info@shikai.com www.shikai.com

CBD Topical Product Guarantee

Product Name	CBD Double Strength Cream
Product Category	Topicals/Cosmetics (Not for consumption)
Instructions for use/Preparation	Apply a small amount to the affected area. Use as needed throughout the day. Store in a cool dry place. Do not take internally. Cannabidiol use while pregnant or breastfeeding may be harmful.
CBD Source	CBD sourced from hemp grown under federally authorized state pilot program (e.g. Kentucky, Oregon, or Colorado's R&D program) or approved hemp program.
NOTE: This product is not intended to d	iagnose, treat, cure or prevent any disease
WARNING: The safety of this product h	as not been determined.
Batch Information	
Batch ID Number	21193
Batch Size	400 lbs
Units Produced per SKU	Item 54000 (2 oz): 2880 units
Manufacture date	07/12/2021
Expiration date	07/12/2023

Amison Banan	07/12/2021	
Approved by Allison Ballard / Quality Assurance Manager	D	ate

Hemp Quality Assurance Testing

CERTIFICATE OF ANALYSIS

DATE ISSUED 07/19/2021

SAMPLE NAME: CBD Double Strength Cream 21193_#16

Infused, Hemp Infused

CULTIVATOR / MANUFACTURER

Business Name: License Number:

Address:

SAMPLE DETAIL

Batch Number: 21193 Sample ID: 210715R007 **DISTRIBUTOR / TESTED FOR**

Business Name: Shikai Products

License Number:

Address:

Date Collected: 07/15/2021 Date Received: 07/15/2021

Batch Size: Sample Size: **Unit Mass:** Serving Size:

Scan QR code to verify authenticity of results.

CANNABINOID ANALYSIS - SUMMARY

Total THC: Not Detected

Total CBD: 10.040 mg/g

Sum of Cannabinoids: 10.079 mg/g

Total Cannabinoids: 10.079 mg/g

Total THC/CBD is calculated using the following formulas to take into account the loss of a carboxyl group during the decarboxylation step: Total THC = Δ 9THC + (THCa (0.877))

Total CBD = CBD + (CBDa (0.877))

Sum of Cannabinoids = Δ 9THC + THCa + CBD + CBDa + CBG + CBGa + THCV + THCVa + CBC + CBCa + CBDV + CBDVa + Δ 8THC + CBL + CBN Total Cannabinoids = (Δ9THC+0.877*THCa) + (CBD+0.877*CBDa) + (CBG+0.877*CBGa) + (THCV+0.877*THCVa) + (CBC+0.877*CBCa) +

 $(CBDV+0.877*CBDVa) + \Delta 8THC + CBL + CBN$

Density: 0.9465 g/mL

SAFETY ANALYSIS - SUMMARY

Pesticides: ND

Microbiology (PCR): ND

Residual Solvents: ND

Microbiology (Plating): ND

Heavy Metals: ND

For quality assurance purposes. Not a Pre-Harvest Hemp Lab Test Report. These results relate only to the sample included on this report. This report shall not be reproduced, except in full, without written

Sample Certification: Action Limits used in this report are a compilation of guidance from state regulatory agencies in all states. Action limits for required tests are either state-specific, or the lower of any conflicting state regulations based upon the panel requested.

Decision Rule: Statements of conformity (e.g. Pass/Fail) to specifications are made in this report without taking measurement uncertainty into account. Where statements of conformity are made in this report, the following decision rules are applied: PASS - Results within limits/specifications, FAIL - Results exceed limits/specifications.

References: limit of detection (LOD), limit of quantification (LOQ), not detected (ND), not tested (NT), too numerous to count >250 cfu/plate (TNTC), colony-forming unit (cfu)

oved by: Josh Wurzer, President

CBD DOUBLE STRENGTH CREAM 21193_#16 | DATE ISSUED 07/19/2021

Cannabinoid Analysis

Tested by high-performance liquid chromatography with diode-array detection (HPLC-DAD).

Method: QSP 1157 - Analysis of Cannabinoids by HPLC-DAD

TOTAL THC: Not Detected
Total THC (Δ9THC+0.877*THCa)

TOTAL CBD: 10.040 mg/g
Total CBD (CBD+0.877*CBDa)

TOTAL CANNABINOIDS: 10.079 mg/g

Total Cannabinoids (Total THC) + (Total CBD) + (Total CBG) + (Total THCV) + (Total CBC) + (Total CBDV) + Δ 8THC + CBL + CBN

TOTAL CBG: ND
Total CBG (CBG+0.877*CBGa)

TOTAL THCV: ND

Total THCV (THCV+0.877*THCVa)

TOTAL CBC: ND
Total CBC (CBC+0.877*CBCa)

TOTAL CBDV: 0.039 mg/g
Total CBDV (CBDV+0.877*CBDVa)

CANNABINOID TEST RESULTS - 07/16/2021

COMPOUND	LOD/LOQ (mg/g)	MEASUREMENT UNCERTAINTY (mg/g)	RESULT (mg/g)	RESULT (%)
CBD	0.004 / 0.011	±0.4809	10.040	1.0040
CBDV	0.002 / 0.012	±0.0020	0.039	0.0039
CBDa	0.001 / 0.026	N/A	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
Δ9ΤΗС	0.002/0.014	N/A	ND	ND
Δ8ΤΗC	0.01 / 0.02	N/A	ND	ND
THCa	0.001 / 0.005	N/A	ND	ND
THCV	0.002 / 0.012	N/A	ND	ND
THCVa	0.002/0.019	N/A	ND	ND
CBDVa	0.001 / 0.018	N/A	ND	ND
CBG	0.002 / 0.006	N/A	ND	ND
CBGa	0.002 / 0.007	N/A	ND	ND
CBL	0.003 / 0.010	N/A	ND	ND
CBN	0.001 / 0.007	N/A	ND	ND
СВС	0.003 / 0.010	N/A	ND	ND
CBCa	0.001 / 0.015	N/A	ND	ND
SUM OF CANNA	BINOIDS		10.079 mg/g	1.0079%

DENSITY TEST RESULT

0.9465 g/mL

Tested 07/16/2021

Method: QSP 7870 - Sample Preparation

CERTIFICATE OF ANALYSIS

CBD DOUBLE STRENGTH CREAM 21193_#16 | DATE ISSUED 07/19/2021

Pesticide Analysis

Pesticide and plant growth regulator analysis utilizing high-performance liquid chromatography-mass spectrometry (HPLC-MS) or gas chromatography-mass spectrometry (GC-MS).

*GC-MS utilized where indicated.

Method: QSP 1212 - Analysis of Pesticides and Mycotoxins by LC-MS or QSP 1213 - Analysis of Pesticides by GC-MS

PESTICIDE TEST RESULTS - 07/18/2021 ND

COMPOUND	LOD/LOQ (µg/g)	ACTION LIMIT (μg/g)	MEASUREMENT UNCERTAINTY (μg/g)	RESULT (μg/g)
Abamectin	0.03 / 0.10	0.07	N/A	ND
Azoxystrobin	0.01 / 0.04	0.01	N/A	ND
Bifenazate	0.01 / 0.02	0.01	N/A	ND
Bifenthrin	0.01 / 0.02	0.2	N/A	ND
Boscalid	0.02 / 0.06	0.01	N/A	ND
Chlorpyrifos	0.02 / 0.06	0.04	N/A	ND
Cypermethrin	0.1 / 0.3	0.3	N/A	ND
Etoxazole	0.010 / 0.028	0.01	N/A	ND
Hexythiazox	0.01 / 0.04	0.01	N/A	ND
Imidacloprid	0.01 / 0.04	0.01	N/A	ND
Malathion	0.02 / 0.05	0.02	N/A	ND
Myclobutanil	0.03 / 0.1	0.01	N/A	ND
Permethrin	0.03 / 0.09	0.04	N/A	ND
Piperonylbutoxide	0.003 / 0.009	0.2	N/A	ND
Propiconazole	0.01 / 0.03	0.1	N/A	ND
Spiromesifen	0.02 / 0.05	0.03	N/A	ND
Tebuconazole	0.02 / 0.07	0.01	N/A	ND
Trifloxystrobin	0.01 / 0.03	0.02	N/A	ND

CERTIFICATE OF ANALYSIS

CBD DOUBLE STRENGTH CREAM 21193_#16 | DATE ISSUED 07/19/2021

Residual Solvents Analysis

Residual Solvent analysis utilizing gas chromatography-mass spectrometry (GC-MS).

Method: QSP 1204 - Analysis of Residual Solvents by GC-MS

RESIDUAL SOLVENTS TEST RESULTS - 07/17/2021 ND

COMPOUND	LOD/LOQ (µg/g)	ACTION LIMIT (µg/g)	MEASUREMENT UNCERTAINTY (μg/g)	RESULT (μg/g)
Propane	10/20	5000	N/A	ND
Butane	10/50	5000	N/A	ND
Pentane	20/50	5000	N/A	ND
Hexane	2/5	290	N/A	ND
Heptane	20/60	5000	N/A	ND
Benzene	0.03 / 0.09	1	N/A	ND
Toluene	7/21	890	N/A	ND
Total Xylenes	50 / 160	2170	N/A	ND
Methanol	50 / 200	3000	N/A	ND
Ethanol	20 / 50	5000	N/A	ND
Isopropyl Alcohol	10 / 40	5000	N/A	ND
Acetone	20/50	5000	N/A	ND
Ethyl ether	20 / 50	5000	N/A	ND
Ethylene Oxide	0.3 / 0.8	1	N/A	ND
Ethyl acetate	20/60	5000	N/A	ND
Chloroform	0.1 / 0.2	1	N/A	ND
Methylene chloride	0.3 / 0.9	1	N/A	ND
Trichloroethylene	0.1 / 0.3	1	N/A	ND
1,2-Dichloroethane	0.05 / 0.1	1	N/A	ND
Acetonitrile	2/7	410	N/A	ND

Heavy Metals Analysis

Heavy metal analysis utilizing inductively coupled plasma-mass spectrometry (ICP-MS).

Method: QSP 1160 - Analysis of Heavy Metals by ICP-MS

HEAVY METALS TEST RESULTS - 07/16/2021 ND

COMPOUND	LOD/LOQ (µg/g)	ACTION LIMIT (μg/g)	MEASUREMENT UNCERTAINTY (μg/g)	RESULT (µg/g)
Arsenic	0.02 / 0.1	0.42	N/A	ND
Cadmium	0.02 / 0.05	0.27	N/A	ND
Lead	0.04 / 0.1	0.5	N/A	ND
Mercury	0.002 / 0.01	0.4	N/A	ND

Hemp Quality Assurance Testing

CERTIFICATE OF ANALYSIS

CBD DOUBLE STRENGTH CREAM 21193_#16 | DATE ISSUED 07/19/2021

Microbiology Analysis

PCR AND PLATING

Analysis conducted by polymerase chain reaction (PCR) and fluorescence detection of microbiological contaminants.

Method: QSP 1221 - Analysis of Microbiological Contaminants

Analysis conducted by $3M^{TM}$ Petrifilm and plate counts of microbiological contaminants.

Method: QSP 6794 - Plating with $3M^{TM}$ Petrifilm TM

MICROBIOLOGY TEST RESULTS (PCR) - 07/19/2021 ND

COMPOUND	ACTION LIMIT (cfu/g)	RESULT (cfu/g)
Shiga toxin-producing Escherichia coli	Not Detected in 1g	ND
Salmonella spp.	Not Detected in 1g	ND
Bile-Tolerant Gram-Negative Bacteria	100	ND
Staphylococcus aureus	Not Detected in 1g	ND

MICROBIOLOGY TEST RESULTS (PLATING) - 07/19/2021 ND

COMPOUND	ACTION LIMIT (cfu/g)	RESULT (cfu/g)
Total Aerobic Bacteria	100	ND
Total Yeast and Mold	10	ND

License No. 800025015 FL License # CMTL-0003 CLIA No. 10D1094068

Crystalline Cannabidiol Sample Matrix: CBD/HEMP Edibles (Ingestion)

Certificate of Analysis

Compliance Test

GENCANNA ACQUISITION CORP.

4274 COLBY ROAD WINCHESTER, KY 40391

Order # GEN210212-020003 Order Date: 2021-02-12 Sample # AAAZ592

Batch # 210008CC Batch Date: 2021-02-12 Extracted From: Industrial Hemp Sampling Method: MSP 7.3.1 Test Reg

Sampling Date: 2021-02-16 **Lab Batch Date:** 2021-02-16

Completion Date: 2021-02-22

Residual

Solvents

Passed

Initial Gross Weight: 38.016 g

Moisture

Tested

Passed

Potency Summary

Product Image

Potency 20 - GenCanna

Specimen Weight: 47 790 mg

Specimen weig				
Analyte	LOD (%)	LOQ (%)	Result (mg/g)	(%)
CBD	0.000054	0.1	991.0	99.1
CBDV	0.000065	0.1	4.3	0.4
Exo-THC	0.00023	0.1		<loq< td=""></loq<>
THCVA	0.000047	0.1		<loq< td=""></loq<>
THCV	0.000007	0.1		<loq< td=""></loq<>
THCA-A	0.000032	0.1		<loq< td=""></loq<>
CBC	0.000018	0.1		<loq< td=""></loq<>
Delta-9 THC	0.000013	0.1		<loq< td=""></loq<>
CBCA	0.000107	0.1		<loq< td=""></loq<>
Delta-8 THC	0.000026	0.1		<loq< td=""></loq<>
Delta-10 THC	0.000003	0.1		<loq< td=""></loq<>
CBT	0.0002	0.1		<loq< td=""></loq<>
CBNA	0.000095	0.1		<loq< td=""></loq<>
CBN	0.000014	0.1		<loq< td=""></loq<>
CBL	0.000035	0.1		<loq< td=""></loq<>
CBGA	0.00008	0.1		<loq< td=""></loq<>
CBG	0.000248	0.1		<loq< td=""></loq<>
CBDVA	0.000014	0.1		<loq< td=""></loq<>
CBDA	0.00001	0.1		<loq< td=""></loq<>
Delta-8 THCV	0.00004	0.1		<loq< td=""></loq<>

Tested

(LCUV)

Total CBD 99.100% Total CBG None Detected Other Cannabinoids 0.426%

Total THC None Detected Total CBN None Detected **Total Cannabinoids**

Terpenes Summary Result (mg/ml) (%)

Analyte

Total Terpenes: 0.000%

Detailed Terpenes Analysis is on the following page

Lab Director/Principal Scientist Aixia Sun

D.H.Sc., M.Sc., B.Sc., MT (AAB)

Xueli Gao Ph.D., DABT Lab Toxicologist

Definitions and Abbreviations used in this report: *Total CBD = CBD + (CBD-A * 0.877), *Total THC = THCA-A * 0.877 + Delta 9 THC, *CBG Total = (CBGA * 0.877) + CBG, *CBN Total = (CBGA * 0.877) + CBG, *CBN Total = (CBNA * 0.877) + CBN, *Other Cannabinoids Total = CBC + CBDV + THCV + THCV-A, *Total Detected Cannabinoids = CBD Total + CBG Total + CBN Total + THC Total + CBC + CBDV + THCV + THCV-A, *Analyte Details above show the Dry Weight Concentrations unless specified as 12% moisture concentration. (mg/ml) = Milliliters per Milliliter, LOQ = Limit of Quantitation, LOD = Limit of Detection, Dilution = Dilution Teator (ppb) = Parts per Billion, (%) = Percent, (cfu/g) = Colony Forming Unit per Gram (cfu/g) = Milligram per Kilogram , *Measurement of Uncertainty = +/- 5%

License No. 800025015 FL License # CMTL-0003 CLIA No. 10D1094068

Crystalline Cannabidiol Sample Matrix: CBD/HEMP Edibles (Ingestion)

Certificate of Analysis

Compliance Test

GENCANNA ACQUISITION CORP.

4274 COLBY ROAD WINCHESTER, KY 40391 Batch # 210008CC Batch Date: 2021-02-12 Extracted From: Industrial Hemp Sampling Method: MSP 7.3.1 Test Reg

State: Florida

WINCHESTER, KY 40391

Order # GEN210212-020003 Order Date: 2021-02-12 Sample # AAAZ592 Sampling Date: 2021-02-16 Lab Batch Date: 2021-02-16 Completion Date: 2021-02-22 Initial Gross Weight: 38.016 g

Terpenes - FL

Specimen Weight: 33.680 mg

Tested

Dilution Factor: 1.000								
Analyte	LOQ (%)	Result (mg/g)	(%)		Analyte	LOQ (%)	Result (mg/g)	(%)
(+)-Cedrol	0.02	<l(< td=""><td>Q</td><td></td><td>Nerol</td><td>0.02</td><td></td><td><l0q< td=""></l0q<></td></l(<>	Q		Nerol	0.02		<l0q< td=""></l0q<>
Geraniol	0.02	<l(< td=""><td>Q</td><td></td><td>Geranyl acetate</td><td>0.02</td><td></td><td><l0q< td=""></l0q<></td></l(<>	Q		Geranyl acetate	0.02		<l0q< td=""></l0q<>
Guaiol	0.02	<l(< td=""><td>Q</td><td></td><td>Hexahydrothymol</td><td>0.02</td><td></td><td><loq< td=""></loq<></td></l(<>	Q		Hexahydrothymol	0.02		<loq< td=""></loq<>
soborneol	0.02	<l0< td=""><td>Q</td><td></td><td>Isopulegol</td><td>0.02</td><td></td><td><loq< td=""></loq<></td></l0<>	Q		Isopulegol	0.02		<loq< td=""></loq<>
Linalool	0.02	<l0< td=""><td>Q</td><td></td><td>Ocimene</td><td>0.014</td><td></td><td><loq< td=""></loq<></td></l0<>	Q		Ocimene	0.014		<loq< td=""></loq<>
Fenchyl Alcohol	0.02	<l(< td=""><td>Q</td><td></td><td>Pulegone</td><td>0.02</td><td></td><td><loq< td=""></loq<></td></l(<>	Q		Pulegone	0.02		<loq< td=""></loq<>
Sabinene	0.02	<l(< td=""><td>Q</td><td></td><td>Sabinene Hydrate</td><td>0.02</td><td></td><td><loq< td=""></loq<></td></l(<>	Q		Sabinene Hydrate	0.02		<loq< td=""></loq<>
erpineol	0.02	<l(< td=""><td>Q</td><td>•</td><td>Terpinolene</td><td>0.02</td><td></td><td><loq< td=""></loq<></td></l(<>	Q	•	Terpinolene	0.02		<loq< td=""></loq<>
rans-Caryophyllene	0.02	<l(< td=""><td>Q</td><td>1</td><td>trans-Nerolidol</td><td>0.02</td><td></td><td><loq< td=""></loq<></td></l(<>	Q	1	trans-Nerolidol	0.02		<loq< td=""></loq<>
Samma-Terpinene	0.02	<l(< td=""><td>Q</td><td></td><td>Fenchone</td><td>0.02</td><td></td><td><loq< td=""></loq<></td></l(<>	Q		Fenchone	0.02		<loq< td=""></loq<>
R)-(+)-Limonene	0.02	<l(< td=""><td>Q</td><td></td><td>alpha-Terpinene</td><td>0.02</td><td></td><td><loq< td=""></loq<></td></l(<>	Q		alpha-Terpinene	0.02		<loq< td=""></loq<>
-Carene	0.02	<l(< td=""><td>Q</td><td>•</td><td>alpha-Bisabolol</td><td>0.02</td><td></td><td><loq< td=""></loq<></td></l(<>	Q	•	alpha-Bisabolol	0.02		<loq< td=""></loq<>
lpha-Cedrene	0.02	<l(< td=""><td>QQ</td><td>•</td><td>alpha-Humulene</td><td>0.02</td><td></td><td><loq< td=""></loq<></td></l(<>	QQ	•	alpha-Humulene	0.02		<loq< td=""></loq<>
lpha-Phellandrene	0.02	<l(< td=""><td>Q</td><td>•</td><td>alpha-Pinene</td><td>0.02</td><td></td><td><loq< td=""></loq<></td></l(<>	Q	•	alpha-Pinene	0.02		<loq< td=""></loq<>
arnesene	0.02	<l(< td=""><td>Q</td><td>I</td><td>beta-Myrcene</td><td>0.02</td><td></td><td><loq< td=""></loq<></td></l(<>	Q	I	beta-Myrcene	0.02		<loq< td=""></loq<>
eta-Pinene	0.02	<l(< td=""><td>Q</td><td>I</td><td>Borneol</td><td>0.04</td><td></td><td><loq< td=""></loq<></td></l(<>	Q	I	Borneol	0.04		<loq< td=""></loq<>
amphene	0.02	<l(< td=""><td>Q</td><td>(</td><td>Camphors</td><td>0.04</td><td></td><td><loq< td=""></loq<></td></l(<>	Q	(Camphors	0.04		<loq< td=""></loq<>
Caryophyllene oxide	0.02	<l(< td=""><td>Q</td><td>(</td><td>cis-Nerolidol</td><td>0.02</td><td></td><td><loq< td=""></loq<></td></l(<>	Q	(cis-Nerolidol	0.02		<loq< td=""></loq<>
Eucalyptol	0.02	<l(< td=""><td>Q</td><td>,</td><td>Valencene</td><td>0.02</td><td></td><td><loq< td=""></loq<></td></l(<>	Q	,	Valencene	0.02		<loq< td=""></loq<>

Total Terpenes: 0.000%

Xueli Gao

Lab Toxicologist

Aixia Sun Lab Director/Principal Scientist

D.H.Sc., M.Sc., B.Sc., MT (AAB)

drut

Definitions and Abbreviations used in this report: *Total CBD = CBD + (CBD-A * 0.877), *Total THC = THCA-A * 0.877 + Delta 9 THC, *CBG Total = (CBGA * 0.877) + CBG, *CBN Total = (CBNA * 0.877) + CBN, *Other Cannabinoids Total = CBC + CBDV + THCV + THCV-A, *Total Detected Cannabinoids = CBD Total + CBD Total + CBN Total + THC Total + CBC + CBDV + THCV + THCV-A, *Analyte Details above show the Dry Weight Concentrations unless specified as 12% moisture concentration. (mg/ml) = Milligrams per Milliliter, LOQ = Limit of Detection, Dilution = Dilution Teator (ppb) = Parts per Billion, (%) = Percent, (cflu/g) = Colony Forming Unit per Gram (cflu/g) = Colony Forming Unit per Gram (cflu/g) = Colony Forming Unit per Gram (cflu/g) = Milligram per Kilogram, *Measurement of Uncertainty = +/- 5%

License No. 800025015 FL License # CMTL-0003 **CLIA No.** 10D1094068

Crystalline Cannabidiol Sample Matrix: CBD/HEMP **Edibles** (Ingestion)

Certificate of Analysis

Compliance Test

GENCANNA ACQUISITION

4274 COLBY ROAD WINCHESTER, KY 40391

Batch # 210008CC Batch Date: 2021-02-12 Extracted From: Industrial Hemp Sampling Method: MSP 7.3.1 Test Reg

Order # GEN210212-020003 Order Date: 2021-02-12 Sample # AAAZ592

Sampling Date: 2021-02-16 Lab Batch Date: 2021-02-16 Completion Date: 2021-02-22

Initial Gross Weight: 38.016 g

Heavy Metals

Specimen Weight: 249.300 mg

Passed (ICP-MS)

Dilution Factor: 2.000

Analyte	LOQ (ppb)	Action Level (ppb)	Result (ppb)	Analyte	LOQ (ppb)	Action Level (ppb)	Result (ppb)	
Arsenic (As)	100	1500	<loq< td=""><td>Cadmium (Cd)</td><td>100</td><td>500</td><td><loq< td=""><td></td></loq<></td></loq<>	Cadmium (Cd)	100	500	<loq< td=""><td></td></loq<>	
Lead (Pb)	100	500	<loq< td=""><td>Mercury (Hg)</td><td>100</td><td>3000</td><td><loq< td=""><td></td></loq<></td></loq<>	Mercury (Hg)	100	3000	<loq< td=""><td></td></loq<>	
Total Contaminant Load (TCL)	None Detected							

Mycotoxins

Specimen Weight: 163.000 mg

Passed (LCMS)

Dilution Factor: 9.203

Analyte	LOQ (ppb)	Action Level (ppb)	Result (ppb)	Analyte	LOQ (ppb)	Action Level (ppb)	Result (ppb)	
Aflatoxin B1	6	20	<l0q< td=""><td>Aflatoxin B2</td><td>6</td><td>20</td><td><l0q< td=""><td></td></l0q<></td></l0q<>	Aflatoxin B2	6	20	<l0q< td=""><td></td></l0q<>	
Aflatoxin G1	6	20	<l0q< td=""><td>Aflatoxin G2</td><td>6</td><td>20</td><td><l0q< td=""><td></td></l0q<></td></l0q<>	Aflatoxin G2	6	20	<l0q< td=""><td></td></l0q<>	
Ochratoxin A	12	20	<l0q< td=""><td></td><td></td><td></td><td></td><td></td></l0q<>					

Xueli Gao Ph D DART Lab Toxicologist

Lab Director/Principal Scientist Aixia Sun

D.H.Sc., M.Sc., B.Sc., MT (AAB)

drul

Definitions and Abbreviations used in this report: *Total CBD = CBD + (CBD-A * 0.877), *Total THC = THCA-A * 0.877 + Delta 9 THC, *CBG Total = (CBGA * 0.877) + CBG, *CBN Total = (CBNA * 0.877) + CBN, *Other Cannabinoids Total = CBC + CBDV + THCV + THCV-A, *Total Detected Cannabinoids = CBD Total + CBD Total + CBN Total + THC Total + CBC + CBDV + THCV + THCV-A, *Analyte Details above show the Dry Weight Concentrations unless specified as 12% moisture concentration. (mg/ml) = Milligrams per Milliliter, LOQ = Limit of Detection, Dilution = Dilution Teator (ppb) = Parts per Billion, (%) = Percent, (cflu/g) = Colony Forming Unit per Gram (cflu/g) = Colony Forming Unit per Gram (cflu/g) = Colony Forming Unit per Gram (cflu/g) = Milligram per Kilogram, *Measurement of Uncertainty = +/- 5%

License No. 800025015 FL License # CMTL-0003 CLIA No. 10D1094068

Crystalline Cannabidiol Sample Matrix: CBD/HEMP Edibles (Ingestion)

Certificate of Analysis

Compliance Test

GENCANNA ACQUISITION

4274 COLBY ROAD WINCHESTER, KY 40391 Batch # 210008CC Batch Date: 2021-02-12 Extracted From: Industrial Hemp Sampling Method: MSP 7.3.1 Test Reg

State: Florida

Order # GEN210212-020003 Order Date: 2021-02-12 Sample # AAAZ592 Sampling Date: 2021-02-16 Lab Batch Date: 2021-02-16 Completion Date: 2021-02-22 Initial Gross Weight: 38.016 g

Pesticides FL V4

Specimen Weight: 163.000 mg

Passed (LCMS/GCMS)

Dilution Factor: 9.203 LOO Action Level LOO Action Leve Analyte Analyte Ahamectin 28.23 300 <L00 Acephate 30 3000 <L00 Acequinocyl 48 2000 <L00 Acetamiprid 30 3000 <L00 Aldicarb 30 100 <L00 10 3000 <L00 Azoxystrobin Bifenazate 30 3000 <LOQ Bifenthrin 30 500 <LOQ Boscalid 10 3000 <L0Q Captan 30 3000 <LOQ Carbaryl 10 500 <LOQ Carbofuran 10 100 <LOQ Chlorantraniliprole 10 3000 <LOQ Chlordane 10 100 <L00 Chlorfenapyr 30 100 <L00 Chlormequat Chloride 10 3000 <L00 Clofentezine Chlorpyrifos 30 100 <LOQ 30 500 <LOQ 48 100 <LOQ Cyfluthrin 30 1000 <LOQ Coumaphos Daminozide 30 Cypermethrin 30 1000 <LOQ <LOQ Diazinon 30 200 <L0Q Dichlorvos 30 100 <L0Q Dimethoate 30 100 <L00 Dimethomorph 48 3000 <100 Ethoprophos 30 100 <L00 Etofenprox 30 100 <L00 30 1500 <L0Q 10 3000 <L0Q Etoxazole Fenhexamid Fenoxycarb 30 100 <L0Q Fenpyroximate 30 2000 <L0Q Fipronil 30 <LOQ 30 2000 <L0Q Fludioxonil 48 3000 <L0Q Hexythiazox 30 2000 <LOQ Imazalil 30 100 <LOQ Imidacloprid 30 3000 <L00 Kresoxim Methyl 30 1000 <L00 Malathion 30 2000 <L00 Metalaxvl 10 3000 <L00 Methiocarb 30 100 <L00 Methomyl 30 100 <LOQ methyl-Parathion 10 100 <LOQ Mevinphos 10 <L0Q Myclobutanil 30 3000 <L0Q Naled 30 500 <LOQ Oxamyl 30 500 <L0Q Paclobutrazol 30 100 <L00 Pentachloronitrobenzene 10 200 <L00 30 1000 Phosmet 30 Permethrin <LOQ 200 <LOQ Pipero ny Ibuto xide 30 3000 <LOQ Prallethrin 30 400 <LOQ 30 1000 <L0Q 30 100 <LOQ Propiconazole Propoxur Pyrethrins 30 1000 <L0Q Pyridaben 30 3000 <L0Q Spinetoram 10 3000 <L0Q Spinosad 30 3000 <L00 Spiromesifen 30 3000 <L00 Spirotetramat 30 3000 <L00 Spiroxamine 30 100 <L00 Tebuconazole 30 1000 <L00 Thiacloprid 30 100 <L0Q Thiamethoxam 30 1000 <L0Q Trifloxystrobin <L00 Total Contaminant Load (TCL) None Detected

Xueli Gao

Lab Toxicologist

Gi

Aixia Sun Lab Director/Principal Scientist

Aixia Sun Lab Director/F

Ph.D., DABT

drul

Definitions and Abbreviations used in this report: *Total CBD = CBD + (CBD-A * 0.877), *Total THC = THCA-A * 0.877 + Delta 9 THC, *CBG Total = (CBGA * 0.877) + CBG, *CBN Total = (CBNA * 0.877) + CBN, *Other Cannabinoids Total = CBC + CBDV + THCV + THCV-A, *Total Detected Cannabinoids = CBD Total + CBN Total + THC Total + CBC + CBDV + THCV + THCV-A, *Analyte Details above show the Dry Weight Concentrations unless specified as 12% moisture concentration. (mg/ml) = Milliligrams per Milliliter, LOQ = Limit of Quantitation, LOD = Limit of Detection, (into = Dilution Teator (pbb) = Parts per Billion, (%) = Percent, (cfu/g) = Colony Forming Unit per Gram (cfu/g) = Colony Forming Unit per Gram (ppm) = Parts per Million, (ppm) = (µg/g), (aw) = aw (area ratio) = Area Ratio, (mg/Kg) = Milligram per Kilogram, *Measurement of Uncertainty = +/- 5%

License No. 800025015 FL License # CMTL-0003 CLIA No. 10D1094068

Crystalline Cannabidiol Sample Matrix: CBD/HEMP **Edibles** (Ingestion)

Certificate of Analysis

Compliance Test

GENCANNA ACQUISITION

4274 COLBY ROAD WINCHESTER, KY 40391

Batch # 210008CC Batch Date: 2021-02-12 Extracted From: Industrial Hemp Sampling Method: MSP 7.3.1 Test Reg

State: Florida

Order # GEN210212-020003 Order Date: 2021-02-12 Sample # AAAZ592 Sampling Date: 2021-02-16 Lab Batch Date: 2021-02-16 Completion Date: 2021-02-22 Initial Gross Weight: 38.016 g

Residual Solvents - FL (CBD)

Specimen Weight: 117.600 mg

Passed (GCMS)

LOQ (ppm)	Action Level (ppm)	Result (ppm)	Analyte	LOQ (ppm)	Action Level (ppm)	Result (ppm)	
0.16	8	<loq< td=""><td>1,2-Dichloroethane</td><td>0.04</td><td>5</td><td><loq< td=""><td></td></loq<></td></loq<>	1,2-Dichloroethane	0.04	5	<loq< td=""><td></td></loq<>	
2.08	5000	<loq< td=""><td>Acetonitrile</td><td>1.17</td><td>410</td><td><loq< td=""><td></td></loq<></td></loq<>	Acetonitrile	1.17	410	<loq< td=""><td></td></loq<>	
0.02	2	<l0q< td=""><td>Butanes</td><td>2.5</td><td>2000</td><td><loq< td=""><td></td></loq<></td></l0q<>	Butanes	2.5	2000	<loq< td=""><td></td></loq<>	
0.04	60	<l0q< td=""><td>Ethanol</td><td>2.78</td><td>5000</td><td><l0q< td=""><td></td></l0q<></td></l0q<>	Ethanol	2.78	5000	<l0q< td=""><td></td></l0q<>	
1.11	5000	<l0q< td=""><td>Ethyl Ether</td><td>1.39</td><td>5000</td><td><l0q< td=""><td></td></l0q<></td></l0q<>	Ethyl Ether	1.39	5000	<l0q< td=""><td></td></l0q<>	
0.1	5	<l0q< td=""><td>Heptane</td><td>1.39</td><td>5000</td><td><l0q< td=""><td></td></l0q<></td></l0q<>	Heptane	1.39	5000	<l0q< td=""><td></td></l0q<>	
1.17	290	<l0q< td=""><td>Isopropyl alcohol</td><td>1.39</td><td>500</td><td><l0q< td=""><td></td></l0q<></td></l0q<>	Isopropyl alcohol	1.39	500	<l0q< td=""><td></td></l0q<>	
0.69	3000	<loq< td=""><td>Methylene chloride</td><td>2.43</td><td>600</td><td><l0q< td=""><td></td></l0q<></td></loq<>	Methylene chloride	2.43	600	<l0q< td=""><td></td></l0q<>	
2.08	5000	Passed	Propane	5.83	2100	<loq< td=""><td></td></loq<>	
2.92	890	<loq< td=""><td>Total Xylenes</td><td>2.92</td><td>2170</td><td><loq< td=""><td></td></loq<></td></loq<>	Total Xylenes	2.92	2170	<loq< td=""><td></td></loq<>	
0.49	80	<loq< td=""><td></td><td></td><td></td><td></td><td></td></loq<>					
	(ppm) 0.16 2.08 0.02 0.04 1.11 0.1 1.17 0.69 2.08 2.92	(ppm) (ppm) 0.16 8 2.08 5000 0.02 2 0.04 60 1.11 5000 0.1 5 1.17 290 0.69 3000 2.08 5000 2.92 890	(ppm) (ppm) (ppm) 0.16 8 <0Q	(ppm) (ppm) (ppm) Analyte 0.16 8 <loq< td=""> 1,2-Dichloroethane 2.08 5000 <loq< td=""> Acetonitrile 0.02 2 <loq< td=""> Butanes 0.04 60 <loq< td=""> Ethanol 1.11 5000 <loq< td=""> Ethyl Ether 0.1 5 <loq< td=""> Heptane 1.17 290 <loq< td=""> Methylene chloride 0.69 3000 <loq< td=""> Methylene chloride 2.08 5000 Passed Propane 2.92 890 <loq< td=""> Total Xylenes</loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<>	(ppm) (ppm) (ppm) Analyte (ppm) 0.16 8 <loq< td=""> 1,2-Dichloroethane 0.04 2.08 5000 <loq< td=""> Acetonitrile 1.17 0.02 2 <loq< td=""> Butanes 2.5 0.04 60 <loq< td=""> Ethanol 2.78 1.11 5000 <loq< td=""> Ethyl Ether 1.39 0.1 5 <loq< td=""> Heptane 1.39 1.17 290 <loq< td=""> Isopropi alcohol 1.39 0.69 3000 <loq< td=""> Methylene chloride 2.43 2.08 5000 Passed Propane 5.83 2.92 890 <loq< td=""> Total Xylenes 2.92</loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<>	(ppm) (ppm) (ppm) Analyte (ppm) (ppm) 0.16 8 <loq< td=""> 1,2-Dichloroethane 0.04 5 2.08 5000 <loq< td=""> Acetoritrile 1.17 410 0.02 2 <loq< td=""> Butanes 2.5 2000 0.04 60 <loq< td=""> Ethanol 2.78 5000 1.11 5000 <loq< td=""> Ethyl Ether 1.39 5000 0.1 5 <loq< td=""> Heptane 1.39 5000 1.17 290 <loq< td=""> Isopropyl alcohol 1.39 500 0.69 3000 <loq< td=""> Methylene chloride 2.43 600 2.08 5000 Passed Propane 5.83 2100 2.92 890 <loq< td=""> Total Xylenes 2.92 2170</loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<>	(ppm) (ppm) (ppm) Analyte (ppm) (ppm) (ppm) 0.16 8 <loq< td=""> 1,2-Dichloroethane 0.04 5 <loq< td=""> 2.08 5000 <loq< td=""> Acetonitrile 1.17 410 <loq< td=""> 0.02 2 <loq< td=""> Butanes 2.5 2000 <loq< td=""> 0.04 60 <loq< td=""> Ethanol 2.78 5000 <loq< td=""> 1.11 5000 <loq< td=""> Ethyl Ether 1.39 5000 <loq< td=""> 0.1 5 <loq< td=""> Heptane 1.39 5000 <loq< td=""> 1.17 290 <loq< td=""> Isopropyl alcohol 1.39 500 <loq< td=""> 0.69 3000 <loq< td=""> Methylene chloride 2.43 600 <loq< td=""> 2.08 5000 Passed Propane 5.83 2100 <loq< td=""> 2.92 890 <loq< td=""> Total Xylenes 2.92 2170 <loq< td=""></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<>

Moisture

Specimen Weight: N/A Dilution Factor: 1.000

Analyte	Action Level (%)	Result (%)	
Moisture	15	0.490	

Tested (Moisture Meter)

drul Xueli Gao

Lab Toxicologist

Lab Director/Principal Scientist Aixia Sun

Ph D DART

D.H.Sc., M.Sc., B.Sc., MT (AAB)

Definitions and Abbreviations used in this report: *Total CBD = CBD + (CBD-A * 0.877), *Total THC = THCA-A * 0.877 + Delta 9 THC, *CBG Total = (CBGA * 0.877) + CBG, *CBN Total = (CBNA * 0.877) + CBN, *Other Cannabinoids Total = CBC + CBDV + THCV + THCV-A, *Total Detected Cannabinoids = CBD Total + CBD Total + CBN Total + THC Total + CBC + CBDV + THCV + THCV-A, *Analyte Details above show the Dry Weight Concentrations unless specified as 12% moisture concentration. (mg/ml) = Milligrams per Milliliter, LOQ = Limit of Detection, Dilution = Dilution Teator (ppb) = Parts per Billion, (%) = Percent, (cflu/g) = Colony Forming Unit per Gram (cflu/g) = Colony Forming Unit per Gram (cflu/g) = Colony Forming Unit per Gram (cflu/g) = Milligram per Kilogram, *Measurement of Uncertainty = +/- 5%

License No. 800025015 FL License # CMTL-0003 CLIA No. 10D1094068

Crystalline Cannabidiol Sample Matrix: CBD/HEMP **Edibles** (Ingestion)

Passed (qPCR)

Passed (qPCR)

Passed (qPCR)

Certificate of Analysis

Compliance Test

GENCANNA ACQUISITION

4274 COLBY ROAD WINCHESTER, KY 40391

Batch # 210008CC Batch Date: 2021-02-12 Extracted From: Industrial Hemp Sampling Method: MSP 7.3.1 Test Reg

State: Florida

Order # GEN210212-020003 Order Date: 2021-02-12 Sample # AAAZ592 Sampling Date: 2021-02-16 Lab Batch Date: 2021-02-16 Completion Date: 2021-02-22 Initial Gross Weight: 38.016 g

Listeria Monocytogenes

Specimen Weight: 997.500 mg

Dilution Factor: 1.000

Analyte

Result Absence in 1 g

Pathogenic SE (qPCR)

Specimen Weight: 238.800 mg

Dilution Factor: 1.000

Listeria Monocytogenes

Analyte	Action Level (cfu/g)	Result (cfu/g)	Analyte	Action Level (cfu/g)	Result (cfu/g)
E Coli	1	Absence in 1a	Salmonella	1	Absence in 1 a

Microbiology (qPCR)

Specimen Weight: 250.740 mg

Dilution Factor: 1.000

Analyte	Result	Analyte	Result
Total Aerobic Count	Passed	Total Coliform	Passed
Total Enterobacteriaceae	Passed	Total Yeast/Mold	Passed

Xueli Gao Ph D DART Lab Toxicologist

Lab Director/Principal Scientist

Aixia Sun D.H.Sc., M.Sc., B.Sc., MT (AAB)

drul

Definitions and Abbreviations used in this report: *Total CBD = CBD + (CBD-A * 0.877), *Total THC = THCA-A * 0.877 + Delta 9 THC, *CBG Total = (CBGA * 0.877) + CBG, *CBN Total = (CBNA * 0.877) + CBN, *Other Cannabinoids Total = CBC + CBDV + THCV + THCV-A, *Total Detected Cannabinoids = CBD Total + CBD Total + CBN Total + THC Total + CBC + CBDV + THCV + THCV-A, *Analyte Details above show the Dry Weight Concentrations unless specified as 12% moisture concentration. (mg/ml) = Milligrams per Milliliter, LOQ = Limit of Detection, Dilution = Dilution Teator (ppb) = Parts per Billion, (%) = Percent, (cflu/g) = Colony Forming Unit per Gram (cflu/g) = Colony Forming Unit per Gram (cflu/g) = Colony Forming Unit per Gram (cflu/g) = Milligram per Kilogram, *Measurement of Uncertainty = +/- 5%

