

Phrozen Resin User Guide

## Rigid: PC/GF-like, Black

### Outline

Before printing the perfect object, it is important to first understand the material limitations we are handling and how it can be successfully printed under various conditions. With this in mind, Phrozen provides the following design suggestions to help you better understand the properties of each material and how you can best utilize them to bring your wildest creation to life.

### **Table of Contents**

| TDS                                          | 1 |
|----------------------------------------------|---|
| Long-Term Exposure Test                      | 2 |
| Resistance to Industrial Chemical Substances | 3 |
| Printing                                     | 5 |
| Printing Parameters                          | 5 |
| Cleaning                                     | 8 |
| Post-Curing                                  | 8 |
| Design Specifications                        | 9 |
| Applications1                                | 3 |

### TDS

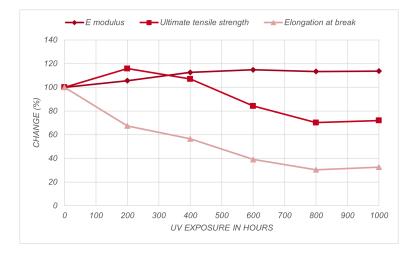
| General Properties                | Norm                     | Typical                        | values      |
|-----------------------------------|--------------------------|--------------------------------|-------------|
| Appearance                        | -                        | Black                          |             |
| Viscosity, 30                     | Cone/Plate<br>Rheometer¹ | 65–201 mPas                    |             |
| Density (liquid resin)            | ASTM D4052-18a           | 1.12 g/cm³                     |             |
|                                   |                          | Typical                        | values      |
| Tensile Properties                | Norm                     | UV post-cured                  | UV +Thermal |
| Tensile Modulus                   | ASTM D638                | 2567 MPa                       | 3330 MPa    |
| Tensile Strength at Break         | ASTM D638                | 48.4 MPa                       | 63 MPa      |
| Elongation at Break               | ASTM D638                | 9.4 %                          | 5.5 %       |
|                                   | Norm                     | Typical                        | values      |
| Impact Properties                 |                          | UV post-cured                  | UV +Thermal |
| Notched Izod (Machined),<br>23 °C | ASTM D256                | 39.8 J/m                       | 35.5 J/m    |
|                                   |                          | Typical values                 |             |
| Thermal Properties                | operties Norm            | UV post-cured                  | UV +Thermal |
| HDT at 0.45 MPa                   | ASTM D648                | 65 °C                          | 95 °C       |
| Hardness                          | Norm                     | Typical values (UV post-cured) |             |
| Shore D                           | ASTM D2240               | 80D                            |             |

\* All testing specimens are printed using Phrozen Sonic Mighty 8K or Sonic Mini 8K, and post-cured using Phrozen Cure & Wash.

- \* Regular UV post-curing for 120 minutes and additional thermal post-cure of 2h at 100°C
- \* Increasing curing time can improve mechanical properties, but also increase the risk of deformation.

Specimens are printed unless stated otherwise. The information in this TDS, including product recommendations, is based on our current knowledge and experience. Descriptions, drawings, photographs, data, proportions, weights, etc. provided may change without notice and do not establish the product's contractual quality. Request the relevant MSDS from your supplier or contact Phrozen Tech Co., Ltd at <a href="mailto:sales@phrozen3d.com">sales@phrozen3d.com</a>




# Section 2 Long-Term Exposure Test

Durability is a desired key feature for the components utilized within many industries, as they expect the materials used to withstand years of exposure to the elements. However, through the effects of UV radiation, variation in temperatures, and exposure to moisture, photopolymers can degrade over time. The degree of degradation highly depends on the duration and intensity of the continued exposure.

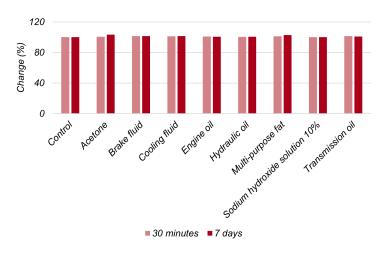
### **Test Method and Specimens**

The aging tests were performed with ASTM D638 type IV tensile bars as per ISO 4892-2:2013 method A, cycle 1.

### **Mechanical Testing**



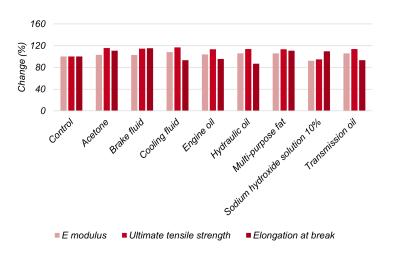
Change in mechanical properties after accelerated weathering.




# Section 3 Resistance to Industrial Chemical Substances

#### **Test Method and Specimens**

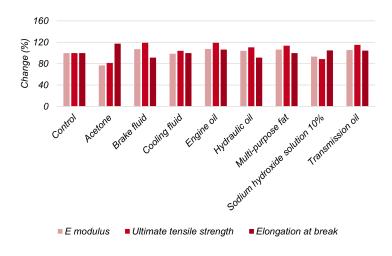
ASTM D638 type IV tensile bars were soaked in each fluid at room temperature, one set for 30 minutes and one set for 7 days. Upon completion of the soaking time, the parts were removed from the test fluid and were dried to measure the weight and the mechanical properties.


### Weight Measurement



Change in weight in regards to immersion time

### **Mechanical Testing**


30 minutes



Change in mechanical properties after 30 minutes of immersion.



7 days



Change in mechanical properties after 7 days of immersion.



# Printing

# **Printing Parameters**

| Printer              | Sonic Mini / Sonic Mini 4K |
|----------------------|----------------------------|
| Layer Height         | 50 µm                      |
| Exposure Time        | 15–20 s                    |
| Bottom Exposure Time | 10–15 s                    |
| Light-off Delay      | 11 s                       |
| Lift Distance        | 6 mm                       |
| Lifting Speed        | 60 mm/min                  |

| Printer                 | Sonic Mini 8K |
|-------------------------|---------------|
| Layer Height            | 50 µm         |
| Exposure Time           | 15–20 s       |
| Bottom Exposure Time    | 10–15 s       |
| Rest Time After Retract | 2 s           |
| Lift Distance           | 8 mm          |
| Lifting Speed           | 60 mm/min     |

| Printer                 | Sonic Mini 8K S |
|-------------------------|-----------------|
| Layer Height            | 50 µm           |
| Exposure Time           | 10–15 s         |
| Bottom Exposure Time    | 6–10 s          |
| Rest Time After Retract | 2 s             |
| Lift Distance           | 6 mm            |
| Lifting Speed           | 60 mm/min       |



| Printer              | Sonic Mighty 4K |
|----------------------|-----------------|
| Layer Height         | 50 µm           |
| Exposure Time        | 15–20 s         |
| Bottom Exposure Time | 10–15 s         |
| Light-off Delay      | 2 s             |
| Lift Distance        | 8 mm            |
| Lifting Speed        | 60 mm/min       |

| Printer                 | Sonic Mighty 8K |
|-------------------------|-----------------|
| Layer Height            | 50 µm           |
| Exposure Time           | 15–20 s         |
| Bottom Exposure Time    | 10–15 s         |
| Rest Time After Retract | 2 s             |
| Lift Distance           | 8 mm            |
| Lifting Speed           | 60 mm/min       |

| Printer                 | Sonic Mighty 12K (Upgrade Kit) |
|-------------------------|--------------------------------|
| Layer Height            | 50 µm                          |
| Exposure Time           | 15–20 s                        |
| Bottom Exposure Time    | 10–15 s                        |
| Rest Time After Retract | 2 s                            |
| Lift Distance           | 8 mm                           |
| Lifting Speed           | 60 mm/min                      |



| Printer                 | Sonic Mega 8K* |
|-------------------------|----------------|
| Layer Height            | 50 µm          |
| Exposure Time           | 20–25 s        |
| Bottom Exposure Time    | 10– 20 s       |
| Rest Time After Retract | 2 s            |
| Lift Distance           | 8 mm           |
| Lifting Speed           | 45 mm/min      |

| Printer                 | Sonic Mega 8K S |
|-------------------------|-----------------|
| Layer Height            | 50 µm           |
| Exposure Time           | 18–23 s         |
| Bottom Exposure Time    | 10–15 s         |
| Rest Time After Retract | 2 s             |
| Lift Distance           | 8 mm            |
| Lifting Speed           | 60 mm/min       |

\* Mega 8K has a higher peeling force. Therefore, a longer exposure time is necessary to increase the success rate.

\* Be sure to cover the hood when printing to maintain the best printing condition of the resin.



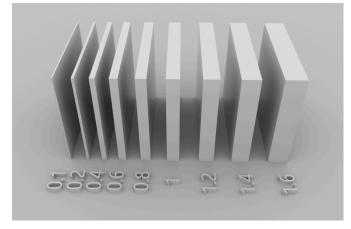
## Cleaning

- After removing the printed object from the building stage, use the Phrozen Wash and Cure Kit for post-processing.
- 2. Soak the object in Phrozen Wash filled with 95% alcohol for 45–60 seconds to remove uncured resin from the surface. Do not soak models more than 60 seconds in alcohol or other solvent (such as IPA), as it may damage the surfaces.
- 3. Make sure to clean the inner parts of hollow objects completely.
- Make sure that the object has been thoroughly cleaned, then leave it in a cool, well-ventilated place for at least 30 minutes without exposure to light. Alternatively, you may gently apply compressed air to dry the printed object.

\*When printing flat on the building plate, remove the printed objects carefully to avoid deformation on the objects.

### **Post-Curing**

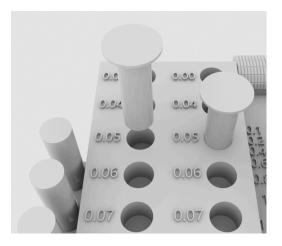
- Use Phrozen post-curing equipment (Phrozen Cure & Wash, Phrozen Cure, Phrozen Mega Cure) or other post-curing equipment with the same wavelength to cure printed objects.
- 2. Cure the printed objects for 60-120 minutes for the best results.


# **Design Specifications**

% Note: All indicators are limited to each resin; the value will vary with different machines and environmental conditions.%

#### **Minimum Unsupported Wall Thickness**

This indicator shows the minimum wall thickness that can be printed independently with no support without causing any bending or breaking.

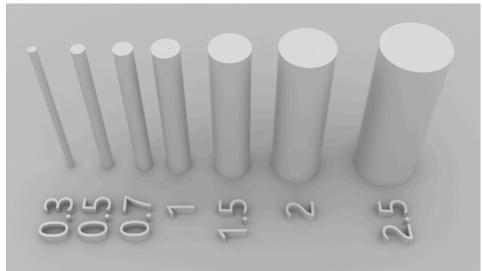

Recommended thickness: ≥ 0.2 mm



### Size Tolerance, X-Y plane

This indicator shows the minimum dimensional tolerance between the hole and the column parallel to the XY plane.

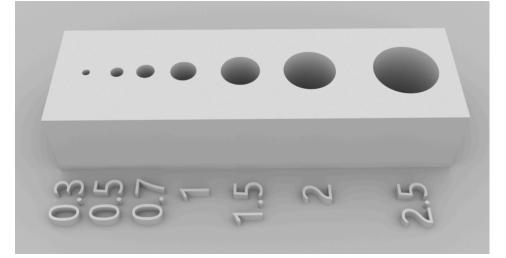
*Recommended tolerance*: ≥ 0.04 mm






#### **Minimum Pin Diameter**

This indicator shows the minimum column diameter of pillars and supports that can be printed independently without bending or breaking.


*Recommended diameter*: ≥ 0.5 mm



### Minimum Hole Diameter, X-Y plane

This indicator shows the minimum hole diameter that can be successfully printed parallel to the XY plane.

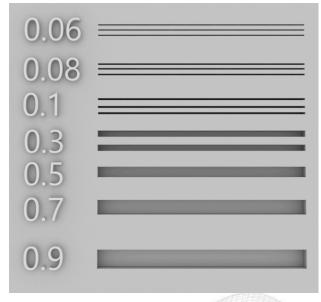
*Recommended diameter:* ≥ 0.3 mm





### Minimum Embossed Detail Width, X-Y plane

This indicator shows the minimum line width that can successfully be printed with embossed details.

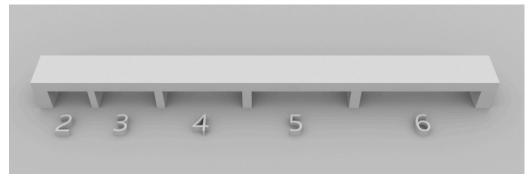



Recommended width: ≥0.1 mm

### Minimum Engraved Detail Width, X-Y plane

This indicator shows the minimum line width that can successfully be printed with engraved details.

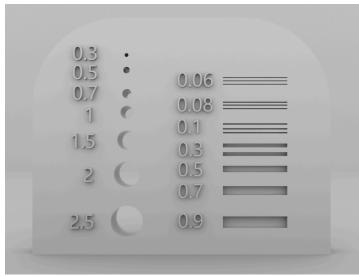
*Recommended width*: ≥ 0.06 mm






#### Maximum Horizontal Bridge Span

This indicator shows the maximum width between the supporting walls that can be printed without deforming the bridge.


*Recommended width*: ≤ 6 mm



Minimum Hole Diameter and Engraved Detail Width, Z-Axis, at 0.05mm Layer Height

This indicator shows the minimum hole diameter and engraving groove width that can be successfully printed on the Z-axis with a layer thickness of 0.05mm.

Recommended diameter. ≥ 0.3 mm Recommended width: ≥ 0.06 mm



# Applications

