ECOBOARD PLANT Life Cycle Analysis

Summary per kg of finished product

| | Energy MJ/kg | GWP CO2 eqv /kg | |
| :--- | ---: | ---: | ---: | GWP CO2 eqv /kg

Notes | 1 No burden has been associated with the "waste" wheat straw thus no energy input is shown |
| :--- |
| 2 total CO2 emmissions for the product include a negative value due to carbon storage in the straw |
| 3 MDI production figures have been adapted from european data and thus a factor of 2.29 is applied to compensate for the higher |
| CO emmissions (per kWh) in China |
| 4 packaging is assumed to be 0.02857 kg HDPE per kg of product in the absence of "cling wrap" data or exact weights |

Total	Produced in asia	$-0.618-\mathrm{CO} / \mathrm{Kg}$
	Transport from asia	$-0.367-\mathrm{CO} / \mathrm{Kg}$
	Produced in EUROPE	$-0.984-\mathrm{CO} / \mathrm{Kg}$

	$\mathbf{k g}$	$\mathrm{CO2}$			
Capacity Factory	$97,000,000$	-0.984	$-95,400,008$	$\mathrm{~kg} \mathrm{CO2}$	stored per factory / year
Wood saved 97%	$94,090,000$	-1.65	$-155,248,500$	kg CO2	

While each kilogram of dried tree is storing .45 kilograms of carbon, it is removing more than a kilogram of carbon dioxide from the atmosphere. This is because each carbon dioxide molecule contains two oxygen atoms. Using the data from above, this means that each carbon dioxide molecule has an atomic mass of $12+2(16)=44$, of which only 12 due to the carbon. Therefore, for each atom of carbon stored in a tree, 44 atomic mass units of carbon dioxide is removed from the atmosphere. This means that each kilogram of dried tree corresponds to (1 kg of dried tree) $x(.45 \mathrm{~kg}$ of $C / 1 \mathrm{~kg}$ of dried tree $) \times(44 \mathrm{amu}$ of CO2/12 AMU of C) $=1.65 \mathrm{~kg}$ of CO2 >

Source : http://esa21.kennesaw.edu/activities/trees-carbon/trees-carbon.pdf

CO2 extra absorbed

 by saved trees $/ \mathrm{Yr} \quad 94,090,000 \quad-0.50 \quad-47,045,000 \mathrm{~kg} \mathrm{CO2} / \mathrm{Yr}$Tree oxygen production varies by tree size. Based on data from Minneapolis, Minnesota (Nowak et al. 2006b), trees 1-3 dbh produced $\boldsymbol{\approx 2 . 9} \mathbf{~ k g ~ O 2 / y e a r ~ (6 . 4 ~ l b ~ O 2 / y e a r) ; ~ t r e e s ~} 9 \mathbf{- 1 2} \mathbf{d b h}$: 22.6 $\mathrm{kg} \mathrm{O2/year}(49.9 \mathrm{lb}$ O2/year); 18-21 dbh: 45.6 kg O2/year (100.5 lb O2/year); 27-30 dbh: 91.1 kg O2/year (200.8 lb O2/year); and greater than 30 dbh : $110.3 \mathrm{~kg} 2 / \mathrm{year}$ (243.2 lb O2/year). An average tree of about 10 dbh and about 40 kg will produce about $20 \mathrm{~kg} 2 /$ year or about $0,50 \mathrm{~kg} \mathrm{C} 2$ per kg wood
http://joa.isa-arbor.com/request.asp?JournalID=1\&ArticleID=2998\&Type=2

Oxigen extra

produced
by saved trees $\quad 94,090,000 \quad 0.307692307692308 \quad 28,950,769 \mathbf{~ k g ~ O 2 / Y r}$

These statements do not take into account the types of trees, the number of trees per acre, the hours of sunlight, whether they are deciduous or coniferous, if the climate is warm or cold, if the trees are young or mature.
However, using the factoid that "One acre of trees removes 2.6 tonnes of CO2 per year" the equivalent oxygen production rate would be about 1.6 tonnes per year. For 1000 acres 1.6 thousand tonnes.
http://wiki.answers.com/Q/How_much_oxygen_does_1000_acres_of_trees_produce\#ixzz1JfmXVori

