity in the MPTP group
was significantly reduced, resulting in decreases in the total
distance (Figure 1B) and the number of line crossings
(Figure 1C). However, treatment with ECH reversed all three
actions.

We evaluated the exercise coordination ability of mice with the
rotarod test. As shown in Figure 1D, the residence time in the
model group was shorter than that in the control group. Of the
three different treatment doses, only the high ECH doses
prolonged the duration of MPTP mice on the rotarod.

Per the pole test findings, the descending time from the top to
the bottom of the pole was markedly lengthier in theMPTP group
than in the control group. However, this phenomenon was
remedied by intervention with ECH (Figure 1E).

Echinacoside Protected Dopaminergic
Neurons and Decreased the Expression of
α-Synuclein in MPTP-Induced Parkinson’s
Disease Mice
To assess the protective effect of ECH on the nigrostriatal DA system,
we examined the expression of TH and α-synuclein in the SN. Mice
in the MPTP-induced group showed reduced TH expression
(Figures 2A,B) and increased α-synuclein deposition
(Figure 2A,C) compared to those in the control group; however,
these trends were reversed with ECH treatment. Consistent with
Western blot findings, immune-histochemistry also demonstrated
thatmice in theMPTP group exhibited reduced TH-positive neurons
in the SN by approximately 64% compared to mice in the control
group, but treatment with ECH reversed this condition (Figure 2D).

Echinacoside Inhibited the Activation of
Microglia and Secretion of Inflammatory
Cytokines in MPTP-Induced Parkinson’s
Disease Mice
Then, we performed the immunofluorescence staining of IBA-1
and observed significantly positive microglial staining in the SN
of MPTP mice more than in the same areas of control mice
(Figure 3A) indicating that microglia were activated in theMPTP
group mice; however, ECH inhibited the activation of microglia.

Because pro-inflammatory cytokines play a crucial role in
neuroinflammation-related PD, we conducted RT-qPCR on SN
homogenates and found IL-1β (Figure 3B), TNF-α (Figure 3C),
and IL-6 (Figure 3D) expressions markedly increased in the
MPTP-induced mice compared to control mice. In contrast,
treatment with medium and high ECH doses reduced the
production of these cytokines to different degrees.

Echinacoside Regulated IL-6/JAK2/STAT3
Signaling in MPTP-Induced Parkinson’s
Disease Mice
As the downstream of IL-6, we analyzed the activation of JAK2/
STAT3 signaling and the phosphorylation of STAT3 (tyr705) with
Western blot. As shown in Figure 4A, MPTP triggered considerable
augmentations in IL-6, p-JAK2, and p-STAT3 (tyr705) expressions in
the SN; however, ECH suppressed these elevations dose-dependently
(Figures 4A–D). Notably, MPTP induced phosphorylation at the
tyr705 site of STAT3, not the ser727 site, as the latter was not
detected, as shown in Figure 4A, which is consistent with findings
from a previous study (Sriram et al., 2004). In contrast, ECH activated
STAT phosphorylation on ser727 (Figure 4E) and upregulated
BNDF expression in the SN of mice (Figure 4F).

Echinacoside Retrained the Activation of
Microglia and Secretion of Inflammatory
Cytokines in Lipopolysaccharide-Induced
BV2 Cells
We investigated the impact of ECH on the activation of LPS-
treated (1 μg/ml) BV2 microglial cells in vitro. To assess the effect
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FIGURE 2 | ECH protected DA neurons and decreased the expression of α-synuclein in substantia nigra (SN) of MPTP-induced mice. (A) Expression of TH and α-
synuclein of mice in different groups. (B) Data analysis of TH expression. (C) Data analysis of α-synuclein expression. (D) Representative microphotographs of
dopaminergic neurons stained for TH. Scale bars: 200 μm. Values are presented as the mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001.

FIGURE 1 | Protective effect of ECH against MPTP-induced behavioral dysfunction. (A) The autonomous trajectory map of mice in the open field test. (B) Total
distance traveled of mice in the open field test. (C) The number of line crossings of mice in the open field test (D) The residence time of mice in the rotarod test. (E) The
average time change of the pole test. N: normal; MPTP: MPTP-induced mice; LE: MPTP + 10 mg/kg/d ECH; ME: MPTP + 20 mg/kg/d ECH; HE: MPTP + 30 mg/kg/d
ECH. Values are presented as the mean ± SEM. *p < 0.05, **p < 0.01.
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of ECH on cell viability, we added ECH (5, 10, and 20 mg/L) into
cell culture media alone or alongside LPS. As shown in Figures
5A,B, treatment with ECH and LPS did not alter cell viability
compared to vehicle. Morphological changes were observed in
BV2 cells under a light microscope (Figure 5C). BV2 cells in the
LPS group were larger, harbored shorter processes, and displayed
apparent swelling of the cell bodies compared to the control
group. However, treatment with ECH significantly reversed these
morphological changes. Figure 5D, which depicts the activation
of BV2 cells via the immunofluorescence staining of IBA-1,
exhibits a similar trend.

To determine ECH’s ability to affect LPS-induced
neuroinflammation, we treated BV2 microglial cells with
ECH (5, 10, and 20 mg/L) for 2 h, followed by LPS (1 μg/
ml) for 6 h, and then determined their pro-inflammatory
cytokine levels with RT-PCR. As shown in Figures 5E–G,
ECH markedly decreased the mRNA level of LPS-induced
pro-inflammatory cytokines IL-1β, TNF-α, and IL-6.

Echinacoside Regulated IL-6/JAK2/STAT3
Signaling in Lipopolysaccharide-Induced
BV2 Cells
We examined the impact of ECH on IL-6/JAK2/STAT3 signaling
in LPS-induced BV2 cells. As shown in Figure 6A, LPS
administration led to the enhanced expression of IL-6, p-JAK2,

and p-STAT3 (tyr705) proteins. Co-treatment with different doses
of ECH saw a decline in the increased expressions of these three
proteins dose-dependently; their Western blot analyses are shown
in Figures 6B–D, respectively. Unlike in MPTP mice, p-STAT3
(ser727) was also activated in LPS-treated BV2 cells, followed by a
persistent and dose-dependent upregulation after treatment with
different ECH doses (Figure 6E). As a result, ECH treatments also
amplified BDNF expression in the same trend as in MPTP mice
(Figure 6F).

We conducted cellular immunofluorescence assays of
p-STAT3 (tyr705) to observe the nuclear transcription of
STAT3 directly. As shown in Figure 6G, compared with the
control group, the STAT3 (tyr705) level in nuclei was
significantly upregulated in LPS-induced BV2 cells; however,
ECH significantly reduced these levels.

We used the inhibitor of STAT3, S3I-201, to examine the ECH’s
regulation of IL-6/JAK2/STAT3 (tyr705) and BNDF/STAT3
(ser727). BV2 cells were pretreated with S3I-201 (100 μM) for
24 h and then treated with ECH (20mg/L) for 2h, followed by
LPS (1 μg/ml) for 6 h. IL-6, p-JAK2, and p-STAT3 expressions were
determined withWestern blot (Figure 6H). Treatment with “S3I-201
+ ECH + LPS” further decreased LPS-stimulated IL-6, p-JAK2, and
p-STAT3 (tyr705) protein expressions compared to treatment with
“S3I-201 + LPS” (Figures 6I–K). Additionally, treatment with S3I-
201 eliminated ECH-engendered p-STAT3 (ser727) (Figure 6L) and
BDNF upregulation (Figure 6M).

FIGURE 3 | ECH inhibited the activation of microglia and secretion of inflammatory cytokines in SN of MPTP mice. (A) Representative photos of
immunofluorescence staining of IBA-1 in the striatum. (B) Relative mRNA level of IL-1β in SN of different groups. (C) Relative mRNA level of TNF-α in SN of different
groups. (D) Relative mRNA level of IL-6 in SN of different groups. Values are presented as the mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001.
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DISCUSSION

Due to the spiraling prevalence of PD, progressively more scholars
are paying attention to the impact of natural drugs and their extracts
on PD (Rabiei et al., 2019). Epidemiological study findings suggest
that some patients with PD do not have tremors, even if they all
develop bradykinesia. The movement disorder society’s (MDS)
clinical diagnostic criteria for PD also clearly stated in its report
that bradykinesia was the only critical symptom of PD in 2015
(Postuma et al., 2015), suggesting that the “kidney-qi deficiency” (a
traditional Chinese medicine diagnostic statement) associated with
bradykinesia could be pivotal to the pathogenesis of PD. Therefore,
Cistanche deserticola with the “kidney tonifying” effect has been
widely studied in the search for drugs against PD (Gu et al., 2016),
with evidence that its anti-PD activity comes from its
phenylethanoid glycoside extract (Fu et al., 2018). ECH, a
phenylethanoid glycoside derived from Cistanche deserticola,
exerts neuroprotective properties through neurotrophic (Zhu
et al., 2013) and anti-inflammatory (Zhang et al., 2021)
functions. However, a clear intermediate molecule or pathway
that unifies these two effects has to be found. We reveal here
that ECH can achieve neurotrophic and anti-inflammatory effects
by regulating the IL-6/JAK2/STAT3 pathway and the
phosphorylation of STAT3, promoting the mutually beneficial
influence of the two effects tomaximize its neuroprotective function.

IL-6 was uncovered about forty years ago, initially as an
inflammatory cytokine produced by lymphocytes involved in B-cell
differentiation (Hirano et al., 1986). Its persistent synthetic
dysregulation pathologically affects autoimmunity and chronic
inflammation (Tanaka et al., 2014). Alongside TNF-α and IL-1β,
IL-6 is considered one of the chief orchestrators of the inflammatory
responses in the brain and has emerged as a pivotal player in the
nervous system (Qin et al., 2016). Its production can be stimulated by
neurotransmitters, α-synuclein, inflammatory cytokines (e.g., TNF-α,
IL-1β, and IL-6), and bacterial pathogens (e.g., LPS) (Spooren et al.,
2011). Reports show that LPS-induced microgliosis is blocked by the
intracerebral injection of an anti-IL-6 antibody (Pang et al., 2006), and
microglial activation is reduced in IL-6−/− mice (Galiano et al., 2001).
In this study, the IL-6 level was decreasedwith ECH treatment in LPS-
induced BV2 cells. Allegedly, IL-6 is also a neurotrophic factor thanks
to its impact on the survival, proliferation, and differentiation of
neurons (Satoh et al., 1988). IL-6 at low concentrations can induce
neuronal survival and outgrowth in LPS treated-microglia (Li et al.,
2007) or astrocytes- (Li et al., 2009) conditioned media, and at high
concentrations, it can cause neuronal death; however, these
phenomena can be arrested with an IL-6 antibody, suggesting that
the neuroprotective effect of IL-6 is conditional and dependent on the
environment and concentration. Excessive IL-6 can also enhance
N-methyl-D-aspartic (NMDA) acid receptor mediated neuronal
excitotoxicity (Qiu et al., 1998), which can equally be induced by

FIGURE 4 | ECH regulated IL-6/JAK2/STAT3 signaling in SN of MPTP mice. (A) Expression of IL-6, p-JAK2, JAK2, p-STAT3 (tyr705), p-STAT3 (ser727), STAT3,
and BDNF in SN. (B)Western blot analysis for IL-6. (C)Western blot analysis for p-JAK2/JAK. (D)Western blot analysis for p-STAT3 (tyr705)/STAT3. (E) Western blot
analysis for p-STAT3 (ser727)/STAT3. (F) Western blot analysis for BDNF. Values are presented as the mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001.
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MPTP (Wang et al., 2010), ultimately leading to neurodegeneration.
The PD-associated protein α-synuclein is likewise upregulated in the
presence of high dose IL-6 (Bick et al., 2008). Therefore, excessive
dysregulations of IL-6 in MPTP-induced PD mice and LPS-treated
BV2 cells can produce deleterious effects controllable with ECH to
protect DA neurons, as shown in this study.

During signal transduction, IL-6 binds to its receptor, which
induces and induces the homodimerization of gp130 followed by
activation of the associated JAKs (Garbers et al., 2015).
Subsequently, JAKs phosphorylate STATs and then form
homologous or heterodimers that translocate to the nucleus,
bind to specific DNA sequences, and promote transcriptional
activation (Planas et al., 2006). Both STAT1 and STAT3 can be

activated by IL-6 in vitro (Jenab and Quinones-Jenab, 2002),
while in vivo studies revealed that STAT1 has a limited role in IL-
6 signaling (Sanz et al., 2008). Studies have demonstrated that IL-
6 signaling in the CNS is coordinated by STAT-3 (Spooren et al.,
2011), with a JAK2-dependent mechanism (Planas et al., 2006).

As the downstream effector of IL-6, the JAK2/STAT3 pathway can
be activated in response to the reactive oxygen species (ROS) and pro-
inflammatory cytokines, TNF-α and IL-1β (Dziennis and Alkayed.,
2008). STAT3 activity depends primarily on its phosphorylation at
tyr705, which is regulated by the activities of the tyrosine kinases and
tyrosine phosphatases of STAT3 (Mertens and Darnell., 2007), and
then it was transported to the nucleus to trigger gene transcription.
Activating JAK2/STAT3 pathway initiates the activation of microglia,

FIGURE 5 | ECH retrained the activation ofmicroglia and secretionof inflammatory cytokines in LPS-inducedBV2cells. (A)BV2microglial cellswere treatedwith ECH (5, 10, and
20 mg/L) for 2 h, and cell viabilitywasmeasured byCCK8. (B)BV2microglial cellswere pretreatedwith ECH (5, 10, and 20 mg/L) for 2 h and exposed to LPS (1 μg/ml) for 6 h, and cell
viabilitywasmeasured. (C)MorphologyofBV2cells indifferentgroups. (D)Representativephotosof immunofluorescencestainingof IBA-1 inBV2cells. (E)The relativemRNA level of IL-
1β in different groups. (F) Relative mRNA level of TNF-α. (G) Relative mRNA level of IL-6. Values are presented as the mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001.
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resulting in the neurodegeneration of dopaminergic neurons (Huang
et al., 2008). It can also be induced by the overexpression of α-
synuclein, ultimately contributing to neurodegeneration. JAK2/
STAT3 signaling inhibition has been shown to protect against α-
synuclein-induced neuroinflammation and dopaminergic
neurodegeneration in the α-synuclein overexpression PD model

(Qin et al., 2016). Per previous reports, JAK2 is activated and
STAT3 is phosphorylated on tyr705 in MPTP-induced PD mice
(Sriram et al., 2004) and LPS-treated BV2 microglial cells (Li et al.,
2016), consistent with related results in the current study.

In addition to the JAK2-induced phosphorylation on tyr705,
the phosphorylation of STAT3 on ser727 also appears to

FIGURE 6 | ECH regulated IL-6/JAK2/STAT3 signaling in LPS-induced BV2 cells. (A) BV2 microglial cells were pretreated with ECH (5, 10, and 20 mg/L) for 2 h
and exposed to LPS (1 μg/ml) for 6h; then, the expression levels of IL-6, p-JAK2, JAK2, p-STAT3 (tyr705), p-STAT3 (ser727), STAT3, and BDNF were measured with
Western blot. (B)Western blot analysis for IL-6. (C) Western blot analysis for p-JAK2/JAK. (D)Western blot analysis for p-STAT3/STAT3. (E) Western blot analysis for
p-STAT3 (ser727)/STAT3. (F)Western blot analysis for BDNF. (G) Immunofluorescence staining for p-STAT3 (tyr705) (red) in ECH (20 mg/L, 2 h) pretreated BV2
cells and then exposed to LPS (1 μg/ml) for 6 h. (H) BV2 cells were pretreated with S3I-201 (STAT3 inhibitor, 100 µM) for 24 h and then treated with ECH (20 mg/L) for
2 h and induced by LPS (1 μg/ml) for 6 h. The expression levels of IL-6, p-JAK2, JAK2, p-STAT3 (tyr705), p-STAT3 (ser727), STAT3, and BDNF are shown under S3I-
201 treatment. (I) Western blot analysis for IL-6. (J) Western blot analysis for p-JAK2/JAK. (K) Western blot analysis for p-STAT3 (tyr705)/STAT3. (L) Western blot
analysis for p-STAT3 (ser727)/STAT3. (M) Western blot analysis for BDNF. Values are presented as the mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001.
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participate in the regulation of STAT3 activation. Reportedly,
neurotrophins and cytokines stimulate STAT3 phosphorylation
on ser727 and tyr705, respectively, in sympathetic neurons
(Pellegrino and Habecker, 2013). The nerve growth factor
(NGF) can activate STAT3 through TrkA to target the
phosphorylation of STAT3 on ser727 but not on tyr705
(Pellegrino and Habecker, 2013; Ng et al., 2006). Similarly,
the BDNF-engendered activation of TrkB also leads to
STAT3 phosphorylation on ser727 (Zhou & Too, 2011).
Single-cell transcriptome analyses identified BDNF as a
STAT3 target gene, with its expression capable of increasing
with the activation of p-STAT3 (Paris et al., 2020), pointing to a
mutually promoting relationship between BDNF and p-STAT3
(ser727). Reportedly, transient amounts of ECH can heighten
TrkA/TrkB activity and increase NGF/BDNF in rotenone-
treated primary rat cortical neurons (Zhu et al., 2013), and
ECH initiates a rise in BDNF in the SN of MPTP-induced PD
mice (Zhang et al., 2021). In this study, treatment with ECH
increased BDNF expression in MPTP mice and LPS-treated
BV2 cells, suggesting that ECH possibly also activates STAT3
phosphorylation on ser727, as shown in Figures 4E, 6E.
According to past investigations, p-STAT3 (ser727)
enhancement is associated with p-STAT3 (tyr705)
downregulation (Shi et al., 2006; Andersson et al., 2007).
This negative relationship between p-STAT3 (ser727) and
p-STAT3 (tyr705) has been observed before, where casein
kinase 2-mediated reduction in STAT3 phosphorylation at
the Ser727 site triggered an increase in STAT3
phosphorylation on Tyr705 (Mandal et al., 2014). In this

study, ECH caused p-STAT3 (tyr705) downregulation in
MPTP mice and LPS-treated BV2 cells, as depicted in
Figures 4, 6. ECH, therefore, possibly plays dual
neurotrophic and anti-inflammatory roles by upregulating
p-STAT3 (Ser727) and downregulating p-STAT3 (tyr705),
respectively, protecting damaged neurons in PD mice models.
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