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m Most elderly patients affected with acute myeloid leukemia (AML) will relapse and die of their
disease even after achieving complete remission, thus emphasizing the urgent need for new
* A-PACs target primary therapeutic approaches with minimum toxicity to normal hematopoietic cells. Cranberry
AML cells, spa+ring (Vaccinium spp.) extracts have exhibited anticancer and chemopreventive properties that
eliing (CILER" @erd have been mostly attributed to A-type proanthocyanidin (A-PAC) compounds. A-PACs,

blood cells in vitro and . . . .
isolated from a commercially available cranberry extract, were evaluated for their effects

reducing AML tumor . i ) . .
e on leukemia cell lines, primary AML samples, and normal CD34" cord blood specimens. Our
burden with in vivo

- results indicated potent and specific antileukemia activity in vitro. In addition, the

o antileukemia activity of A-PACs extended to malignant progenitor and stem cell populations,
* NF-kB activation

plays a role in
A-PAC-induced
cell death.

sparing their normal counterparts. The antileukemia effects of A-PACs were also
observed in vivo using patient derived xenografts. Surprisingly, we found that the
mechanism of cell death was driven by activation of NF-«xB. Overall, our data suggest that
A-PACs could be used to improve treatments for AML by targeting leukemia stem cells
through a potentially novel pathway.

Introduction

Cranberry (Vaccinium spp.) A-type proanthocyanidins (A-PACs) are a unique class of compounds with
antitumor activity.'”” A-PACs have epicatechin compounds (Figure 1A) linked by carbon—carbon bonds
and distinctive ether bonds associated with potent biological effects (Figure 1B-C).""®

Acute myelogenous leukemia (AML) is an often fatal cancer with a high relapse rate®® attributed to a
chemoresistant population of leukemia stem cells (LSCs). Current therapies, including cytarabine
(Ara-C), eradicate the AML blast population, but are relatively ineffective against self-renewing and disease-
perpetuating LSCs.'®'2 Patients with more LSCs demonstrate significantly shorter relapse-free survival
than patients with fewer LSCs."® A higher proportion of LSCs at diagnosis is highly predictive of minimal
residual disease, suggesting a causal relationship.'® Several characteristics of LSCs could be exploited
as therapeutic targets: aberrant surface phenotype, dysregulated cell-survival programs, differentiation,
and microenvironmental interactions.' In this study, we evaluated the ability of A-PACs to target AML
in vitro and in vivo, including blast and progenitor/stem cells, and investigated potential mechanisms.

Methods

Viability of primary AML/cord blood (CB) CD34" cells and leukemia/lymphoma cell lines were
assessed by flow cytometry using cell viability stains'® after 48 hours of treatment with CystiCran-40
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Figure 1. A-PACs induce cell death in leukemia cell lines and primary AML cells while sparing healthy CD34* CB cells. (A) Epicatechin. (B) A-PAC dimer. (C)
A-PAC trimer. (D-E) Dose-response effects of cell lines and primary AML cells treated with CYS. (F-G) Dose-response effects of A-PACs on cell lines (group A, between blue

lines: high sensitivity; group B, between red lines: intermediate sensitivity; group C, between black lines: low sensitivity) and primary AML cells. (H) Normal cord blood CD34™"
cells treated with A-PACs. (I) Scheme for experimental design. (J) Colony-forming unit (CFU) for normal CD34* CB and AML samples treated with A-PACs; erythroid (Ery),
myeloid, and AML CFU percent relative to untreated. (K) Percent engraftment of primary AML cells untreated or treated with 62.5.g/mL A-PACs after 8 weeks. (L) Percent

engraftment of normal CD34 " cells treated with and without 62.5 pg/mL A-PACs after 8 weeks. Data with mean = standard error of the mean (SEM) were significant if

*P < .05, *P < .01, **P < .001 (Student ¢ test). DMSO, dimethyl sulfoxide.

(NATUREX-DBS LLC; Sagamore, MA) extract (CYS) or A-PACs
isolated from CYS (A-PAC), as similarly described.® Colony-forming
assays and patient-derived xenotransplants (PDX), using nonobese
diabetic/severe combined immunodeficient mice (Jackson Labora-
tories; Bar Harbor, ME), were conducted.'® Mouse bone marrow
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cells were assessed by flow cytometry'® to evaluate if pretreatment
with A-PACs prevented AML engraftment or if treating established
xenograft mice intraperitoneally with A-PACs (256 m/kg 2 times
a week for 3 weeks) or Ara-C (60 mg/kg for 5 days) reduced AML
engraftment after 6 to 8 weeks (Figure 1l; supplemental Figure 1).
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Figure 2. Decrease in tumor burden with A-PAC in vivo treatment and the role of NF-«B in A-PAC-induced cell death. (A) Percent engraftment of AML 9 at

6 weeks posttransplant and 3 weeks after intraperitoneal treatments (A-PACs or phosphate-buffered saline 2 times/week for 3 weeks or with 60 mg/kg Ara-C daily for 5 days).
Percent leukemia burden is shown for the indicated treatments. Data represented as mean = SEM and significant if *P < .05; *P = .0332 (1-way analysis of variance).

(B) Pan-caspase inhibitor Z-VAD (20 M) cannot rescue AML cells from A-PAC (250 pg/mL) cell death. (C) NF-kB gene family upregulation and cell death after 4 hours with
A-PACs (62.5 ng/mL; 31.25 pg/mL for Ramos). Cell lines from left to right: MV4-11 (green), K662 (red), REH (brown), MOLM-13 (purple), SKNO-1 (blue), Ramos (gray).

(D) NF-«B activation after 4 hours of A-PAC treatment in MOLM-13; positive control is 2.5 g Jurkat (TPA+CI) nuclear extract. (E) A-PAC cell death after pretreatment with
NF-kB inhibitor SN50 (100 wg/mL) in 2 cell lines and a primary AML sample (blue arrows indicate line for LDso); shown with log concentration (wg/mL). (F) SN50 increased
the ability of parthenolide (PTL) to induce cell death in a primary AML10 cells; shown with log concentration (uM). (G) Activation of NF-«kB after 4 hours of treatment with
A-PACs (32.25 pg/mL) or PTL (6 uM) with and without SN50 (36 M) in AML10 cells. Data mean + SEM were significant if *P < .05, **P < .0 1, ***P < .001

(Student t test, with the exception of panel A). OD, optical density.
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Cells were pretreated with 100 pg/mL SN50 or 20 wM carbo-
benzoxy-valyl-alanyl-aspartyl-[O-methyl]-fluoromethylketone
(Z-VAD; EMD Millipore) before A-PAC treatment in vitro. RNA was
prepared/assessed as previously described.'® The DNA-binding
capacity of NF-kB (p65 subunit) was measured from whole cell
extracts using the Nuclear Extract and TransAM NF-«B Kit (Active
Motif; Carlsbad, CA). For more experimental details, see supple-
mental Materials.

Results and discussion

We report concentration-dependent antileukemia activity of a cran-
berry extract (CYS, 40% A-PACs) and its purified A-PAC fraction
(A-PAC) against cell lines and primary AML samples (Figure 1D-G).
All cells were sensitive to A-PACs at 250 pg/mL (most >50%
cell death) (Figure 1F-G). At lower concentrations (62.5 and
31.25 ng/ml), differential sensitivity was observed in cell lines
(Figure 1F). At the higher A-PAC concentrations (125 and 250 pg/mL),
normal CB CD34" cells showed <30% cell death at 48 hours,
whereas cell death reached 94% in some primary AML samples
(Figure 1G-H). Therefore, A-PACs induced massive cell death in
leukemic cells, whereas healthy CD34 " CB cells were mostly spared.

Primary AML cells and CB cells treated in vitro below the median
lethal dose (LDsp; 62.5 wg/mL), with a phenotypically defined
(CD34" CD387) stem cell population (supplemental Figure 2),
were evaluated for their ability to proliferate and differentiate into
colony-forming clones and for stem/progenitor cells to initiate
leukemia or engraft and reconstitute bone marrow in PDX models
(Figure 11). We found >75% decrease in colony-forming activity of
AML stem/progenitor cells relative to vehicle control (Figure 1J).
Generation of erythroid/myeloid colonies in vitro was not signif-
icantly affected in normal CD34™ CB cells treated with twice the
dose used for AML cells (Figure 1J). Furthermore, treatment of
primary AML cells resulted in significantly decreased engraft-
ment in nonobese diabetic/severe combined immunodeficient
mice, whereas treated normal CD34" cells retained engraft-
ment capacity (Figure 1K-L). These results indicate A-PACs have
potent activity against AML stem/progenitor cells without
harming normal hematopoietic counterparts.

The potent antitumor response of A-PACs in vitro led us to evaluate
A-PAC treatment in vivo. After PDX were established, mice were
randomized into groups with different treatments. We found
a greater than twofold decrease in AML tumor burden for mice
treated with A-PACs or Ara-C compared with vehicle-treated mice
(Figure 2A). This suggests A-PACs represent a novel class of
compounds that selectively kill AML cells in vivo.

The mechanism of cell death was evaluated by investigating
apoptosis and survival pathways. AML cells treated with A-PACs
required 6 to 8 hours to commit to cell death in wash-out
experiments (supplemental Figure 3). Because cleaved poly ADP
ribose polymerase, a marker of apoptosis, was apparent 8 hours
posttreatment in A-PAC-sensitive AML cells (supplemental Figure 4),
we evaluated if pan-caspase inhibitor Z-VAD could rescue 3
different AML cell lines from A-PAC—-induced cell death. Z-VAD
was unable to rescue the cells, indicating A-PAC-induced cell
death is not caspase dependent (Figure 2B), consistent with
another report.'” Additionally, we found A-PAC increased AML
cell death when used in combination with the standard care drug
Ara-C (supplemental Figure 5).
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We previously showed that NF-«B is constitutively activated in AML
cells (blast and stem/progenitor) and is important for cell survival,
whereas inhibition led to cell death with minimal damage to normal
hematopoietic cells."' We evaluated the effect of A-PACs on
NF-kB by investigating transcriptional regulation of NF-kB family
genes 4 hours posttreatment. Figure 2C shows that leukemia cell
lines, with increasing A-PAC sensitivity, treated with 62.5 pug/mL
of A-PACs (31.25 wg/mL for highly sensitive Ramos cells), resulted
in increased expression of NF-kB family genes. Upregulation was
twofold higher in the most sensitive cells (Ramos), which also
exhibited inflammatory response gene expression (supplemental
Figure 6), and one- to 1.2-fold lower in the least sensitive cells
(MV4-11). Assessment of inflammatory cytokine induction by
A-PACs in sensitive AML cells indicated interleukin-8 levels
increased in the cell culture supernatant, suggesting a possible
relationship with NF-kB activation (supplemental Figure 7).

Using the RELA/p65 transcription factor DNA binding assay, we
also found significant activation of NF-kB 4 hours posttreatment
in MOLM-13 cells (Figure 2D). To determine if increased NF-xB
activity by A-PACs was relevant to cell death, we disrupted NF-xB
translocation to the nucleus using SN50 peptide.'® We observed
a shift in the LDs after pretreating cells with SN50 (Ramos cells:
1.6-2.1 LDsq ratio; MOLM13: 1.9-2.4 LDs, ratio; AML10: 1.4-2.0
LDs, ratio) (Figure 2E). Therefore, NF-kB activation appears to be
necessary for A-PACs to induce cell death. Conversely, SN50
pretreatment increased AML cell death with the anti-LSC agent and
NF-«B inhibitor, parthenolide (PTL)' (Figure 2F). To further confirm
SN50 inhibited A-PAC—-induced activation of NF-kB, we used the
NF-kB p65 DNA binding assay with primary AML cells and found
SN50 blocked NF-kB activation by A-PACs, the opposite effect of
the anti-LSC agent PTL (Figure 2G). This suggests that other
means of perturbation of NF-kB, such as hyperactivation, can also
result in leukemia cell death.

AML is a disease that urgently needs novel and less toxic therapies
that also target LSCs. Currently, most approaches used to eliminate
LSCs involve inhibition of NF-kB, which is constitutively activated
in AML cells."®'""92°% Collectively, our previous and new data
suggest that perturbation (inhibition or hyperactivation) of
already altered pathways results in adverse responses to AML
cells. Moreover, we have demonstrated that A-PACs targeted
LSCs and blasts through a potentially novel pathway that
involves activation of NF-kB. To our knowledge, this is the
first report in which activation of NF-kB leads to primary AML
blast and progenitor/stem cell death without harming normal
counterparts.
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