

CBD Topical Product Guarantee

Product Name	CBD Double Strength Cream
Product Category	Topicals/Cosmetics (Not for consumption)
Instructions for use/Preparation	Apply a small amount to the affected area. Use as needed throughout the day. Store in a cool dry place. Do not take internally. Cannabidiol use while pregnant or breastfeeding may be harmful.
CBD Source	CBD sourced from hemp grown under federally authorized state pilot program (e.g. Kentucky, Oregon, or Colorado's R&D program) or approved hemp program.
	iagnose, treat, cure or prevent any disease
WARNING: The safety of this product h	as not been determined.
Batch Information	
Batch ID Number	21351
Batch Size	400 lbs
Units Produced per SKU	Item 54000 (2 oz): 2880 units
Manufacture date	12/17/2021
Expiration date	12/17/2023

Approved by Allison Ballard / Quality Assurance Manager

Date

Hemp Quality Assurance Testing

CERTIFICATE OF ANALYSIS

DATE ISSUED 12/26/2021

SAMPLE NAME: CBD Double Strength Cream 21351_#25

Infused, Hemp Infused

CULTIVATOR / MANUFACTURER

Business Name: License Number:

Address:

SAMPLE DETAIL

Batch Number: 21351 Sample ID: 211220N002 **DISTRIBUTOR / TESTED FOR**

Business Name: Shikai Products

License Number:

Address:

Date Collected: 12/20/2021 Date Received: 12/20/2021

Batch Size:

Sample Size: 1.0 units

Unit Mass: Serving Size:

Scan QR code to verify authenticity of results.

CANNABINOID ANALYSIS - SUMMARY

Total THC: Not Detected

Total CBD: 9.850 mg/g

Sum of Cannabinoids: 9.870 mg/g

Total Cannabinoids: 9.870 mg/g

Total THC/CBD is calculated using the following formulas to take into account the loss of a carboxyl group during the decarboxylation step: Total THC = Δ 9THC + (THCa (0.877))

Total CBD = CBD + (CBDa (0.877))

Sum of Cannabinoids = Δ 9THC + THCa + CBD + CBDa + CBG + CBGa + THCV + THCVa + CBC + CBCa + CBDV + CBDVa + Δ8THC + CBL + CBN Total Cannabinoids = (Δ9THC+0.877*THCa) + (CBD+0.877*CBDa) + (CBG+0.877*CBGa) + (THCV+0.877*THCVa) + (CBC+0.877*CBCa) +

(CBDV+0.877*CBDVa) + Δ8THC + CBL + CBN

SAFETY ANALYSIS - SUMMARY

Pesticides: PASS

Heavy Metals: PASS

Foreign Material: PASS

Mycotoxins: PASS

Microbiology (PCR): PASS

Residual Solvents: PASS

Microbiology (Plating): PASS

For quality assurance purposes. Not a Pre-Harvest Hemp Lab Test Report. These results relate only to the sample included on this report. This report shall not be reproduced, except in full, without written

Sample Certification: Action Limits used in this report are a compilation of guidance from state regulatory agencies in all states. Action limits for required tests are either state-specific, or the lower of any conflicting state regulations based upon the panel requested.

Decision Rule: Statements of conformity (e.g. Pass/Fail) to specifications are made in this report without taking measurement uncertainty into account. Where statements of conformity are made in this report, the following decision rules are applied: PASS - Results within limits/specifications, FAIL - Results exceed limits/specifications.

References: limit of detection (LOD), limit of quantification (LOQ), not detected (ND), not tested (NT), too numerous to count >250 cfu/plate (TNTC), colony-forming unit (cfu)

pproved by: Josh Wurzer, President ate: 12/26/2021

CERTIFICATE OF ANALYSIS

CBD DOUBLE STRENGTH CREAM 21351_#25 | DATE ISSUED 12/26/2021

Tested by high-performance liquid chromatography with diode-array detection (HPLC-DAD).

Method: QSP 1157 - Analysis of Cannabinoids by HPLC-DAD

TOTAL THC: Not DetectedTotal THC (Δ9THC+0.877*THCa)

TOTAL CBD: 9.850 mg/g
Total CBD (CBD+0.877*CBDa)

TOTAL CANNABINOIDS: 9.870 mg/g

Total Cannabinoids (Total THC) + (Total CBD) + (Total CBG) + (Total THCV) + (Total CBC) + (Total CBDV) + Δ 8THC + CBL + CBN

TOTAL CBG: ND

Total CBG (CBG+0.877*CBGa)

TOTAL THCV: ND

Total THCV (THCV+0.877*THCVa)

TOTAL CBC: ND
Total CBC (CBC+0.877*CBCa)

TOTAL CBDV: 0.020 mg/g
Total CBDV (CBDV+0.877*CBDVa)

CANNABINOID TEST RESULTS - 12/22/2021

	COMPOUND	LOD/LOQ (mg/g)	MEASUREMENT UNCERTAINTY (mg/g)	RESULT (mg/g)	RESULT (%)
Ī	CBD	0.004 / 0.011	±0.4718	9.850	0.9850
Ī	CBDV	0.002 / 0.012	±0.0010	0.020	0.0020
	Δ9ΤΗС	0.002/0.014	N/A	ND	ND
Ī	Δ8ΤΗС	0.01 / 0.02	N/A	ND	ND
Ī	THCa	0.001 / 0.005	N/A	ND	ND
	THCV	0.002 / 0.012	N/A	ND	ND
	THCVa	0.002/0.019	N/A	ND	ND
Ī	CBDa	0.001 / 0.026	N/A	ND	ND
	CBDVa	0.001 / 0.018	N/A	ND	ND
Ī	CBG	0.002 / 0.006	N/A	ND	ND
	CBGa	0.002 / 0.007	N/A	ND	ND
	CBL	0.003 / 0.010	N/A	ND	ND
Ī	CBN	0.001 / 0.007	N/A	ND	ND
Ī	СВС	0.003 / 0.010	N/A	ND	ND
	CBCa	0.001 / 0.015	N/A	ND	ND
Ī	SUM OF CANNA	BINOIDS		9.870 mg/g	0.987%

Pesticide Analysis

Pesticide and plant growth regulator analysis utilizing high-performance liquid chromatography-mass spectrometry (HPLC-MS) or gas chromatography-mass spectrometry (GC-MS).

*GC-MS utilized where indicated.

Method: QSP 1212 - Analysis of Pesticides and Mycotoxins by LC-MS or QSP 1213 - Analysis of Pesticides by GC-MS

Exclusions¹ see last page

Exclusions² see last page

PESTICIDE TEST RESULTS - 12/22/2021 PASS

COMPOUND	LOD/LOQ (µg/g)	ACTION LIMIT (μg/g)	MEASUREMENT UNCERTAINTY (μg/g)	RESULT (µg/g)	RESULT
Abamectin	0.03 / 0.10	0.3	N/A	ND	PASS
Acephate	0.02 / 0.07	5	N/A	ND	PASS
Acequinocyl	0.02 / 0.07	4	N/A	ND	PASS
Acetamiprid	0.02 / 0.05	5	N/A	ND	PASS
Aldicarb	0.03 / 0.08	≥LOD	N/A	ND	PASS
Azoxystrobin	0.02 / 0.07	40	N/A	ND	PASS
Bifenazate	0.01/0.04	5	N/A	ND	PASS
Bifenthrin	0.02 / 0.05	0.5	N/A	ND	PASS
Boscalid	0.03 / 0.09	10	N/A	ND	PASS
Captan	0.19/0.57	5	N/A	ND	PASS
Carbaryl	0.02 / 0.06	0.5	N/A	ND	PASS
Carbofuran	0.02 / 0.05	≥LOD	N/A	ND	PASS
Chlorantraniliprole	0.04 / 0.12	40	N/A	ND	PASS

Continued on next page

CERTIFICATE OF ANALYSIS

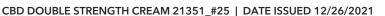
Pesticide Analysis Continued

Pesticide and plant growth regulator analysis utilizing high-performance liquid chromatography-mass spectrometry (HPLC-MS) or gas chromatography-mass spectrometry (GC-MS).

*GC-MS utilized where indicated.

Method: QSP 1212 - Analysis of Pesticides and Mycotoxins by LC-MS or QSP 1213 - Analysis of Pesticides by GC-MS

PESTICIDE TEST RESULTS - 12/22/2021 continued **⊘** PASS


COMPOUND	LOD/LOQ (µg/g)	ACTION LIMIT (μg/g)	MEASUREMENT UNCERTAINTY (μg/g)	RESULT (µg/g)	RESULT
Chlordane*	0.03 / 0.08	≥LOD	N/A	ND	PASS
Chlorfenapyr*	0.03 / 0.10	≥LOD	N/A	ND	PASS
Chlorpyrifos	0.02 / 0.06	≥LOD	N/A	ND	PASS
Clofentezine	0.03 / 0.09	0.5	N/A	ND	PASS
Coumaphos	0.02 / 0.07	≥LOD	N/A	ND	PASS
Cyfluthrin	0.12 / 0.38	1	N/A	ND	PASS
Cypermethrin	0.11/0.32	1	N/A	ND	PASS
Daminozide	0.02 / 0.07	≥LOD	N/A	ND	PASS
DDVP (Dichlorvos)	0.03 / 0.09	≥LOD	N/A	ND	PASS
Diazinon	0.02 / 0.05	0.2	N/A	ND	PASS
Dimethoate	0.03 / 0.08	≥LOD	N/A	ND	PASS
Dimethomorph	0.03/0.09	20	N/A	ND	PASS
Ethoprop(hos)	0.03 / 0.10	≥LOD	N/A	ND	PASS
Etofenprox	0.02 / 0.06	≥LOD	N/A	ND	PASS
Etoxazole	0.02 / 0.06	1.5	N/A	ND	PASS
Fenhexamid	0.03 / 0.09	10	N/A	ND	PASS
Fenoxycarb	0.03 / 0.08	≥LOD	N/A	ND	PASS
Fenpyroximate	0.02 / 0.06	2	N/A	ND	PASS
Fipronil	0.03 / 0.08	≥LOD	N/A	ND	PASS
Flonicamid	0.03 / 0.10	2	N/A	ND	PASS
Fludioxonil	0.03 / 0.10	30	N/A	ND	PASS
Hexythiazox	0.02 / 0.07	2	N/A	ND	PASS
lmazalil	0.02 / 0.06	≥LOD	N/A	ND	PASS
Imidacloprid	0.04 / 0.11	3	N/A	ND	PASS
Kresoxim-methyl	0.02 / 0.07	1	N/A	ND	PASS
Malathion	0.03/0.09	5	N/A	ND	PASS
Metalaxyl	0.02 / 0.07	15	N/A	ND	PASS
Methiocarb	0.02 / 0.07	≥LOD	N/A	ND	PASS
Methomyl	0.03 / 0.10	0.1	N/A	ND	PASS
Methyl parathion	0.03 / 0.10	≥LOD	N/A	ND	PASS
Mevinphos	0.03 / 0.09	≥LOD	N/A	ND	PASS
Myclobutanil	0.03 / 0.09	9	N/A	ND	PASS
Naled	0.02 / 0.07	0.5	N/A	ND	PASS
Oxamyl	0.04 / 0.11	0.2	N/A	ND	PASS
Paclobutrazol	0.02 / 0.05	≥LOD	N/A	ND	PASS
Pentachloronitrobenzene*	0.03 / 0.09	0.2	N/A	ND	PASS
Permethrin	0.04 / 0.12	20	N/A	ND	PASS
Phosmet	0.03 / 0.10	0.2	N/A	ND	PASS
Piperonylbutoxide	0.02 / 0.07	8	N/A	ND	PASS
Prallethrin	0.03 / 0.08	0.4	N/A	ND	PASS
Propiconazole	0.02/0.07	20	N/A	ND	PASS

Continued on next page

CERTIFICATE OF ANALYSIS

Pesticide Analysis Continued

Pesticide and plant growth regulator analysis utilizing high-performance liquid chromatography-mass spectrometry (HPLC-MS) or gas chromatography-mass spectrometry (GC-MS).

*GC-MS utilized where indicated.

Method: QSP 1212 - Analysis of Pesticides and Mycotoxins by LC-MS or QSP 1213 - Analysis of Pesticides by GC-MS

PESTICIDE TEST RESULTS - 12/22/2021 continued **⊘** PASS

	COMPOUND	LOD/LOQ (µg/g)	ACTION LIMIT (µg/g)	MEASUREMENT UNCERTAINTY (μg/g)	RESULT (µg/g)	RESULT
	Propoxur	0.03 / 0.09	≥LOD	N/A	ND	PASS
	Pyrethrins	0.04 / 0.12	1	N/A	ND	PASS
	Pyridaben	0.02 / 0.07	3	N/A	ND	PASS
	Spinetoram	0.02 / 0.07	3	N/A	ND	PASS
	Spinosad	0.02 / 0.07	3	N/A	ND	PASS
	Spiromesifen	0.02 / 0.05	12	N/A	ND	PASS
Ī	Spirotetramat	0.02 / 0.06	13	N/A	ND	PASS
	Spiroxamine	0.03 / 0.08	≥LOD	N/A	ND	PASS
	Tebuconazole	0.02 / 0.07	2	N/A	ND	PASS
	Thiacloprid	0.03 / 0.10	≥LOD	N/A	ND	PASS
	Thiamethoxam	0.03 / 0.10	4.5	N/A	ND	PASS
	Trifloxystrobin	0.03 / 0.08	30	N/A	ND	PASS

Mycotoxin Analysis

Mycotoxin analysis utilizing high-performance liquid chromatography-mass spectrometry (HPLC-MS).

Method: QSP 1212 - Analysis of Pesticides and Mycotoxins by

Exclusions³ see last page

MYCOTOXIN TEST RESULTS - 12/22/2021 PASS

	COMPOUND	LOD/LOQ (µg/kg)	ACTION LIMIT (μg/kg)	MEASUREMENT UNCERTAINTY (μg/kg)	RESULT (µg/kg)	RESULT
	Aflatoxin B1	2.0 / 6.0		N/A	ND	
	Aflatoxin B2	1.8 / 5.6		N/A	ND	
	Aflatoxin G1	1.0 / 3.1		N/A	ND	
	Aflatoxin G2	1.2 / 3.5		N/A	ND	
	Total Aflatoxin		20		ND	PASS
	Ochratoxin A	6.3 / 19.2	20	N/A	ND	PASS

Residual Solvents Analysis

Residual Solvent analysis utilizing gas chromatography-mass spectrometry (GC-MS).

Method: QSP 1204 - Analysis of Residual Solvents by GC-MS

Exclusions⁴ see last page

RESIDUAL SOLVENTS TEST RESULTS - 12/21/2021 ⊘ PASS

COMPOUND	LOD/LOQ (µg/g)	ACTION LIMIT (µg/g)	MEASUREMENT UNCERTAINTY (μg/g)	RESULT (μg/g)	RESULT
Propane	10/20	5000	N/A	ND	PASS
Butane	10/50	5000	N/A	ND	PASS
Pentane	20/50	5000	N/A	ND	PASS
Hexane	2/5	290	N/A	ND	PASS
Heptane	20/60	5000	N/A	ND	PASS
Benzene	0.03 / 0.09	1	N/A	ND	PASS
Toluene	7/21	890	N/A	ND	PASS
Total Xylenes	50 / 160	2170	N/A	ND	PASS
Methanol	50 / 200	3000	N/A	ND	PASS
Ethanol	20/50	5000	N/A	ND	PASS
Isopropyl Alcohol	10/40	5000	N/A	ND	PASS
Acetone	20/50	5000	N/A	ND	PASS
Ethyl ether	20/50	5000	N/A	ND	PASS

Continued on next page

Hemp Quality Assurance Testing

CERTIFICATE OF ANALYSIS

RESULT

CBD DOUBLE STRENGTH CREAM 21351_#25 | DATE ISSUED 12/26/2021

Residual Solvent analysis utilizing gas chromatography-mass spectrometry (GC-MS).

Method: QSP 1204 - Analysis of Residual Solvents by GC-MS

RESIDUAL SOLVENTS TEST RESULTS - 12/21/2021 continued PASS

COMPOUND	LOD/LOQ (µg/g)	ACTION LIMIT (μg/g)	MEASUREMENT UNCERTAINTY (μg/g)	RESULT (µg/g)	RESULT
Ethylene Oxide	0.3 / 0.8	1	N/A	ND	PASS
Ethyl acetate	20/60	5000	N/A	ND	PASS
Chloroform	0.1 / 0.2	1	N/A	ND	PASS
Methylene chloride	0.3 / 0.9	1	N/A	ND	PASS
Trichloroethylene	0.1 / 0.3	1	N/A	ND	PASS
1,2-Dichloroethane	0.05 / 0.1	1	N/A	ND	PASS
Acetonitrile	2/7	410	N/A	ND	PASS

Heavy Metals Analysis

Heavy metal analysis utilizing inductively coupled plasma-mass spectrometry (ICP-MS).

Method: QSP 1160 - Analysis of Heavy Metals by ICP-MS

HEAVY METALS TEST RESULTS - 12/21/2021 PASS

_	COMPOUND	LOD/LOQ (µg/g)	ACTION LIMIT (µg/g)	MEASUREMENT UNCERTAINTY (μg/g)	RESULT (μg/g)	RESULT
	Arsenic	0.02 / 0.1	0.42	N/A	ND	PASS
	Cadmium	0.02 / 0.05	0.27	N/A	ND	PASS
	Lead	0.04 / 0.1	0.5	N/A	ND	PASS
	Mercury	0.002 / 0.01	0.4	N/A	ND	PASS

Microbiology Analysis

PCR AND PLATING

Analysis conducted by polymerase chain reaction (PCR) and fluorescence detection of microbiological contaminants.

Method: QSP 1221 - Analysis of Microbiological Contaminants

ACTION LIMIT

MICROBIOLOGY TEST RESULTS (PCR) - 12/24/2021 PASS

COMPOUND	(cfu/g)	(cfu/g)	RESULT
Shiga toxin-producing Escherichia coli	Not Detected in 1g	ND	PASS
Salmonella spp.	Not Detected in 1g	ND	PASS
Bile-Tolerant Gram-Negative Bacteria	100	ND	PASS
Staphylococcus aureus	Not Detected in 1g	ND	PASS

Analysis conducted by 3M[™] Petrifilm[™] and plate counts of microbiological contaminants.

Method: QSP 6794 - Plating with 3M™ Petrifilm™

MICROBIOLOGY TEST RESULTS (PLATING) - 12/24/2021 PASS

COMPOUND	ACTION LIMIT (cfu/g)	RESULT (cfu/g)	RESULT	
Total Aerobic Bacteria	100	ND	PASS	
Total Yeast and Mold	10	ND	PASS	

Hemp Quality Assurance Testing

CERTIFICATE OF ANALYSIS

CBD DOUBLE STRENGTH CREAM 21351_#25 | DATE ISSUED 12/26/2021

Foreign Material Analysis

Visual analysis includes, but is not limited to, sand, soil, cinders, dirt, mold, hair, insect fragments, and mammalian excreta.

Method: QSP 1226 - Analysis of Foreign Material in Cannabis and Cannabis Products

FOREIGN MATERIAL TEST RESULTS - 12/21/2021 OPASS

COMPOUND	ACTION LIMIT	RESULT
Total Sample Area Covered by Sand, Soil, Cinders, or Dirt	>25%	PASS
Total Sample Area Covered by Mold	>25%	PASS
Total Sample Area Covered by an Imbedded Foreign Material	>25%	PASS
Insect Fragment Count	> 1 per 3 grams	PASS
Hair Count	> 1 per 3 grams	PASS
Mammalian Excreta Count	> 1 per 3 grams	PASS

NOTES

1. Exclusions: QSP 1213 - Sample Certification: California Code of Regulation Title 4 Division 19

2. Exclusions: QSP 1212 - Sample Certification: California Code

of Regulation Title 4 Division 19

3. Exclusions: Sample Certification: California Code of

Regulation Title 4 Division 19

4. Exclusions: Sample Certification: California Code of

Regulation Title 4 Division 19

232 North Plaza Drive Nicholasville, KY 40356 +1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

Certificate of Analysis

1 of 7

210098CC

Sample ID: SA-07262021-2926 Batch: 210098CC

Type: In-Process Materials Matrix: Concentrate - Isolate Received: 07/27/2021 Completed: 08/03/2021

Client

GenCanna Acquisition Corp. 4274 Colby Road Winchester, KY 40391 USA Lic. #: P-2270

Summary

Test Cannabinoids Heavy Metals Microbials Mycotoxins Pesticides **Residual Solvents**

Date Tested 07/28/2021 07/28/2021 08/03/2021 07/30/2021 07/30/2021 08/03/2021

Status Tested Tested Tested Tested Tested Tested

Cannabinoids by HPLC-PDA

<RL 99.4 % 99.9 % **Not Tested** Total Δ9-THC CBD Total Cannabinoids **Moisture Content**

Not Tested Foreign Matter

Internal Marker

Yes

0.0076 0.0084 0.0069 0.0062	0.0227 0.0251 0.0206 0.0186	<rl ND ND ND <rl 99.362</rl </rl 	<rl ND ND ND <rl 993.62</rl </rl 	0	2.5 5.0	2.5 Janearas 1	10.0 mir
0.0084 0.0069	0.0251 0.0206	ND ND ND	ND ND ND	0		d9-THC	
0.0084 0.0069	0.0251 0.0206	ND ND	ND ND	0		d9-THC	
0.0084	0.0251	ND	ND		CGDV	ternal	
					3	ternal	
0.0076	0.0227	<rl< td=""><td><rl< td=""><td></td><td></td><td>and a second</td><td></td></rl<></td></rl<>	<rl< td=""><td></td><td></td><td>and a second</td><td></td></rl<>			and a second	
				200 00000		10	
0.0104	0.0312	ND	ND	250		tandan	
0.006	0.0181	ND	ND			D D	
0.0056	0.0169	ND	ND				
0.0124	0.0371	ND	ND	500-			
0.0112	0.0335	ND	ND				
0.0049	0.0147	ND	ND	\times H			
0.0057	0.0172	ND	ND	750			
0.0021	0.0063	ND	ND	-			
0.0061	0.0182	0.2368	2.3684	-			
0.0043	0.013	ND	ND	1000			
0.0081	0.0242	99.362	993.62	-			
0.006	0.018	ND	ND		9		
0.0181	0.0543	ND	ND	MAU			
0.0095	0.0284	0.2368	2.3684			SA-07262021-2926	
LOD (%)	LOQ (%)	Result (%)	Result (mg/g)				
	(%) 0.0095 0.0181 0.006 0.0081 0.0043 0.0061 0.0021 0.0057 0.0049 0.0112 0.0124 0.0056 0.006	(%) (%) 0.0095 0.0284 0.0181 0.0543 0.006 0.018 0.0081 0.0242 0.0043 0.013 0.0061 0.0182 0.0021 0.0063 0.0057 0.0172 0.0049 0.0147 0.0112 0.0335 0.0124 0.0371 0.0056 0.0169 0.006 0.0181	(%) (%) (%) 0.0095 0.0284 0.2368 0.0181 0.0543 ND 0.006 0.018 ND 0.0081 0.0242 99.362 0.0043 0.013 ND 0.0061 0.0182 0.2368 0.0021 0.0063 ND 0.0057 0.0172 ND 0.0049 0.0147 ND 0.012 0.0335 ND 0.0124 0.0371 ND 0.0056 0.0169 ND 0.006 0.0181 ND 0.0104 0.0312 ND	(%) (%) (%) (mg/g) 0.0095 0.0284 0.2368 2.3684 0.0181 0.0543 ND ND 0.006 0.018 ND ND 0.0081 0.0242 99.362 993.62 0.0043 0.013 ND ND 0.0061 0.0182 0.2368 2.3684 0.0021 0.0063 ND ND 0.0057 0.0172 ND ND 0.012 0.0335 ND ND 0.0124 0.0371 ND ND 0.0056 0.0169 ND ND 0.006 0.0181 ND ND 0.0104 0.0312 ND ND	(%) (%) (%) (mg/g) 0.0095 0.0284 0.2368 2.3684 0.0181 0.0543 ND ND 0.006 0.018 ND ND 0.0081 0.0242 99.362 993.62 0.0043 0.013 ND ND 1000 0.0061 0.0182 0.2368 2.3684 2.3684 0.0021 0.0063 ND ND ND 0.0057 0.0172 ND ND 750 0.0049 0.0147 ND ND ND 0.0112 0.0335 ND ND ND 0.0124 0.0371 ND ND 500 0.0056 0.0169 ND ND ND 0.006 0.0181 ND ND ND 0.0104 0.0312 ND ND 250	(%) (%) (%) (mg/g) 0.0095	(%) (%) (%) (mg/g) 0.0095

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; RL = Reporting Limit; Δ = Delta; Total Δ 9-THC = Δ 9-THCA * 0.877 + Δ 9-THC; Total CBD = CBDA * 0.877 + CBD; Total Δ9-THC Measurement Uncertainty = ±12%

Accreditation #108651

232 North Plaza Drive Nicholasville, KY 40356 +1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

Certificate of Analysis

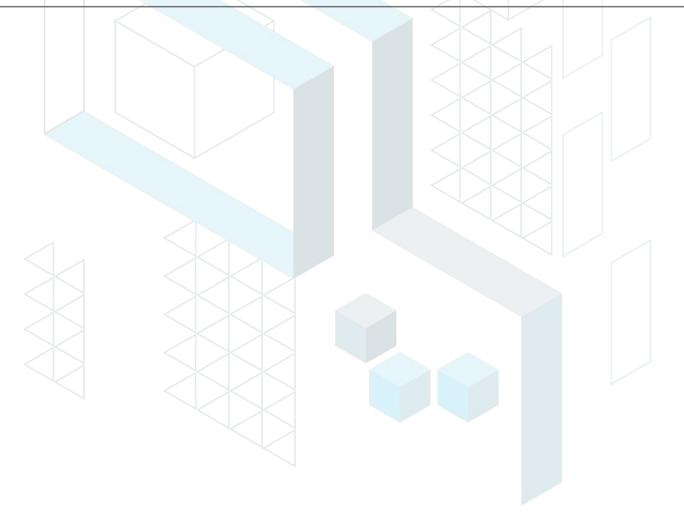
2 of 7

210098CC

Sample ID: SA-07262021-2926 Batch: 210098CC Type: In-Process Materials

Matrix: Concentrate - Isolate

Received: 07/27/2021 Completed: 08/03/2021 Client


GenCanna Acquisition Corp. 4274 Colby Road Winchester, KY 40391 USA

Lic. #: P-2270

Heavy Metals by ICP-MS

Analyte	LOD (ppb)	LOQ (ppb)	Result (ppb)
Arsenic	2	20	ND
Cadmium	1	20	ND
Lead	2	20	ND
Mercury	12	50	ND

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit

232 North Plaza Drive http: Nicholasville, KY 40356 KDA

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

Certificate of Analysis

3 of 7

210098CC

Sample ID: SA-07262021-2926 Batch: 210098CC

Type: In-Process Materials Matrix: Concentrate - Isolate Received: 07/27/2021 Completed: 08/03/2021

Client

GenCanna Acquisition Corp. 4274 Colby Road Winchester, KY 40391 USA

Lic. #: P-2270

Pesticides by LC-MS/MS and GC-MS/MS

Analyte	LOD (ppb)	LOQ (ppb)	Result (ppb)	Analyte	LOD (ppb)	LOQ (ppb)	Result (ppb)
Abamectin	1	5	ND	Hexythiazox	1	5	ND
Acequinocyl	1	5	ND	Imazalil	1	5	ND
Acetamiprid	1	5	ND	Imidacloprid	1	5	ND
Aldicarb	1	5	ND	Kresoxim methyl	1	5	ND
Azoxystrobin	1	5	ND	Malathion	1	5	ND
Bifenazate	1	5	ND	Metalaxyl		5	ND
Bifenthrin	1	5	ND	Methiocarb		5	ND
Boscalid	1	5	ND	Methomyl		5	ND
Carbaryl	1	5	ND	Mevinphos		5	ND
Carbofuran	1	5	ND	Myclobutanil		5	ND
Chloranthranili prole	1	5	ND	Naled		5	ND
Chlorfenapyr	1	5	ND	Oxamyl		5	ND
Chlorpyrifos	1	5	ND	Paclobutrazol		5	ND
Clofentezine	1	5	ND	Permethrin		5	ND
Coumaphos	1	5	ND	Phosmet		5	ND
Daminozide	1	5	ND	Piperonyl Butoxide	\times	5	ND
Diazinon	1	5	ND	Prallethrin		5	ND
Dimethoate	1	5	ND	Propiconazole		5	ND
Dimethomorph	1	5	ND	Propoxur	1	5 5 5	ND
Ethoprophos	1	5	ND	Pyrethrins	1	5	ND
Etofenprox	1	5	ND	Pyridaben	1	5	ND
Etoxazole	1	5	ND	Spinetoram	1	5	ND
Fenhexamid	1	5	ND	Spinosad	1	5	ND
Fenoxycarb	1	5	ND	Spiromesifen	1	5	ND
Fenpyroximate	1	5	ND	Spirotetramat	1	5	ND
Fipronil	1	5	ND	Spiroxamine	1	5	ND
Flonicamid	1	5	ND	Tebuconazole	1	5	ND
Fludioxonil	1	5	ND	Thiacloprid	1	5	ND
				Thiamethoxam	1	5	ND
				Trifloxystrobin	1	5	ND

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit

232 North Plaza Drive Nicholasville, KY 40356

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

Certificate of Analysis

4 of 7

210098CC

Sample ID: SA-07262021-2926 Batch: 210098CC Type: In-Process Materials Matrix: Concentrate - Isolate

Received: 07/27/2021 Completed: 08/03/2021 Client

GenCanna Acquisition Corp. 4274 Colby Road Winchester, KY 40391 USA

Lic. #: P-2270

Microbials by qPCR and/or Plating

Analyte	LOD	Result (CFU/g)	
Coliforms	1	ND	
Yeast & Mold	1	ND	
Aerobic Bacteria	1	ND	
E.coli/Coliforms	1	ND	
Salmonella	1	ND	

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; CFU = Colony Forming Units; P = Pass; F = Fail; RL = Reporting Limit

Red

232 North Plaza Drive Nicholasville, KY 40356 +1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

Certificate of Analysis

5 of 7

210098CC

Sample ID: SA-07262021-2926 Batch: 210098CC Type: In-Process Materials Matrix: Concentrate - Isolate

Received: 07/27/2021 Completed: 08/03/2021 Client

GenCanna Acquisition Corp. 4274 Colby Road Winchester, KY 40391 USA

Lic. #: P-2270

Mycotoxins by LC-MS/MS

Analyte	LOD (ppb)	LOQ (ppb)	Result (ppb)
B1	1	5	ND
B2	1	5	ND
G1	1	5	ND
G2	1	5	ND
Ochratoxin A	1	5	ND

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit

RED

232 North Plaza Drive Nicholasville, KY 40356 +1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

Certificate of Analysis

6 of 7

210098CC

Sample ID: SA-07262021-2926 Batch: 210098CC

Type: In-Process Materials Matrix: Concentrate - Isolate Received: 07/27/2021 Completed: 08/03/2021

Client

GenCanna Acquisition Corp. 4274 Colby Road Winchester, KY 40391 USA

Lic. #: P-2270

Residual Solvents by HS-GC-MS/MS

Analyte	LOD (ppm)	LOQ (ppm)	Result (ppm)	Analyte	LOD (ppm)	LOQ (ppm)	Result (ppm)
Acetone	0.5	1	ND	Ethylene Oxide	0.5	1	ND
Acetonitrile	0.5	1	ND	Heptane	0.5	1	ND
Benzene	0.5	1	ND	n-Hexane	0.5	1	65.19
Butane	0.5	1	<rl< td=""><td>Isobutane</td><td>0.5</td><td>1</td><td><rl< td=""></rl<></td></rl<>	Isobutane	0.5	1	<rl< td=""></rl<>
1-Butanol	0.5	1	ND	Isopropyl Acetate	0.5]]	ND
2-Butanol	0.5	1	ND	Isopropyl Alcohol	0.5	1	ND
2-Butanone	0.5	1	ND	Isopropylbenzene	0.5	1	ND
Chloroform	0.5	1	ND	Methanol	0.5	1	ND
Cyclohexane	0.5	1	<rl< td=""><td>2-Methylbutane</td><td>0.5</td><td>11] </td><td><rl< td=""></rl<></td></rl<>	2-Methylbutane	0.5	11]	<rl< td=""></rl<>
1,2-Dichloroethane	0.5	1	ND	Methylene Chloride	0.5	1	ND
1,2-Dimethoxyethane	0.5	1	ND	2-Methylpentane	0.5	1	167.39
Dimethyl Sulfoxide	0.5	1	ND	3-Methylpentane	0.5	1	95.56
N,N-Dimethylacetamide	0.5	1	ND	n-Pentane	0.5	1	<rl< td=""></rl<>
2,2-Dimethylbutane	0.5	1	<rl< td=""><td>1-Pentanol</td><td>0.5</td><td>1</td><td>ND</td></rl<>	1-Pentanol	0.5	1	ND
N,N-Dimethylformamide	0.5	\1 /	ND	n-Propane	0.5	1	<rl< td=""></rl<>
2,2-Dimethylpropane	0.5	ì	ND	1-Propanol	0.5	11	ND
1,4-Dioxane	0.5	1	ND	Pyridine	0.5	1	ND
Ethanol	0.5	1	ND	Tetrahydrofuran	0.5	1	ND
2-Ethoxyethanol	0.5	1	ND	Toluene	0.5	1	ND
Ethyl Acetate	0.5	1	ND	Trichloroethylene	0.5	1	ND
Ethyl Ether	0.5	1	ND	Tetramethylene Sulfone	0.5	1	ND
Ethylbenzene	0.5		ND	Xylenes (o-, m-, and p-)	0.5	1	ND
Ethylene Glycol	0.5	1	ND				

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit

232 North Plaza Drive Nicholasville, KY 40356 +1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

Certificate of Analysis

7 of 7

210098CC

Sample ID: SA-07262021-2926 Batch: 210098CC

Type: In-Process Materials Matrix: Concentrate - Isolate Received: 07/27/2021 Completed: 08/03/2021

Client

GenCanna Acquisition Corp. 4274 Colby Road Winchester, KY 40391 USA

Lic. #: P-2270

Reporting Limit Appendix

Cannabinoids - GenCanna Spec

Analyte	Limit (%)	Analyte	Limit (%)
Δ9-ΤΗС	0.1	Δ9-ΤΗCΑ	0.1
Total THC	0.1		

Mycotoxins -

Analyte	Limit (ppm) Ana	alyte Limit (ppm)
B1	20 B2	20
G1	20 G2	20
Ochratovin A	20	

Heavy Metals -

Analyte	Limit (ppb)	Analyte	Limit (ppb)
Arsenic	200	Lead	500
Cadmium	200	Mercury	100

Microbials -

Analyte	Limit (CFU/g) Analyte	Limit (CFU	/g)
Coliforms	1	Aerobic Bacteria	1000	
Bile-Tolerant Gram-Negative Bacteria	1000	E.coli/Coliforms	1	
Yeast & Mold	1000	Salmonella	1	

Residual Solvents -

Analyte	Limit (ppm)	Analyte	Limit (ppm)
Acetone	500	Ethylene Oxide	1
Acetonitrile	41	Heptane	500
Benzene	< 1 1	n-Hexane	29
Butane	500	Isobutane	500
1-Butanol	500	Isopropyl Acetate	500
2-Butanol	500	Isopropyl Alcohol	50
2-Butanone	500	Isopropylbenzene	7
Chloroform	6	Methanol	300
Cyclohexane	388	2-Methylbutane	500
1,2-Dichloroethane	1	Methylene Chloride	60
1,2-Dimethoxyethane	10	2-Methylpentane	29
Dimethyl Sulfoxide	500	3-Methylpentane	29
N,N-Dimethylacetamide	109	n-Pentane	500
2,2-Dimethylbutane	29	1-Pentanol	500
N,N-Dimethylformamide	88	n-Propane	500
2,2-Dimethylpropane	500	1-Propanol	500
1,4-Dioxane	38	Pyridine	20
Ethanol	500	Tetrahydrofuran	72
2-Ethoxyethanol	16	Toluene	89
Ethyl Acetate	500	Trichloroethylene	8
Ethyl Ether	500	Tetramethylene Sulfone	16
Ethylbenzene	7	Xylenes (o-, m-, and p-)	217
Ethylene Glycol	62		

