Table 1 — 30XA080-120 — ENGLISH

UNIT 30XA	080	090	100	110	120
OPERATING WEIGHT (Ib)* Al-Cu Condenser Coils Cu-Cu Condenser Coils MCHX Condenser Coils	7,674 8,398 7,234	8,704 9,669 8,127	8,931 9,896 8,348	9,071 10,036 8,483	9,216 10,181 8,622
REFRIGERANT TYPE Refrigerant Charge (lb) Ckt A/Ckt B/Ckt C (RTPF) Refrigerant Charge (lb) Ckt A/Ckt B/Ckt C (MCHX)	110/110/— 93.5/93.5/—	R-13 110/110/— 88/88/—	34a, EXV Controlled Syste 120/120/— 90/90/—	em 135/120/— 94/90/—	135/135/— 94/94/—
COMPRESSORS Quantity Speed (rpm)	2	Semi- 2	Hermetic Twin Rotary Sci 2 3500	rews 2	2
(Ctyl) Compressor Model Number Ckt A (Qty) Compressor Model Number Ckt B (Qty) Compressor Model Number Ckt C Oil Charge (gal), Ckt A/Ckt B/Ckt C Minimum Capacity Step (%)	(1) 06TS-137† (1) 06TS-137† N/A 5.5/5.5/—	(1) 06TS-137 (1) 06TS-137 N/A 5.5/5.5/—	(1) 06TS-155 (1) 06TS-155 N/A 5.5/5.5/—	(1) 06TS-186 (1) 06TS-155 N/A 5.5/5.5/—	(1) 06TS-186 (1) 06TS-186 N/A 5.5/5.5/—
Standard Optional	15 9	15 9	15 9	14 8	15 10
COOLER Net Fluid Volume (gal.) Maximum Refrigerant Pressure (psig) Maximum Water-Side Pressure without Pumps (psig) Maximum Water-Side Pressure with Pumps (psig)	Flooded, Shell and Tube Type 16.5 220 300	Flooded, Shell and Tube Type 18.5 220 300 150	Flooded, Shell and Tube Type 18.5 220 300 150	Flooded, Shell and Tube Type 20.0 220 300 150	Flooded, Shell and Tube Type 23.0 220 300 150
WATER CONNECTIONS Drain (NPT, in.) Standard, Inlet and Outlet, Victaulic (in.) Number of Passes Minus 1 Pass, Inlet and Outlet, Victaulic (in.) Number of Passes Plus 1 Pass, Inlet and Outlet, Victaulic (in.) Number of Passes	3/8 5 2 5 1 4	3/8 5 2 5 1 4 3	3/8 5 2 5 1 4 3	3/8 5 2 5 1 4 3	3/8 5 2 5 1 4 3
CONDENSER FANS Fan Speed (rpm) Standard/High Ambient** No. BladesDiameter (in.) No. Fans (Ckt A/Ckt B/Ckt C) Total Airflow (cfm) 850 rpm Total Airflow (cfm) 1140 rpm	850/— 930 3/3/— 55,800	Shroude 850/— 930 4/4/— 74,400	d Axial Type, Vertical Dis 850/— 930 4/4/— 74,400	charge 850/— 930 4/4/— 74,400	850/— 930 4/4/— 74,400
CONDENSER COILS No. Coils (Ckt A/Ckt B/Ckt C) Total Face Area (sq ft)	3/3/— 141	4/4/— 188	4/4/— 188	4/4/— 188	4/4/— 188
CHASSIS DIMENSIONS (in.) Length Width Height	141 88 91	188 88 91	188 88 91	188 88 91	188 88 91

Table 2 — 30XA140-220 — ENGLISH

UNIT 30XA	140	160	180	200	220
OPERATING WEIGHT (Ib)* AI-Cu Condenser Coils Cu-Cu Condenser Coils MCHX Condenser Coils	11,505 12,711 10,768	11,748 12,954 11,000	13,590 15,037 12,699	13,712 15,159 12,810	14,727 16,295 13,748
REFRIGERANT TYPE Refrigerant Charge (lb) Ckt A/Ckt B/Ckt C (RTPF) Refrigerant Charge (lb) Ckt A/Ckt B/Ckt C (MCHX)	202/121/— 128/90/—	R-1: 225/159/— 126/94/—	34a, EXV Controlled System 205/205/— 132/132/—	em 225/225/— 152/152/—	270/225/— 159.5/152/—
COMPRESSORS Quantity Speed (rpm)	2	Semi- 2	Hermetic Twin Rotary Sc 2 3500	rews 2	2
(Qty) Compressor Model Number Ckt A (Qty) Compressor Model Number Ckt B (Qty) Compressor Model Number Ckt C Oil Charge (gal), Ckt A/Ckt B/Ckt C Minimum Capacity Step (%)	(1) 06TT-266 (1) 06TS-155 N/A 6.25/5.5/—	(1) 06TT-301 (1) 06TS-186 N/A 6.25/5.5/—	(1) 06TT-266 (1) 06TT-266 N/A 6.25/6.25/—	(1) 06TT-301 (1) 06TT-301 N/A 6.25/6.25/—	(1) 06TT-356 (1) 06TT-301 N/A 6.75/6.25/—
Standard Optional	11 7	11 8	15 10	15 10	14 10
COOLER Net Fluid Volume (gal.) Maximum Refrigerant Pressure (psig) Maximum Water-Side Pressure without Pumps (psig) Maximum Water-Side Pressure with Pumps (psig)	Flooded, Shell and Tube Type 25.5 220 300 150	Flooded, Shell and Tube Type 27.5 220 300 150	Flooded, Shell and Tube Type 31.5 220 300	Flooded, Shell and Tube Type 34.0 220 300	Flooded, Shell and Tube Type 37.0 220 300
WATER CONNECTIONS Drain (NPT, in.) Standard, Inlet and Outlet, Victaulic (in.) Number of Passes Minus 1 Pass, Inlet and Outlet, Victaulic (in.) Number of Passes Plus 1 Pass, Inlet and Outlet, Victaulic (in.) Number of Passes	3/8 5 2 5 1 5 3	3/8 5 2 5 1 5 3	3/8 6 2 8 1 6 3	3/8 6 2 8 1 6 3	3/8 6 2 8 1 6 3
CONDENSER FANS Fan Speed (rpm) Standard/High Ambient** No. BladesDiameter (in.) No. Fans (Ckt A/Ckt B/Ckt C) Total Airflow (cfm) 850 rpm Total Airflow (cfm) 1140 rpm	850/1140 930 6/4/— 93,000 124,000	Shroude 850/1140 930 6/4/— 93,000 124,000	d Axial Type, Vertical Dis 850/1140 930 6/6/— 111,600 148,800	charge 850/1140 930 6/6/— 111,600 148,800	850/1140 930 7/6/— 120,900 161,200
CONDENSER COILS No. Coils (Cht A/Ckt B/Ckt C) Total Face Area (sq ft)	6/4/— 234	6/4/— 234	6/6/— 281	6/6/— 281	7/6/— 305
CHASSIS DIMENSIONS (in.) Length Width Height	235 88 91	235 88 91	282 88 91	282 88 91	329 88 91

LEGEND

Cu — Copper
Al — Aluminum
EXV — Electronic Expansion Valve
MCHX — Microchannel Heat Exchanger
N/A — Not Applicable

All weights include coil trim panels. See pages 65-79 for unit mounting weights.
 30XA080 units do not have an economizer.
 The standard ambient temperature option is not available on 30XA0401, 451, 476, and 501 units. The high ambient temperature option is not available on 30XA080-120 units.

Table 3 — 30XA240-325 — ENGLISH

	240	260	280	300	325
	14,887 16,455 13,897	16,853 18,662 15,720	17,022 18,831 15,878	17,362 19,292 16,141	18,834 21,005 17,467
	270/270/— 159.5/159/—	375/220/— 233.5/156/—	R-134a, EXV Controlled Sys 375/270/— 226.5/159.5/—	tem 415/270/— 230/161/—	375/375/— 226.5/226.5/—
		Se	emi-Hermetic Twin Rotary Se	crews	
	2	2	2	2	2
	3500 (1) 06TT-356 (1) 06TT-356 N/A 6.75/6.75/—	(1) 06TU-483 (1) 06TT-301 N/A 7.5/6.75/—	(1) 06TU-483 (1) 06TT-356 N/A 7.5/6.75/—	(1) 06TU-554 (1) 06TT-356 N/A 7.5/6.75/—	(1) 06TU-483 (1) 06TU-483 N/A 7.5/7.5/—
	15 10	11 8	13 9	12 7	15 10
	Flooded, Shell and Tube Type 39.0 220 300 —	Flooded, Shell and Tube Type 42.0 220 300 —	Flooded, Shell and Tube Type 44.0 220 300	Flooded, Shell and Tube Type 48.5 220 300 —	Flooded, Shell and Tube Type 50.5 220 300
	3/8 6 2 8 1 6 3	3/8 8 2 8 1 8 3	3/8 8 2 8 1 8 3	3/8 8 2 8 1 8 3	3/8 8 2 8 1 8
		Shro	uded Avial Type Vertical Di	scharge	-
	850/1140 930 7/6/— 120,900 161,200	850/1140 930 9/6/— 139,500 186,000	930 9/7/— 148,800 198,400	850/1140 930 10/6/— 148,800 198,400	850/1140 930 9/9/— 167,400 223,200
1	7/6/— 305	9/6/— 352	9/7/— 375	10/6/— 375	9/9/— 422
As	329 88 91	376 88 91	376 88 91	376 88 91	423 88 91
		16,455 13,897 270/270/— 159.5/159/— 2 3500 (1) 06TT-356 (1) 06TT-356 (NA 6.75/6.75/— 15 10 Flooded, Shell and Tube Type 39.0 220 300 — 3/8 6 2 8 1 6 3 850/1140 930 7/6/— 120,900 161,200 7/6/— 305	16,455 18,862 15,720 270/270/— 375/220/— 375/220/— 159,5/159/— 233,5/156/— 2 2 3500 (1) 06TT-356 (1) 06TT-301 N/A 6.75/6,75/— 7.5/6.75/— 15 11 8 Flooded, Shell and Tube Type 39.0 42.0 220 220 220 220 220 220 220 220 220	16,455	16,455

lable	4 — 3UXA35U-5	or — LINGLIS	ЭП		
UNIT 30XA	350	401	451	476	501
OPERATING WEIGHT (Ib)* AI-CU Condenser Coils Cu-Cu Condenser Coils MCHX Condenser Coils	19,040 21,211 17,659	22,688 25,100 20,785	23,423 26,074 21,737	27,518 30,175 25,362	29,882 33,020 27,403
REFRIGERANT TYPE Refrigerant Charge (Ib) Ckt A/Ckt B/Ckt C (RTPF) Refrigerant Charge (Ib) Ckt A/Ckt B/Ckt C (MCHX)	415/375/— 231.5/226.5/—	R-13- 460 / 385 /— 275 / 225 / —	4a, EXV Controlled Syster 530 / 385 / — 290 / 225 / —	475 / 465 / — 285 / 280 / —	560 / 495 / — 300 / 290 / —
COMPRESSORS Quantity Speed (rpm)	2	2	Hermetic Twin Rotary Scre	2	2
(Otty) Compressor Model Number Ckt A (Otty) Compressor Model Number Ckt B (Otty) Compressor Model Number Ckt C Oil Charge (gal), Ckt A/Ckt B/Ckt C Minimum Capacity Step (%)	(1) 06TU-554 (1) 06TU-483 N/A 7.5/7.5/—	(1) 06TV-680 (1) 06TU-554 N/A 7.5/7.5/—	(1) 06TV-819 (1) 06TU-554 N/A 7.5/7.5/—	(1) 06TV-753 (1) 06TV-680 N/A 7.5/7.5/—	(1) 06TV-819 (1) 06TV-753 N/A 7.5/7.5/—
Standard Optional	15 10	15 11	12 8	15 11	15 11
COOLER	Flooded, Shell and Tube		Flooded, Shell	and Tube Type	
Net Fluid Volume (gal.) Maximum Refrigerant Pressure (psig) Maximum Water-Side Pressure without Pumps (psig) Maximum Water-Side Pressure with Pumps (psig)	Type 53.4 220 300	64.5 220 300 —	64.5 220 300	81.8 220 300 —	81.8 220 300 —
WATER CONNECTIONS Drain (NPT, in.) Standard, Inlet and Outlet, Victaulic (in.) Number of Passes Minus 1 Pass, Inlet and Outlet, Victaulic (in.) Number of Passes Plus 1 Pass, Inlet and Outlet, Victaulic (in.) Number of Passes	3/8 8 2 8 1 8	3/8 8 2 8 1 —	3/8 8 2 8 1 —	3/8 8 2 8 1 —	3/8 8 2 8 1 —
CONDENSER FANS Fan Speed (rpm) Standard/High Ambient** No. BladesDiameter (in.) No. Fans (Ckt A/Ckt B/Ckt C) Total Airflow (cfm) 850 rpm Total Airflow (cfm) 1140 rpm	850/1140 930 9//— 167,400 223,200	Shrouded/1140 930 11/9/ 248,000	Axial Type, Vertical Discl /1140 930 13/9/ 272,800	harge —/1140 930 11/11/— 272,800	/1140 930 14/12/ - 322,400
CONDENSER COILS No. Colls (Ckt A/Ckt B/Ckt C) Total Face Area (sq ft)	9/9/— 422	11/9/— 469	13/9/— 516	11/11/— 516	14/12/— 608
HYDRONIC MODULE (Optional) Pump			N/A	_	
CHASSIS DIMENSIONS (in.) Length Width Height	423 88 91	470 88 91	517 88 91	517 88 91	611 88 91

LEGEND

Cu — Copper
Al — Aluminum
EXV — Electronic Expansion Valve
MCHX — Microchannel Heat Exchanger
N/A — Not Applicable

All weights include coil trim panels. See pages 65-79 for unit mounting weights.
 30XA080 units do not have an economizer.
 The standard ambient temperature option is not available on 30XA401, 451, 476, and 501 units. The high ambient temperature option is not available on 30XA080-120 units.

Table 5 — 30XA080-120 — SI

UNIT 30XA	080	090	100	110	120
OPERATING WEIGHT (kg)* Al-Cu Condenser Coils Cu-Cu Condenser Coils MCHX Condenser Coils	3 481 3 809 3 281	3 948 4 386 3 686	4 051 4 489 3 786	4 115 4 552 3 848	4 181 4 618 3 911
REFRIGERANT TYPE Refrigerant Charge (kg) Ckt A/Ckt B/Ckt C (RTPF) Refrigerant Charge (kg) Ckt A/Ckt B/Ckt C (MCHX)	50/50/— 42.4/42.4/—	F-13 50/50/— 39.9/39.9/—	4a, EXV Controlled System 54/54/— 40.8/40.8/—	m 61/61/— 42.6/40.8/—	61/61/— 42.6/42.6/—
COMPRESSORS Quantity	2	Semi-l 2	Hermetic Twin Rotary Scre 2 58.3	ews 2	2
Speed (r/s) (Qty) Compressor Model Number Ckt A (Qty) Compressor Model Number Ckt B (Qty) Compressor Model Number Ckt C Oit Charge (liters), Ckt A/Ckt B/Ckt C Minimum Capacity Step (%)	(1) 06TS-137† (1) 06TS-137† N/A 20.8/20.8/—	(1) 06TS-137 (1) 06TS-137 N/A 20.8/20.8/—	08.3 (1) 06TS-155 (1) 06TS-155 N/A 20.8/20.8/—	(1) 06TS-186 (1) 06TS-155 N/A 20.8/20.8/—	(1) 06TS-186 (1) 06TS-186 N/A 20.8/20.8/—
Standard Optional	15 9	15 9	15 9	14 8	15 10
COOLER Net Fluid Volume (liters) Maximum Refrigerant Pressure (kPa) Maximum Water-Side Pressure without Pumps (kPa) Maximum Water-Side Pressure with Pumps (kPa)	Flooded, Shell and Tube Type 62.5 1516.8 2 068	Flooded, Shell and Tube Type 70.0 1516.8 2 068 1 034	Flooded, Shell and Tube Type 70.0 1516.8 2 068 1 034	Flooded, Shell and Tube Type 75.7 1516.8 2 068 1 034	Flooded, Shell and Tube Type 87.1 1516.8 2 068 1 034
WATER CONNECTIONS Drain (NPT, in.) Standard, Inlet and Outlet, Victaulic (in.) Number of Passes Minus 1 Pass, Inlet and Outlet, Victaulic (in.) Number of Passes Plus 1 Pass, Inlet and Outlet, Victaulic (in.) Number of Passes	3/8 5 2 5 1 4	3/8 5 2 5 1 4 3	3/8 5 2 5 1 4 3	3/8 5 2 5 1 4 3	3/8 5 2 5 1 4 3
CONDENSER FANS Fan Speed (r/s) Standard/High Ambient** No. BladesDiameter (mm) No. Fans (Ckt A/Ckt B/Ckt C) Total Airflow (L/s) 14.2 r/s Total Airflow (L/s) 19.0 r/s	14.2/— 9762 3/3/— 26 335	Shroude 14.2/— 9762 4/4/— 35 113	d Axial Type, Vertical Disc 14.2/— 9762 4/4/— 35 113	harge 14.2/— 9762 4/4/— 35 113 —	14.2/— 9762 4/4/— 35 113
CONDENSER COILS No. Coils (Cht A/Ckt B/Ckt C) Total Face Area (sq m)	3/3/— 13	4/4/— 17	4/4/— 17	4/4/— 17	4/4/— 17
CHASSIS DIMENSIONS (mm) Length Width Height	3 587 2 236 2 300	4 780 2 236 2 300	4 780 2 236 2 300	4 780 2 236 2 300	4 780 2 236 2 300

Table 6 — 30XA140-220 — SI

UNIT 30XA	140	160	180	200	220
OPERATING WEIGHT (kg)* AI-Cu Condenser Coils Cu-Cu Condenser Coils MCHX Condenser Coils	5 219 5 766 4 884	5 329 5 876 4 990	6 164 6 821 5 760	6 220 6 876 5 811	6 680 7 391 6 236
REFRIGERANT TYPE Refrigerant Charge (kg) Ckt A/Ckt B/Ckt C (RTPF) Refrigerant Charge (kg) Ckt A/Ckt B/Ckt C (MCHX)	92/55/— 58.0/40.8/—	R-1 102/72/— 57.2/42.6/—	34a, EXV Controlled Syste 93/93/— 59.9/59.9/—	em 102/102— 68.9/68.9/—	112/102/— 72.3/68.9/—
COMPRESSORS Quantity Speed (r/s) (Qty) Compressor Model Number Ckt A	2 (1) 06TT-266	Semi- 2 I (1) 06TT-301	Hermetic Twin Rotary Scr 2 58.3 (1) 06TT-266	ews 2	2 I (1) 06TT-356
(Ctý) Compressor Model Number Ckt B (Qty) Compressor Model Number Ckt C Oil Charge (liters), Ckt A/Ckt B/Ckt C	(1) 0611-266 (1) 06TS-155 N/A 23.7/20.8/—	(1) 0611-301 (1) 06TS-186 N/A 23.7/23.7/—	(1) 0611-266 (1) 06TT-266 N/A 23.7/23.7/—	(1) 0611-301 (1) 06TT-301 N/A 23.7/23.7/—	(1) 0611-356 (1) 06TT-301 N/A 25.6/23.7/—
Minimum Capacity Step (%) Standard Optional	11 7	11 8	15 10	15 10	14 10
COOLER	Flooded, Shell and Tube Type	Flooded, Shell and Tube Type	Flooded, Shell and Tube	Flooded, Shell and Tube	
Net Fluid Volume (liters) Maximum Refrigerant Pressure (kPa) Maximum Water-Side Pressure without	96.5 1516.8	104.1 1516.8	119.2 1516.8	Type 128.7 1516.8	Type 140.1 1516.8
Pumps (kPa) Maximum Water-Side Pressure with Pumps (kPa)	2 068 1 034	2 068 1 034	2 068 —	2 068 —	2 068 —
WATER CONNECTIONS Drain (NPT, in.) Standard, Inlet and Outlet, Victaulic (in.) Number of Passes Minus 1 Pass, Inlet and Outlet, Victaulic (in.) Number of Passes Plus 1 Pass, Inlet and Outlet, Victaulic (in.) Number of Passes	3/8 5 2 5 1 5	3/8 5 2 5 1 5 3	3/8 6 2 8 1 6	3/8 6 2 8 1 6	3/8 6 2 8 1 6
CONDENSER FANS			ed Axial Type. Vertical Dis	Ů	3
Fan Speed (i/s) Standard/High Ambient** No. BladesDlameter (mm) No. Fans (Ckt A/Ckt B/Ckt C) Total Airflow (L/s) 14.2 i/s Total Airflow (L/s) 19.0 i/s	14.2/19.0 9762 6/4/— 43 891 58 522	14.2/19.0 9762 6/4/— 43 891 58 522	14.2/19.0 9762 6/6/— 52 669 70 226	14.2/19.0 9762 6/6/— 52 669 70 226	14.2/19.0 9762 7/6/— 57 059 76 078
CONDENSER COILS No. Coils (Ckt A/Ckt B/Ckt C) Total Face Area (sq m)	6/4/— 22	6/4/— 22	6/6/— 26	6/6/— 26	7/6/— 28
CHASSIS DIMENSIONS (mm) Length Width Height	5 975 2 236 2 300	5 975 2 236 2 300	7 168 2 236 2 300	7 168 2 236 2 300	8 363 2 236 2 300

LEGEND

Cu — Copper
Al — Aluminum
EXV — Electronic Expansion Valve
MCHX — Microchannel Heat Exchanger
N/A — Not Applicable

All weights include coil trim panels. See pages 65-79 for unit mounting weights.
 30XA080 units do not have an economizer.
 The standard ambient temperature option is not available on 30XA401, 451, 476, and 501 units. The high ambient temperature option is not available on 30XA080-120 units.

Table 7 — 30XA240-325 — SI

<u> </u>		<u> </u>			
UNIT 30XA	240	260	280	300	325
OPERATING WEIGHT (kg)* Al-Cu Condenser Coils	6 753	7 644	7 721	7 876	8 543
Cu-Cu Condenser Coils MCHX Condenser Coils	7 464 6 304	8 465 7 130	8 542 7 202	7 876 8 751 7 322	9 528 7 923
REFRIGERANT TYPE		R-1	34a, EXV Controlled Syst	em	
Refrigerant Charge (kg) Ckt A/Ckt B/Ckt C (RTPF) Refrigerant Charge (kg) Ckt A/Ckt B/Ckt C (MCHX)	122.5/122.5/— 72.3/72.1/—	170.1/99.8/— 105.9/70.8/—	170.1/122.5/— 102.7/72.3/—	188.3/122.5/— 104.3/73.0/—	170.1/170.1/— 102.7/102.7/—
COMPRESSORS	2	Semi	i-Hermetic Twin Rotary Sc	rews	2
Quantity Speed (r/s)	2	2	2 3500 (1) 00TH 400	2	2
(Qty) Compressor Model Number Ckt A (Qty) Compressor Model Number Ckt B	(1) 06TT-356 (1) 06TT-356	(1) 06TU-483 (1) 06TT-301	(1) 06TU-483 (1) 06TT-356	(1) 06TU-554 (1) 06TT-356	(1) 06TU-483 (1) 06TU-483
(Qty) Compressor Model Number Ckt C Oil Charge (liter), Ckt A/Ckt B/Ckt C	N/A 25.6/25.6/—	N/A 28.4/25.6/—	N/A 28.4/25.6/—	N/A 28.4/25.6/—	N/A 28.4/28.4/—
Minimum Capacity Step (%) Standard	15	10	13	12	15
Optional	10 Flooded, Shell	8 Flooded, Shell	9 Flooded, Shell	7 Flooded, Shell	10 Flooded, Shell
COOLER Net Fluid Volume (liters)	and Tube Type 147.6	and Tube Type 159.0	and Tube Type 166.6	and Tube Type 183.6	and Tube Type 191.2
Maximum Refrigerant Pressure (kPa) Maximum Water-Side Pressure	1516.8	1516.8	1516.8	1516.8	1516.8
without Pumps (kPa)	2 068	2 068	2 068	2 068	2 068
Maximum Water-Side Pressure with Pumps (kPa) WATER CONNECTIONS	_	_	_		
Drain (NPT, in.) Standard, Inlet and Outlet, Victaulic (in.)	3/8 6	3/8 8	3/8 8	3/8 8	3/8 8
Number of Passes Minus 1 Pass, Inlet and Outlet, Victaulic (in.)	2 8	2 8	2 8	2 8	2 8
Number of Passes Plus 1 Pass, Inlet and Outlet, Victaulic (in.)	1 6	1 8	1 8	1 8	1 8
Number of Passes	3	3	3	3	3
CONDENSER FANS Fan Speed (r/s) Standard/High Ambient**	14.2/19.0	14.2/19.0	ed Axial Type, Vertical Dis 14.2/19.0	14.2/19.0	14.2/19.0
No. BladesDiameter (mm) No. Fans (Ckt A/Ckt B/Ckt C)	9762 7/6/—	9762 9/6/—	9762 9/7/—	9762 10/6/—	9762 9/9/—
Total Airflow (L/s) 14.2 r/s Total Airflow (L/s) 19.0 r/s	57 059 76 078	65 837 87 782	70 226 93 634	70 226 93 634	79 004 93 634
CONDENSER COILS No. Coils (Ckt A/Ckt B/Ckt C)	7/6/—	9/6/—	9/7/—	10/6/—	9/9/—
Total Face Area (sq m)	28	33	35	35	39
CHASSIS DIMENSIONS (mm) Length	8 363	9 555	9 555	9 555	10 750
Width Height	2 236 2 300	2 236 2 300	2 236 2 300	2 236 2 300	2 236 2 300
	Гable 8 — 30XA3	350-501 — SI	MA.		
UNIT 30XA	350	401	451	476	501
OPERATING WEIGHT (kg)* Al-Cu Condenser Coils	9.636	10.000	I 10 624	12 482	13 557
Cu-Cu Condenser Coils	8 636 9 621 8 010	10 292 11 387 9 424	11 827	12 462 13 686 10 641	14 087 11 540
MCHX Condenser Coils REFRIGERANT TYPE	8 0 10		9 859 134a, EXV Controlled Sys		11 540
Refrigerant Charge (kg) Ckt A/Ckt B/Ckt C (RTPF) Refrigerant Charge (kg) Ckt A/Ckt B/Ckt C (MCHX)	188.3/170.1/— 105.0/102.7/—	209 / 175 /— 125 / 102 / —	240 / 175 / — 132 / 102 / —	215 / 211 / — 129 / 127 / —	254 / 224 / — 136 / 132 / —
COMPRESSORS		Sem	i-Hermetic Twin Rotary Sc	crews	1
Quantity Speed (r/s)	2	2	2 58.3	2	2
(Qty) Compressor Model Number Ckt A (Qty) Compressor Model Number Ckt B	(1) 06TU-554 (1) 06TU-483	(1) 06TV-680 (1) 06TU-554	(1) 06TV-819 (1) 06TU-554	(1) 06TV-753 (1) 06TV-680	1) 06TV-819 (1) 06TV-753
(Qtý) Compressor Model Number Ckt C Oil Charge (liter), Ckt A/Ckt B/Ckt C	N/A 28.4/28.4/—	N/A 28.4/28.4/—	(1) 06TU-554 28.4/28.4/—	N/A 28.4/28.4/—	N/A 28.4/28.4/—
Minimum Capacity Step (%) Standard	14	15	12	15	' 15
Optional	10 Flooded, Shell and Tube	11	8	11	11
COOLER Net Fluid Volume (liters)	Type 202.1	244.2	244.2	l and Tube Type	I 309.6
Maximum Refrigerant Pressure (kPa)	1516.8	1516.8	1516.8	1516.8	1516.8
Maximum Water-Side Pressure without Pumps (kPa) Maximum Water-Side Pressure with Pumps (kPa)	2 068	2 068	2 068	2 068	2 068
Maximum Water-Side Pressure with Pumps (kPa) WATER CONNECTIONS	_	-4			
Drain (NPT, in.) Standard, Inlet and Outlet, Victaulic (in.)	3/8	3/8	3/8	3/8 8	3/8 8
Number of Passes Minus 1 Pass, Inlet and Outlet, Victaulic (in.)	8 2 8	2 8	2 8	2 8	2 8
Number of Passes Plus 1 Pass, Inlet and Outlet, Victaulic (in.)	1 8	1	1	1	1_
Number of Passes	3		Hod Avial Type Martins! Di	_	_
CONDENSER FANS Fan Speed (r/s) Standard/High Ambient**	14.2/19.0	—/19.0	ded Axial Type, Vertical Di: —/19.0	—/19.0	—/19.0
No. BladesDiameter (mm) No. Fans (Ckt A/Ckt B/Ckt C)	9762 9/9/—	9762 11/9/—	9762 13/9/—	9762 11/11/—	9762 14/12/—
Total Airflow (L/s) 14.2 r/s	79 004	_	_	_	_
Total Airflow (L/s) 19.0 r/s	105 339	117 044	128 748	128 748	152 157

CHASSIS DIMENSIONS (mm) Length Width Height LEGEND

Cu — Copper
AI — Aluminum
EXV — Electronic Expansion Valve
MICHX — Microchannel Heat Exchanger
NA — Not Applicable

CONDENSER COILS
No. Coils (Ckt A/Ckt B/Ckt C)
Total Face Area (sq m)

13/9/— 48

11/9/— 44

All weights include coil trim panels. See pages 65-79 for unit mounting weights.
 30XA080 units do not have an economizer.
 The standard ambient temperature option is not available on 30XA401, 451, 476, and 501 units. The high ambient temperature option is not available on 30XA080-120 units.

11/11/— 48

14/12/— 57

9/9/— 39

10 750 2 236 2 300

RIGGING UNIT (SEE FIG. 27-29)

The 30XA080-501 units are designed for overhead rigging and it is important that this method be used. Holes are provided in frame base channels, marked for rigging (see rigging label on unit). Field-supplied shackles are required to facilitate lifting. Secure the shackles to the base rails at the points noted on the rigging label. See Table 9 for the number of lifting points for each unit.

Do not use a forklift truck to move the units.

Use spreader bars to keep cables or chains clear of unit sides. As further protection, plywood sheets may be placed against sides of unit, behind cables or chains. Run cables or chains to a central suspension point so that angle from horizontal is not less than 45 degrees. Raise and set unit down carefully.

See Fig. 27-29 for rigging centers of gravity.

For shipping, some domestic units and all export units are mounted on a wooden skid under entire base of unit. Skid can be removed before unit is moved to installation site. Lift the unit from above to remove skid. See Fig. 27-29 for rigging center of gravity. On export units, the top skid can be used as the spreader bars. If the unit was shipped with a shipping bag, the bag must be removed to gain access to the rigging holes in the base rail.

If overhead rigging is not available, the unit can be moved on rollers or dragged. When unit is moved on rollers, the unit skid, if equipped, must be removed. To lift the unit, use jacks at the rigging points. Use a minimum number of rollers to distribute the load such that the rollers are no more than 6 ft (1.8 m) apart. If the unit is to be dragged, lift the unit as described above, and place unit on a pad. Apply moving force to the pad, and not the unit. When in its final location, raise the unit and remove the pad. If the unit was shipped with protection, it must be removed before start-up. The shipping bag for export units must be removed before start-up.

Table 9 — Number of Lifting Points for 30XA080-501

30XA UNIT SIZE	NUMBER OF LIFTING POINTS
080, 082, 50B*	4
090-122	6
140-162	8
180-202	10
220-400	12
401, 450, 451, 476, 500, 50A*	14

^{*} The 30XA501 unit is shipped as two separate modules: 50A and 50B.

A CAUTION - NOTICE TO RIGGERS:

ALL PANELS MUST BE IN PLACE WHEN RIGGING. DO NOT ATTEMPT TO FORK THESE UNITS IF NO SKID IS SUPPLIED.

- 1. 1.50 dia. (38.1mm) lifting holes provided for field supplied clevis.
- 2. Rig with a minimum of 25 ft (7620mm) length chains or cables.
- 3. If central lifting point is used, it must be a minimum of 13 ft. (3962mm) above the top of the unit.
- 4. Spreader bars made from steel or double nailed, and notched 2x6's approximately 8 ft. (2438mm) long, must be placed just above the top of the unit (and stacks) to reduce the risk of damage to the top of the unit and
- 5. If overhead rigging is not available, the unit can be moved on rollers or dragged. When unit is moved on rollers, the unit skid, if equipped, must be removed. To lift the unit, use jacks at the rigging points. Use a minimum of one roller every 6 ft. (1829mm) to distribute the load. If the unit is to be dragged, lift the unit as described above, and place unit on a pad. Apply moving force to the pad, not the unit. When in its final location, raise the unit and remove the pad.
- 6. Check bill of lading for shipping weight of unit.

15382 14014

15461

4282

30XA50B

30XA50B -CU

6357

7013

1614

4538

5262

2059

16.1 408.9 109.03

2387 16.1 408.9 109.03 2769.3

Fig. 27 — Unit Rigging Label Detail 30XA080-202, 50B

16.1 408.9 78.02 1981.7 78.02 1981.7 32.00 812.7 62.02

70.0 1778 42.7 1084

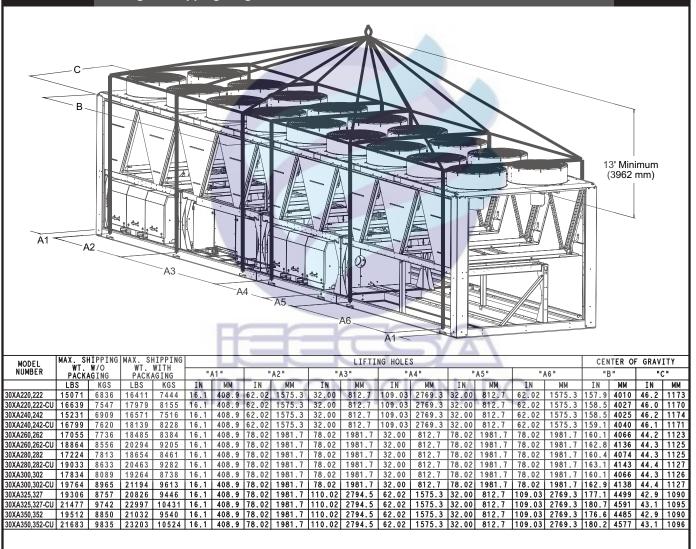
70.0 1778 42.7 1084

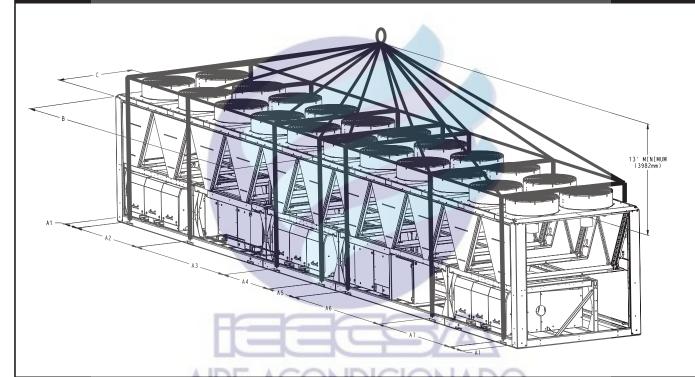
A CAUTION - NOTICE TO RIGGERS:

ALL PANELS MUST BE IN PLACE WHEN RIGGING. DO NOT ATTEMPT TO FORK THESE UNITS IF NO SKID IS SUPPLIED.

NOTES:

- 1. 1.50 dia. (38.1mm) lifting holes provided for field supplied clevis.
- 2. Rig with a minimum of 25 ft (7620mm) length chains or cables.
- 3. If central lifting point is used, it must be a minimum of 13 ft. (3962mm) above the top of the unit.
- 4. Spreader bars made from steel or double nailed, and notched 2x6's approximately 8 ft. (2438mm) long, must be placed just above the top of the unit (and stacks) to reduce the risk of damage to the top of the unit and coils.
- 5. If overhead rigging is not available, the unit can be moved on rollers or dragged. When unit is moved on rollers, the unit skid, if equipped, must be removed. To lift the unit, use jacks at the rigging points. Use a minimum of one roller every 6 ft. (1829mm) to distribute the load. If the unit is to be dragged, lift the unit as described above, and place unit on a pad. Apply moving force to the pad, not the unit. When in its final location, raise the unit and remove the pad.
- 6. Check bill of lading for shipping weight of unit.




Fig. 28 — Unit Rigging Label Detail 30XA220-352

A CAUTION - NOTICE TO RIGGERS:

ALL PANELS MUST BE IN PLACE WHEN RIGGING. DO NOT ATTEMPT TO FORK THESE UNITS IF NO SKID IS SUPPLIED.

NOTES:

- 1. 1.50 dia. (38.1mm) lifting holes provided for field supplied clevis.
- 2. Rig with a minimum of 25 ft (7620mm) length chains or cables.
- 3. If central lifting point is used, it must be a minimum of 13 ft. (3962mm) above the top of the unit.
- 4. Spreader bars made from steel or double nailed, and notched 2x6's approximately 8 ft. (2438mm) long, must be placed just above the top of the unit (and stacks) to reduce the risk of damage to the top of the unit and coils.
- 5. If overhead rigging is not available, the unit can be moved on rollers or dragged. When unit is moved on rollers, the unit skid, if equipped, must be removed. To lift the unit, use jacks at the rigging points. Use a minimum of one roller every 6 ft. (1829mm) to distribute the load. If the unit is to be dragged, lift the unit as described above, and place unit on a pad. Apply moving force to the pad, not the unit. When in its final location, raise the unit and remove the pad.
- 6. Check bill of lading for shipping weight of unit.

MODEL		HIPPING	MAX. SI		$\triangle \Pi$	7	· /	77		M)II	- 10	LIFTIN	G HOLES	70)			C	ENTER O	F GRAVIT	Υ
NUMBER		W/O AGING	WT. \ PACK/		"A	1"	" <i>p</i>	2"	"A	(3"	"/	\4"	"Α	۸5"	"4	6"	"∆	7"	"8	3"	"(C"
	LBS	KGS	LBS	KGS	IN	MM	IN	MM	IN	MM	IN	MM	IN	MM	IN	MM	IN	MM	IN	MM	IN	MM
30XA400	24214	11006	25824	11738	16.1	408.9	78.02	1981.7	110.02	2794.5	78.02	1981.7	110.02	2794.5	62.02	1575.3			229.6	5831	45.8	1163
30XA400-CU	26626	12103	28236	12835	16.1	408.9	78.02	1981.7	110.02	2794.5	78.02	1981.7	110.02	2794.5	62.02	1575.3			230.1	5844	45.7	1161
30XA450	26175	11898	27875	12671	16.1	408.9	78.02	1981.7	110.02	2794.5	62.02	1575.3	32.00	812.7	109.03	2769.3	94.02	2388.1	252.6	6416	44.7	1136
30XA450-CU	28829	13104	30529	13877	16.1	408.9	78.02	1981.7	110.02	2794.5	62.02	1575.3	32.00	812.7	109.03	2769.3	94.02	2388.1	253.2	6430	44.7	1136
30XA500	26436	12017	28136	12789	16.1	408.9	78.02	1981.7	110.02	2794.5	62.02	1575.3	32.00	812.7	109.03	2769.3	94.02	2388.1	253.3	6434	44.8	1137
30XA500-CU	29090	13223	30790	13995	16.1	408.9	78.02	1981.7	110.02	2794.5	62.02	1575.3	32.00	812.7	109.03	2769.3	94.02	2388.1	253.8	6447	44.8	1138
30XA401	22152	10048	23762	10778	16.1	408.9	92.04	2338.0	78.02	1981.7	110.00	2793.9	78.02	1981.7	78.02	1981.7			250.5	6362	44.5	1131
30XA401-CU	24564	11142	26174	11872	16.1	408.9	92.04	2338.0	78.02	1981.7	110.00	2793.9	78.02	1981.7	78.02	1981.7			250.5	6362	44.5	1131
30XA451	22883	10380	24654	11183	16.1	408.9	78.02	1981.7	78.02	1981.7	31.98	812.2	78.02	1981.7	110.02	2794.4	109.03	2769.3	220.7	5606	44.4	1127
30XA451-CU	25537	11583	27308	12387	16.1	408.9	78.02	1981.7	78.02	1981.7	31.98	812.2	78.02	1981.7	110.02	2794.4	109.03	2769.3	220.7	5606	44.4	1127
30XA476	26837	12173	28608	12977	16.1	408.9	78.02	1981.7	78.02	1981.7	31.98	812.2	78.02	1981.7	110.02	2794.4	109.03	2769.3	217.0	5512	48.1	1222
30XA476-CU	29491	13377	31262	14180	16.1	408.9	78.02	1981.7	78.02	1981.7	31.98	812.2	78.02	1981.7	110.02	2794.4	109.03	2769.3	217.0	5512	48.1	1222
30XA50A	25642	11631	27252	12361	16.1	408.9	92.04	2338.0	78.02	1981.7	78.02	1981.7	110.00	2793.9	78.02	1981.7			255.5	6490	48.5	1233
30XA50A-CU	28054	12725	29664	13455	16.1	408.9	92.04	2338.0	78.02	1981.7	78.02	1981.7	110.00	2793.9	78.02	1981.7			255.5	6490	48.5	1233

Fig. 29 — Unit Rigging Label Detail 30XA400-50A

Step 3 — Make Refrigerant, Cooler Fluid and Drain Piping Connections

See Fig. 30-54 for piping applications.

A CAUTION

Remove the chilled water flow switch and entering and leaving water thermistors before welding connecting piping. Reinstall flow switch and thermistors after welding is complete. Failure to remove these devices may cause unit damage.

30XA501 UNIT ASSEMBLY

The 30XA501 units are shipped as two separate pieces referred to as the 50A module (section including cooler and compressors) and the 50B module. These two pieces must be field combined prior to installing cooler piping and electrical connections. Below are the steps for installing the 30XA501 unit assembly.

A CAUTION

Make sure all the ball valves on the discharge and liquid lines of both the modules (50A and 50B) are closed before joining the two units together. Do not open the ball valves until indicated in Step C. Both the 50A and 50B units are shipped with refrigerant charge, and the ball valves must remain closed until the connecting tubing is installed. Failure to follow the below steps closely could result in air inside the refrigerant system, lowering the unit performance or charge leakage. Work should be performed by a skilled HVAC technician.

Brazing the 50A and 50B Sections

If the assembly process is executed by an outside company (that is, not a Carrier-certified service technician), the following procedures must be followed in order to maintain the factory warranty on the equipment:

- The final component assembly required as part of the installation of this unit requires Carrier supervision.
- A vacuum-rise test is required to ensure that the brazing was done correctly, there is no risk of leaking, and the machine is dehydrated properly. If this test is performed by an outside company, supervision by a Carrier Service technician is required.

A Carrier Service technician must approve the work executed by the outside company. Without Carrier technician supervision and approval, the equipment warranty will not be honored for any refrigerant-related matter.

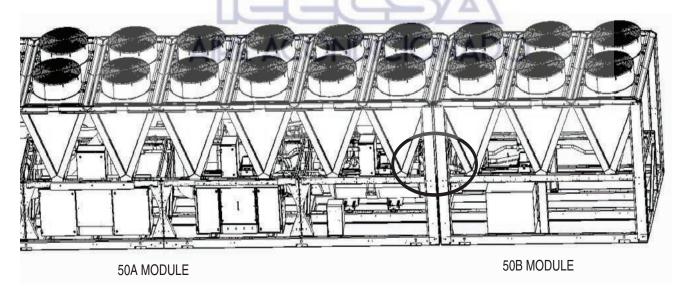
Step A: Position Unit

Position 50A and 50B units adjacent to each other as shown on the dimensional drawing (Fig. 23). Frames must be in close contact for installation of connecting piping.

Step B: Connect Discharge and Liquid Line Piping

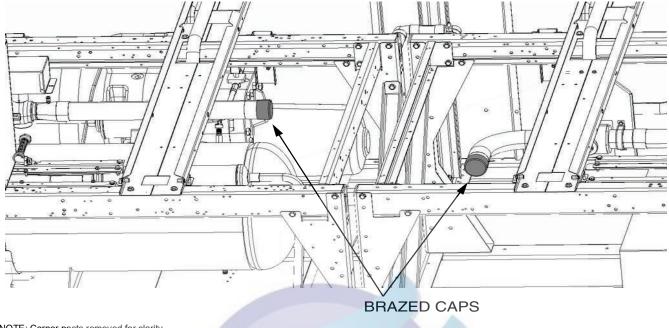
The discharge and liquid line piping for pieces 50A and 50B are sealed from the factory with brazed caps, and must be joined in the field using the parts included in the box marked "Tubing Installation Kit" attached to the frame of 50B.

Use Fig. 30-32 as a guide for discharge line piping installation. Locate the brazed caps on the 50A and 50B discharge line piping segments. Make sure the ball valves on either side of the brazed caps are in closed position. Both the 50A and 50B units are shipped with refrigerant charge, and the ball valves must remain closed until the connecting tubing is installed. Before performing any cutting or brazing work, check the capped piping after the ball valve for pressure and reclaim any refrigerant in the line. To remove the brazed caps, cut the tubing along the score lines directly above the caps. Use proper cutting tools to ensure the cut is perpendicular to the tube surface and free of debris. To connect the piping, braze tube parts labeled 00PSN500588600A using two elbow DE13BC301 to the unit piping (Fig. 32). All work should be done by a certified brazer following all best practice preparation and brazing techniques. Be sure to cover valves on adjacent piping with a wet rag before brazing to avoid internal damage.


For the liquid line piping, follow the above procedure using Fig. 30-32 as a guide. To connect the piping, braze tube parts labeled 00PSN500588500A using two elbow DE13BB301 to the unit piping (Fig. 35).

Step C: Drawing Vacuum and Opening the Refrigerant Paths

Use the Schrader ports shown in Fig. 32 and 35 to connect a vacuum pump and pull down the pressure on these isolated sections to at least 50 microns. Open the ball valves at this point, one at a time.


Step D: Connect Fan Wiring

The fan wiring for the 50A and 50B sections must be connected in the field. Connect 50A and 50B junction boxes (shown in Fig. 36) using the conduit jumper shipped inside Circuit B power box.

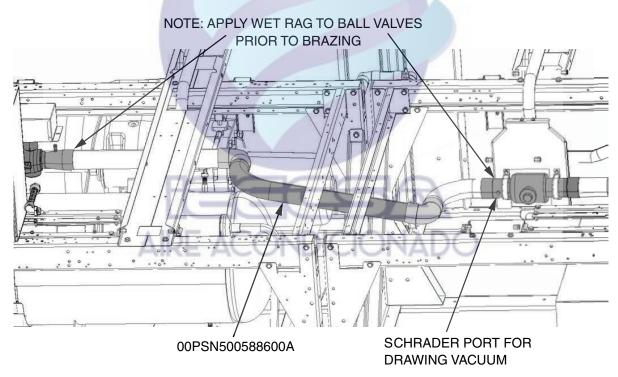

NOTE: See Fig. 31 and 32 for detailed view of circled area.

Fig. 30 — 30XA501 Discharge Line Piping Connection Location (Power Box Side Shown)

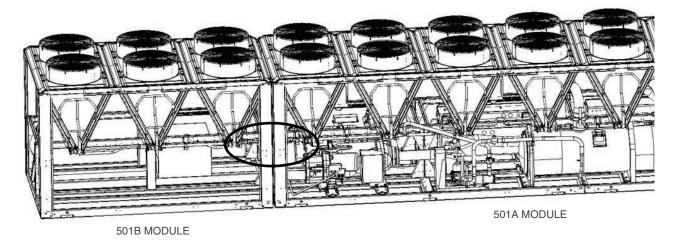

NOTE: Corner posts removed for clarity.

Fig. 31 — 30XA501 Discharge Line Brazed Caps to be Removed

NOTE: Corner posts and coil tray removed for clarity.

Fig. 32 — 30XA501 Discharge Line Piping Installed (In Field)

NOTE: See Fig. 34 and 35 for detailed view of circled area.

Fig. 33 — 30XA501 Liquid Line Piping Connection Location (Shown from Cooler Side)

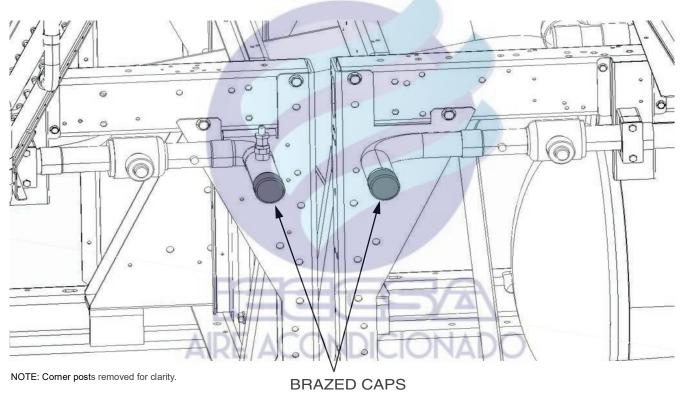


Fig. 34 — 30XA501 Liquid Line Brazed Caps to be Removed

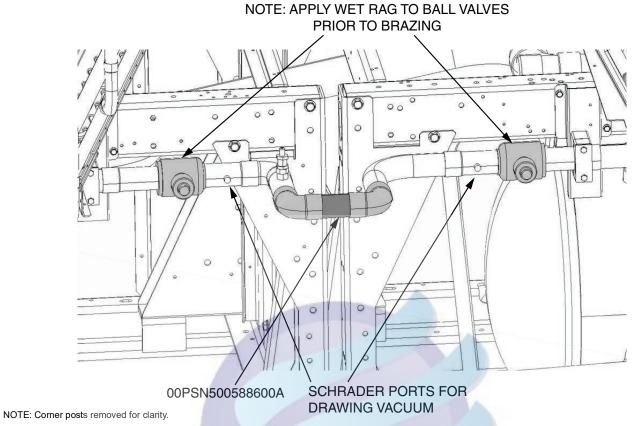


Fig. 35 — 30XA501 Liquid Line Piping Installed (In Field)

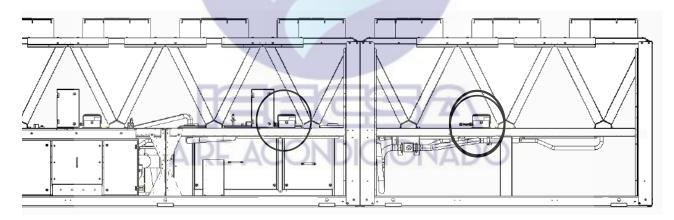


Fig. 36 — 30XA501 Fan Junction Boxes to be Connected with Conduit Jumper

30XA401, 451, 476, 501 Water Line Installation Options

The water lines for the standard coolers for the 401, 451, 476 and 501 unit sizes can be connected through the sections shown in the dimensional drawings (Fig. 20, 21, 22, and 23).

If the water lines are connected to the coolers by means of elbows (as shown in Fig. 37), then it is recommended to use 8 in. Victaulic elbows and 8 in. Victaulic couplings to connect the water lines to the cooler. It is also recommended to provide a break in the water lines close to the cooler. This allows them to be uninstalled to give room for removing the inlet and outlet water heads for cooler tube cleaning if needed at a later stage.

For the 476 and 501 size units, if the water lines are connected by straight pipes coming from the side of the unit (Fig. 38) then it is recommended to use two no. 13 Victaulic elbows (8 in., 11-1/4 degree elbows) per line to provide an offset so that there is

enough clearance from the economizer assembly for installation. This offset is not required for the 401, 451 size units. For the 401, 451, 476 and 501 size assemblies it is important to have a short break in the incoming and outgoing water lines so that the cooler heads can be easily removed if cleaning of cooler tubes is required in the future.

The above recommendations are also valid for the *water inlet* on the minus one pass cooler options for the 401, 451, 476 and 501 size assemblies. The *water outlet* connection for the minus one pass cooler options can only be made using an 8 in. Victaulic elbow. As mentioned above, keep a short break in the water line close to the cooler so that the cooler heads can be easily removed if cleaning of cooler tubes is required in the future.

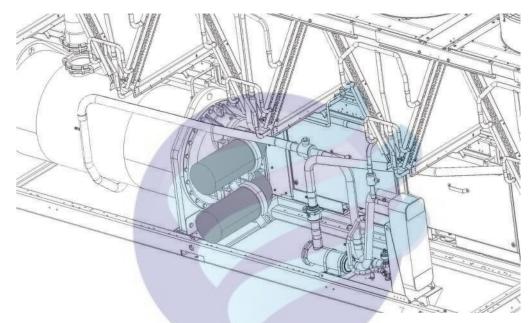


Fig. 37 — 30XA401, 451, 476, 501 Water Line Installation Using Elbows

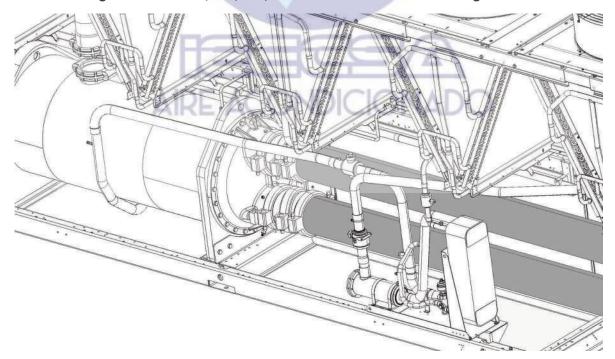


Fig. 38 — 30XA476, 501 Water Line Connection Using 2 No. 13 Victaulic Elbows
Per Line from the Side of the Unit

GENERAL

See Fig. 39-42 for typical piping and wiring. The Victaulic connections allow clamp-on connection of water lines to the coolers in all 30XA units. See Table 10 for 30XA unit operating range. See Fig. 43 for cooler option dimensions. A flow sensor is factory-installed in the side of the entering fluid nozzle for flooded units and is located in the leaving fluid nozzle for DX cooler units. See Fig. 44.

Minimum Loop Volume

The preferred minimum loop volume is dependent on the type of application. In order to obtain leaving water temperature stability for comfort cooling applications, a minimum of 3 gallons per ton (3.25 liters per kW) is required on all unit sizes. For process cooling applications, applications where high stability is critical, or operation at ambient temperatures below 32°F (0°C) is expected, the loop volume should be increased to 6 to 10 gallons per ton (6.46 to 10.76 liters per kW) of cooling. In order to achieve this volume, it may be necessary to add a water storage tank to the water loop. If a storage tank is added to the system, it should be properly vented so that the tank can be completely filled and all air eliminated.

Failure to do so could cause lack of pump stability and poor system operation. Any storage tank that is placed in the water loop should have internal baffles to allow thorough mixing of the fluid. See Fig. 45.

System Piping

Proper system design and installation procedures should be followed closely. The system must be constructed with pressure tight components and thoroughly tested for installation leaks. Factory-supplied hydronic systems are available with single or dual (for back-up) pumps. The factory-installed system includes all of the components above the line in Fig. 46 and 47.

Installation of water systems should follow sound engineering practice as well as applicable local and industry standards. Improperly designed or installed systems may cause unsatisfactory operation and/or system failure. Consult a water treatment specialist or appropriate literature for information regarding filtration, water treatment, and control devices. Figures 46 and 47 show a typical installation with components that might be installed with the hydronic package of the 30XA unit.

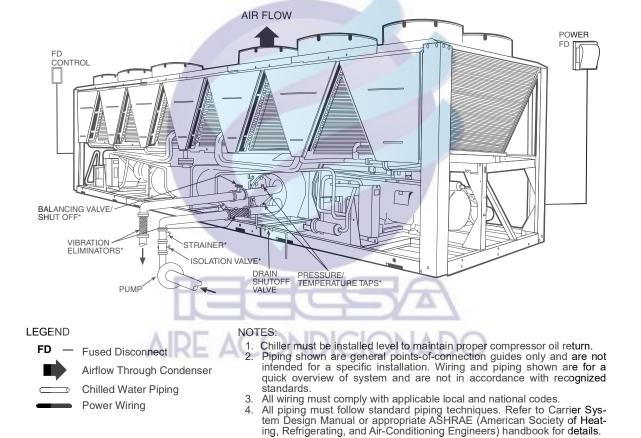


Fig. 39 — 30XA Flooded Cooler Typical Piping and Wiring (Units without Hydronic Package)

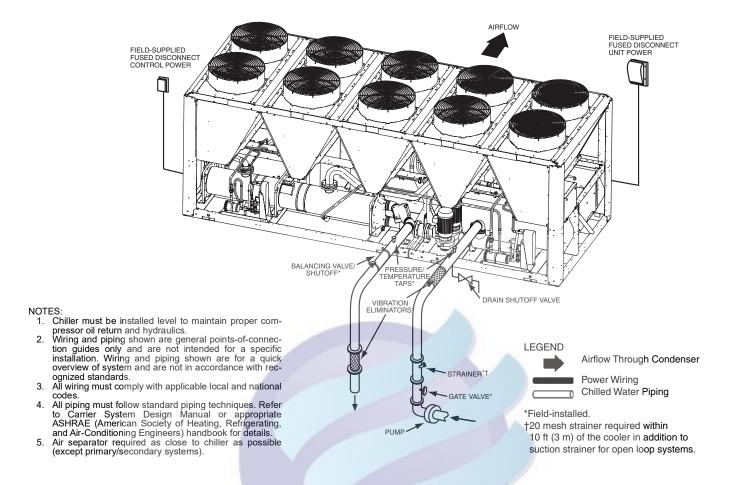
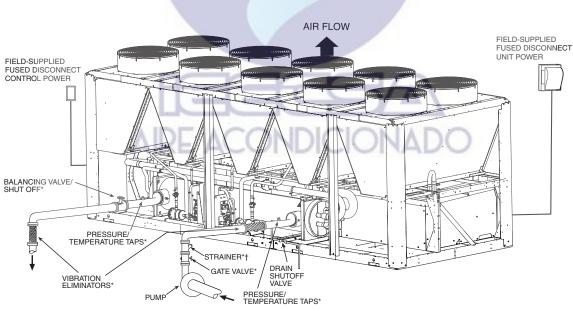



Fig. 40 — 30XA Flooded Cooler Typical Piping and Wiring (Units with Hydronic Package)

LEGEND Airflow Through Condenser Power Wiring Chilled Water Piping

*Field-installed.

NOTES:

- Chiller must be installed level to maintain proper compressor oil return.
 Chiller must be installed level to maintain proper compressor oil return.
 Piping shown are general points-of-connection guides only and are not intended for a specific installation. Wiring and piping shown are for a quick overview of system and are not in accordance with recognized standards.
 All wiring must comply with applicable local and national codes.
 All piping must follow standard piping techniques. Refer to Carrier System Design Manual or appropriate ASHRAE (American Society of Heating, Refrigerating, and Air-Conditioning Engineers) handbook for details.
 A 20 mesh strainer is required within 10 ft (3 m) of the cooler.

Fig. 41 — 30XA DX Cooler Typical Piping and Wiring (Units without Hydronic Package)

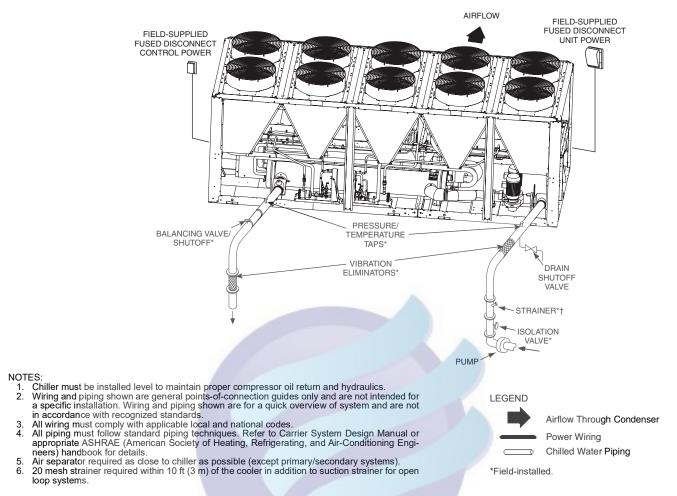


Fig. 42 — 30XA DX Cooler Typical Piping and Wiring (Units with Hydronic Package)

ENGLISH

			STANDARD	COOLER				P	LUS ONE PAS	COOLER					MINUS ONE PA	SS COOLER		
30XA UNIT SIZE*	Distance to Leaving Water Connect. (in.)	Height Leaving Water Connect. (in.)	Distance to Leaving/ Entering Water Connect. (in.)	Distance to Entering Water Connect. (in.)	Height Entering Water Connect. (in.)	Victaulic Connect. Size (in.)	Distance to Leaving Water Connect. (in.)	Height Leaving Water Connect. (in.)	Distance to Leaving/ Entering Water Connect. (in.)	Distance to Entering Water Connect. (in.)	Height Entering Water Connect. (in.)	Victaulic Connect. Size (in.)	Distance to Leaving Water Connect. (in.)	Height Leaving Water Connect. (in.)	Distance to Leaving/ Entering Water Connect. (in.)	Distance to Entering Water Connect. (in.)	Height Entering Water Connect. (in.)	Victaulic Connect. Size (in.)
080	121.2	19.1	68.1	121.2	10.8	5.0	1.5	19.6	68.1	121.2	10.3	4.0	-2.2	14.9	68.1	124.8	14.9	5.0
090	120.9	19.1	68.1	120.9	10.8	5.0	1.2	19.6	68.1	120.9	10.3	4.0	-2.5	14.9	68.1	124.5	14.9	5.0
100	120.9	19.1	68.1	120.9	10.8	5.0	1.2	19.6	68.1	120.9	10.3	4.0	-2.5	14.9	68.1	124.5	14.9	5.0
110	120.9	19.1	68.1	120.9	10.8	5.0	1.2	19.6	68.1	120.9	10.3	4.0	-2.5	14.9	68.1	124.5	14.9	5.0
120	120.9	19.1	68.1	120.9	10.8	5.0	1.2	19.6	68.1	120.9	10.3	4.0	-2.5	14.9	68.1	124.5	14.9	5.0
140	121.5	21.3	69.1	121.5	10.6	5.0	1.2	21.3	69.1	121.5	10.6	5.0	-2.2	15.9	69.1	124.8	15.9	6.0
160	121.5	21.3	69.1	121.5	10.6	5.0	1.2	21.3	69.1	121.5	10.6	5.0	-2.2	15.9	69.1	124.8	15.9	6.0
180	177.7	22.5	70.2	177.7	11.3	6.0	53.6	22.4	70.2	180.6	11.4	6.0	53.6	13.2	70.2	180.6	13.2	8.0
200	177.3	22.5	70.2	177.3	11.3	6.0	53.2	22.4	70.2	180.2	11.4	6.0	53.2	13.2	70.2	180.2	13.2	8.0
220	224.7	22.5	70.2	224.7	11.3	6.0	100.6	22.4	70.2	227.6	11.4	6.0	100.6	13.2	70.2	227.6	13.2	8.0
240	224.7	22.5	70.2	224.7	11.3	6.0	100.6	22.4	70.2	227.6	11.4	6.0	100.6	13.2	70.2	227.6	13.2	8.0
260	304.7	23.6	71.1	304.7	12.2	8.0	180.3	23.4	71.1	310.3	12.5	8.0	180.3	16.3	71.1	310.3	16.3	8.0
280	304.7	23.6	71.1	304.7	12.2	8.0	180.3	23.4	71.1	310.3	12.5	8.0	180.3	16.3	71.1	310.3	16.3	8.0
300	304.7	23.6	71.1	304.7	12.2	8.0	180.3	23.4	71.1	310.3	12.5	8.0	180.3	16.3	71.1	310.3	16.3	8.0
325	349.0	23.6	71.1	349.0	12.2	8.0	224.7	23.4	71.1	354.7	12.5	8.0	224.7	16.3	71.1	354.7	16.3	8.0
350	349.0	23.6	71.1	349.0	12.2	8.0	224.7	23.4	71.1	354.7	12.5	8.0	224.7	16.3	71.1	354.7	16.3	8.0
401	287.7	26.0	72.6	287.7	12.6	8.0	N/A	N/A	N/A	N/A	N/A	N/A	284.7	19.3	72.6	287.7	19.3	8.0
451	427.7	26.0	72.6	427.7	12.6	8.0	N/A	N/A	N/A	N/A	N/A	N/A	424.8	19.3	72.6	427.7	19.3	8.0
476	429.6	28.9	72.6	429.6	15,5	8.0	N/A	N/A	N/A	N/A	N/A	N/A	427.1	22.2	72.6	429.0	22.2	8.0
501	429.8	28.9	72.6	429.8	15.5	8.0	N/A	N/A	N/A	N/A	N/A	N/A	432.4	22.2	72.6	429.2	22.2	8.0

SI

-			STANDARD	COOL FR			# TOTAL TOTA		PLUS ONE PA	SS COOLER			MINUS ONE PASS COOLER					
30XA UNIT SIZE*	Distance to Leaving Water Connect. (mm)	Height Leaving Water Connect. (mm)	Distance to Leaving/ Entering Water Connect. (mm)	Distance to Entering Water Connect. (mm)	Height Entering Water Connect. (mm)	Victaulic Connect. Size (mm)	Distance to Leaving Water Connect. (mm)	Height Leaving Water Connect. (mm)	Distance to Leaving/ Entering Water Connect. (mm)	Distance to Entering Water Connect. (mm)	Height Entering Water Connect. (mm)	Victaulic Connect. Size (mm)	Distance to Leaving Water Connect. (mm)	Height Leaving Water Connect. (mm)	Distance to Leaving/ Entering Water Connect. (mm)	Distance to Entering Water Connect. (mm)	Height Entering Water Connect. (mm)	Victaulic Connect. Size (mm)
080	3077.8	484.0	1728.7	3077.8	274.2	127.0	37.9	497.2	1728.7	3077.8	261.0	101.6	-55.1	379.1	1728.7	3170.7	379.1	127.0
090	3069.6	484.0	1728.7	3069.6	274.2	127.0	29.7	497.2	1728.7	3069.6	261.0	101.6	-63.2	379.1	1728.7	3162.6	379.1	127.0
100	3069.6	484.0	1728.7	3069.6	274.2	127.0	29.7	497.2	1728.7	3069.6	261.0	101.6	-63.2	379.1	1728.7	3162.6	379.1	127.0
110	3069.6	484.0	1728.7	3069.6	274.2	127.0	29.7	497.2	1728.7	3069.6	261.0	101.6	-63.2	379.1	1728.7	3162.6	379.1	127.0
120	3069.6	484.0	1728.7	3069.6	274.2	127.0	29.7	497.2	1728.7	3069.6	261.0	101.6	-63.2	379.1	1728.7	3162.6	379.1	127.0
140	3085.8	540.5	1756.2	3085.8	268.7	127.0	30.1	540.5	1756.2	3085.8	268.7	127.0	-55.0	404.6	1756.2	3170.8	404.6	152.4
160	3085.8	540.5	1756.2	3085.8	268.7	127.0	30.1	540.5	1756.2	3085.8	268.7	127.0	-55.0	404.6	1756.2	3170.8	404.6	152.4
180	4512.3	571.0	1782.1	4512.3	287.0	152.4	1361.4	569.5	1782.1	4587.2	288.5	152.4	1361.4	336.0	1782.1	4587.2	336.0	203.2
200	4502.4	571.0	1782.1	4502.4	287.0	152.4	1351.6	569.5	1782.1	4577.4	288.5	152.4	1351.6	336.0	1782.1	4577.4	336.0	203.2
220	5706.2	571.0	1782.1	5706.2	287.0	152.4	2555.3	569.5	1782.1	5781.1	288.5	152.4	2555.3	336.0	1782.1	5781.1	336.0	203.2
240	5706.2	571.0	1782.1	5706.2	287.0	152.4	2555.3	569.5	1782.1	5781.1	288.5	152.4	2555.3	336.0	1782.1	5781.1	336.0	203.2
260	7739.6	600.2	1804.9	7739.6	310.1	203.2	4580.8	593.9	1804.9	7882.8	316.5	203.2	4580.8	413.3	1804.9	7882.8	413.3	203.2
280	7739.6	600.2	1804.9	7739.6	310.1	203.2	4580.8	593.9	1804.9	7882.8	316.5	203.2	4580.8	413.3	1804.9	7882.8	413.3	203.2
300	7739.6	600.2	1804.9	7739.6	310.1	203.2	4580.8	593.9	1804.9	7882.8	316.5	203.2	4580.8	413.3	1804.9	7882.8	413.3	203.2
325	8865.1	600.2	1804.9	8865.1	310.1	203.2	5706.4	593.9	1804.9	9008.4	316.5	203.2	5706.4	413.3	1804.9	9008.4	413.3	203.2
350	8865.1	600.2	1804.9	8865.1	310.1	203.2	5706.4 N/A	593.9 N/A	1804.9 N/A	9008.4	316.5	203.2	5706.4	413.3	1804.9	9008.4	413.3	203.2
401	7282.3	659.2	1844.1	7282.3	319.2	203.2 203.2	N/A N/A		N/A N/A	N/A N/A	N/A N/A	N/A N/A	7232.1 10788.7	489.2	1844.1 1844.1	7307.8	489.2 489.2	203.2 203.2
451	10864.3	659.2	1844.1 1844.1	10864.3 10912.9	319.2	203.2	N/A N/A	N/A	N/A N/A	N/A N/A	N/A	N/A N/A		489.2	1844.1	10864.3		203.2
476 501	10912.9 10918.0	733.0 733.0	1844.1	10912.9	393.0 393.0	203.2	N/A N/A	N/A	N/A N/A	N/A N/A	N/A	N/A N/A	10847.8 10983.0	563.1 563.1	1844.1	10895.8	562.9 562.9	203.2
501	10918.0	733.0	1544.1	10918.0	393.0	203.2	IN/A	IN/A	IN/A	IN/A	N/A	IN/A	10983.0	503. I	1044.1	10900.0	502.9	203.2

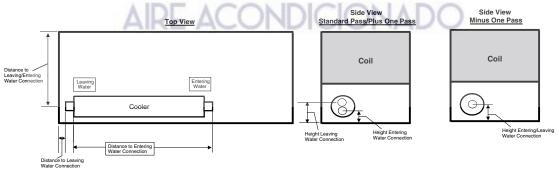


Fig. 43 — Flooded Cooler Option Dimensions

Table 10 — 30XA Minimum and Maximum Cooler Flow Rates

			ITEM		MININ			IMUM
			Water Temperature*		40°F (4			(15°C)
			Water Temperature†		45°F (7		•	21.1°C)
30XA		I Flow Rate	Cooler	Number of	Minimum F			Flow Rate
UNIT SIZE	(gpm)	(L/s)	Chandand Flandad	Passes	(gpm)	(L/s)	(gpm)	(L/s)
080	180.4	11.4	Standard, Flooded Plus One Pass, Flooded	3	95 43	6 2.7	379 192	23.9 12.1
000	100.4	11.4	Minus One Pass, Flooded	1	196	12.4	782	49.3
082	172.8	10.9	DX Cooler		86	5.4	346	21.8
			Standard, Flooded	2	101	6.4	403	25.4
090	201.9	12.7	Plus One Pass, Flooded	3	43	2.7	200	12.6
			Minus One Pass, Flooded	1	229	14.4	917	57.9
092	193.7	12.2	DX Cooler	_	97	6.1	387	24.4
			Standard, Flooded	2	101	6.4	403	25.4
100	225.5	14.2	Plus One Pass, Flooded	3	43	2.7	200	12.6
			Minus One Pass, Flooded	1	229	14.4	917	57.9
102	214.3	13.5	DX Cooler	_	107	6.7	429	27.0
440	044.0	4	Standard, Flooded	2	125	7.9	501	31.6
110	244.9	15.5	Plus One Pass, Flooded	3	61	3.8	244	15.4
110	005.0	14.0	Minus One Pass, Flooded	1 —	254	16	1014	64
112	235.2	14.8	DX Cooler Standard, Flooded	2	118 125	7.4 7.9	470 501	29.6 31.6
120	264.8	16.7	Plus One Pass, Flooded	3	73	7.9 4.6	293	18.5
120	204.0	10.7	Minus One Pass, Flooded	1	281	17.7	1124	70.9
122	254.7	16.0	DX Cooler	- 1000	127	8.0	509	32.1
			Standard, Flooded	2	134	8.5	538	33.9
140	317.8	20.1	Plus One Pass, Flooded	3	73	4.6	293	18.5
			Minus One Pass, Flooded	1	324	20.4	1296	81.8
142	303.5	19.1	DX Cooler	_	152	9.6	607	38.2
			Standard, Flooded	2	165	10.4	660	41.6
160	365.1	23	Plus One Pass, Flooded	3	98	6.2	391	24.7
			Minus One Pass, Flooded	1	354	22.3	1418	89.5
162	347	21.9	DX Cooler	_	174	10.9	694	43.7
			Standard, Flooded	2	202	12.7	807	50.9
180	409.6	25.8	Plus One Pass, Flooded	3	73	4.6	391	24.7
400	101.7	05.0	Minus One Pass, Flooded	1	416	26.2	1662	104.9
182	401.7	25.3	DX Cooler Standard, Flooded		201	12.6 14.1	803 892	50.6 56.3
200	463.9	29.3	Plus One Pass, Flooded	3	98	6.2	391	24.7
200	403.9	29.3	Minus One Pass, Flooded	1	458	28.9	1833	115.6
202	447.1	28.2	DX Cooler	_	224	14.1	894	56.3
		20.2	Standard, Flooded	2	235	14.8	941	59.4
220	505.9	31.9	Plus One Pass, Flooded	3	122	7.7	489	30.9
			Minus One Pass, Flooded	1	501	31.6	2004	126.4
222	493	31.1	DX Cooler	_	246	15.5	950	59.9
			Standard, Flooded	2	266	16.8	1063	67.1
240	545.8	34.4	Plus One Pass, Flooded	3	147	9.3	587	37
		1	Minus One Pass, Flooded	1	538	33.9	215 1	135.7
242	530	33.5	DX Cooler	_	265	16.7	950	59.9
000	0000	67.0	Standard, Flooded	2	257	16.2	1027	64.8
260	600.3	37.9	Plus One Pass, Flooded	3	141	8.9	562	35.5
262	E00	26.0	Minus One Pass, Flooded		584 292	36.8	2334 950	147.3
202	583	36.8	DX Cooler Standard, Flooded	2	292	18.4 18.5	1173	59.9 74
280	642.2	40.5	Plus One Pass, Flooded	3	141	8.9	562	35.5
200	072.2	70.5	Minus One Pass, Flooded	1/1/	620	39.1	2481	156.5
282	627	39.5	DX Cooler		313	19.8	950	59.9
-			Standard, Flooded	2	327	20.6	1308	82.5
300	687.5	43.4	Plus One Pass, Flooded	3	174	11	697	44
		1	Minus One Pass, Flooded	1	687	43.3	2750	173.5
302	665	42.0	DX Cooler	_	333	21.0	1331	83.9
İ			Standard, Flooded	2	361	22.8	1442	91
325	733.4	46.3	Plus One Pass, Flooded	3	211	13.3	843	53.2
			Minus One Pass, Flooded	1	724	45.7	2897	182.8
327	720	45.4	DX Cooler	_	360	22.7	1440	90.8
T		1	Standard, Flooded	2	379	23.9	1516	95.6
350	775.4	48.9	Plus One Pass, Flooded	3	244	15.4	978	61.7
		1	Minus One Pass, Flooded	1	767	48.4	3068	193.6 95.5
352	757	47.8	DX Cooler	_	379	23.9	1514	

See Legend and Notes on page 98.

Table 10 — 30XA Minimum and Maximum Cooler Flow Rates (cont)

			MINI	MUM	MAXIMUM				
Cooler Leaving Water Temperature*						4.4°C)	60°F (15°C)		
		Cooler Entering	Water Temperature†		45°F (7.2°C)	70°F (21.1°C)		
30XA	Nominal Flow Rate		Cooler	Number of	Minimum F	low Rate**	Maximum Flow Rate		
UNIT SIZE	(gpm)	(L/s)	Pass		(gpm)	(L/s)	(gpm)	(L/s)	
401		59.9	Standard, Flooded	2	474	29.9	1896	119.6	
	948		Plus One Pass, Flooded	_	_	_	_	_	
			Minus One Pass, Flooded	1	800	50.5	3792	239.3	
		66.1	Standard, Flooded	2	523.5	33.0	2094	132.1	
451	1047		Plus One Pass, Flooded	_	_	_	_	_	
			Minus One Pass, Flooded	1	800	50.5	4000	252.4	
			Standard, Flooded	2	552	34.8	2208	139.3	
476	1104	69.7	Plus One Pass, Flooded	_	_	_	_	_	
			Minus One Pass, Flooded	1	950	59.9	4000	252.4	
501		74.7	Standard, Flooded	2	592	37.3	2368	149.4	
	1184		Plus One Pass, Flooded	_	_	_	_	_	
			Minus One Pass, Flooded	1	950	59.9	4000	252.4	

^{*}For applications requiring cooler leaving water temperature operation at less than 40°F (4.4°C), the units require the use of antifreeze and application may require the brine option. Contact your local Carrier representative for more information.
†For applications requiring cooler entering water temperature operation at less than 45°F (7.2°C), contact your local Carrier representative for unit selection using the Carrier electronic catalog.

** For minimum cooler flow rate with brine applications, refer to E-CAT software performance.

- NOTES:

 1. The 30XA units will start and pull down with loop temperatures up to 95°F (35°C).

 2. Nominal flow rates required at AHRI (Air Conditioning, Heating, and Refrigeration Institute) conditions 44°F (7°C) leaving fluid temperature, 54°F (12°C) entering water temperature, 95°F (35°C) ambient. Fouling factor 0.00010 ft²-hr-F/Btu (0.000018 m²-K/kW).

 3. To obtain proper temperature control, cooler loop fluid volume must be at least 3 gal/ton (3.23 L/kW) of chiller nominal capacity for air conditioning and at least 6 gal/ton (6.5 L/kW) for process applications or systems that must operate in low ambient temperatures (below 32°F [0°C]).

Fig. 44 — Flow Switch

Fig. 45 — Tank Baffling

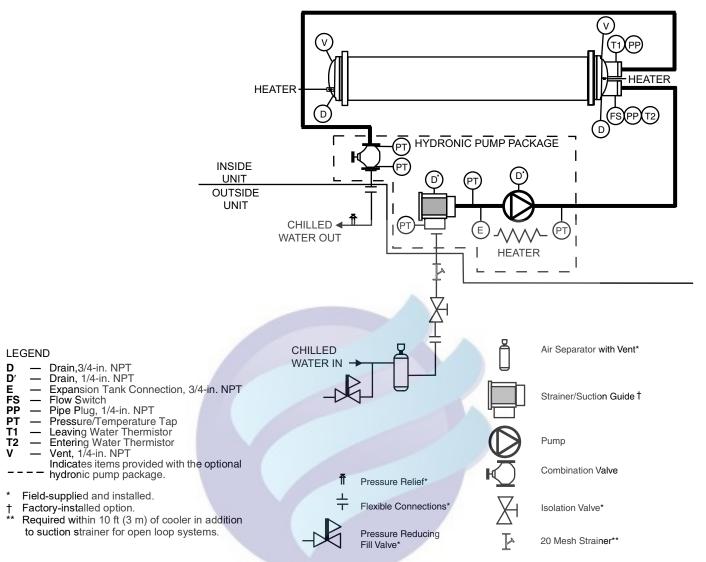


Fig. 46 — Typical Piping Diagram on 30XA Units with Hydronic Package — Single Pump (Flooded Cooler)

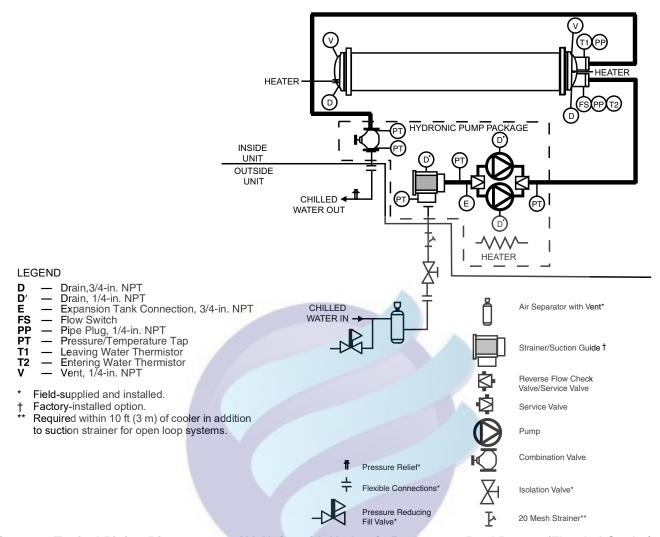


Fig. 47 — Typical Piping Diagram on 30XA Units with Hydronic Package — Dual Pumps (Flooded Cooler)

FLOODED COOLER UNITS

NOTE: It is recommended for units with the hydronic package that an inlet isolation (shut-off) valve be placed exterior to the unit to allow removal and service of the entire pump assembly, if necessary. The hydronic package is supplied from the factory with a combination valve for isolation of leaving water. Also, if the unit is isolated with valves, a properly sized pressure relief valve is recommended and should be installed in the piping between the unit and the valves, following all applicable local codes.

Flooded Cooler Air Separation

For proper system operation, it is essential that water loops be installed with proper means to manage air in the system. Free air in the system can cause noise, reduce terminal output, stop flow, or even cause pump failure due to pump cavitation. For closed systems, equipment should be provided to eliminate all air from the system.

The amount of air that water can hold in solution depends on the pressure and temperature of the water/air mixture. Air is less soluble at higher temperatures and at lower pressures. Therefore, separation can best be done at the point of highest water temperature and lowest pressure. Typically, this point would be on the suction side of the pump as the water is returning from the system or terminals. This is generally the optimal place to install an air separator, if possible.

Install automatic air vents at all high points in the system. (If the 30XA unit is located at the high point of the system, a

- vent can be installed on the piping leaving the heat exchanger on the 1/4 in. NPT female port.)
- 2. Install an air separator in the water loop, at the place where the water is at higher temperatures and lower pressures usually in the chilled water return piping. On a primary-secondary system, the highest temperature water is normally in the secondary loop, close to the decoupler. Preference should be given to that point on the system (Fig. 48). In-line or centrifugal air separators are readily available in the field.

If it is not possible to install air separators at the place of the highest temperature and lowest pressure, preference should be given to the points of highest temperature. It is important that the pipe be sized correctly so that free air can be moved to the point of separation. Generally, a water velocity of at least 2 feet per second (0.6 m per second) will keep free air entrained and prevent it from forming air pockets.

Automatic vents should be installed at all physically elevated points in the system so that air can be eliminated during system operation. Provisions should also be made for manual venting during the water loop fill.

Flooded Cooler Units with Hydronic Pump Package

The 30XA090-160 units can be equipped with a factory-installed hydronic pump package consisting of a suction guide/strainer, pump, combination valve, internal piping and wiring connected at the factory.

The combination valve performs the following functions:

- · drip-tight shut-off valve
- spring closure design with a non-slam check valve
- flow-throttling valve

When facing the cooler side of unit, the inlet (return) water connection is on the bottom. The outlet (supply) water connection is on the top. The inlet is connected to the suction guide/strainer of the pump via a Victaulic-type connection. The cooler supply has water-side Victaulic-type connections; follow connection directions as provided by the coupling manufacturer. Provide proper support for the piping. If accessory security grilles have been added, holes must be cut in the grilles for field piping and insulation.

A factory-supplied, insulated 45-degree elbow pipe and a Victaulic coupling are shipped with units ordered with a hydronic pump package. Before starting field piping, use the Victaulic coupling to connect this elbow pipe to the outlet of the combination valve.

The suction guide/strainer is shipped from the factory with a run-in screen. This screen is a temporary device used during the start-up/clean-up process of the chilled water circuit to prevent construction debris from damaging the pump or internal tubes of the cooler. After all debris has been removed or a maximum of 24 running hours the temporary screen must be removed. See the Start-Up, Controls, Operation and Troubleshooting guide for further information.

⚠ CAUTION

The suction guide/strainer is shipped from the factory with a run-in screen. This temporary screen must be removed after all debris has been removed or a maximum of 24 running hours. Failure to remove the temporary screen may result in damage to the pump or cooler.

NOTE: It is required that a 20 mesh field-supplied strainer be installed in the inlet piping to the cooler on open loop systems.

A 3/4 in. NPT fitting is installed in the inlet piping of the pump for connection to an expansion tank. Install the tank in accordance with the manufacturer's instructions. Figures 46 and 47 illustrate typical single and dual pump packages.

Three drain connections are provided and are located at leaving water (supply) end of cooler, pump volute, and the suction guide. See Fig. 2-23 for connection location. Insulate the drain piping (in the same manner as the chilled water piping) for at least 12 in. (305 mm) from the cooler.

Flooded Cooler Units without Hydronic Pump Package

When facing the cooler side of the unit, the inlet (return) water connection is on the bottom. It is required that a field-supplied strainer with a minimum size of 20 mesh be installed within 10 ft

(3.05 m) of the cooler inlet to prevent debris from damaging internal tubes of the cooler. The outlet (supply) water connection is on the top. The cooler has water-side Victaulic-type connections; follow connection directions as provided by the coupling manufacturer. Provide proper support for the piping. If accessory security grilles have been added, holes must be cut in the grilles for field piping and insulation. See Fig. 49 for a typical piping diagram of a 30XA unit without a hydronic pump package.

A drain connection is located at the leaving water (supply) end of cooler. See Fig. 2-23 for connection location. Insulate the drain piping (in the same manner as the chilled water piping) for at least 12 in. (305 mm) from the unit.

Flooded Cooler Dual Chiller Control

The *Comfort*Link controller allows 2 chillers (piped in parallel or series) to operate as a single chilled water plant with standard control functions coordinated through the master chiller controller. This standard *Comfort*Link feature requires a communication link between the 2 chillers on the CCN Bus.

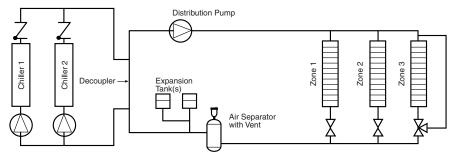
There are several advantages to this type of control:

- redundancy (multiple circuits)
- better low load control (lower tonnage capability)
- lower rigging lift weights (two machines rather than one large machine)
- chiller lead-lag operation (evens the wear between the two machines)

Flooded Cooler Dual Chiller Leaving Water Sensor

If the dual chiller algorithm is used, and the machines are installed in parallel, a dual chilled water sensor must be installed for each module. Install the well in the common leaving water header. See Fig. 50.

Flooded Cooler Parallel Dual Chiller Operation


Parallel chiller operation is the recommended option for dual chiller control. In this case, each chiller must control its own dedicated pump or isolation valve. Balancing valves are recommended to ensure proper flow in each chiller. Two field-supplied and installed dual chiller leaving water temperature sensors are required, one for each module, for this function to operate properly.

Consider adding additional isolation valves to isolate each chiller to allow for service on a machine, and still allow for partial capacity from the other chiller. See Fig. 50.

Flooded Cooler Series Dual Chiller Operation

Series chiller operation is an alternate control method supported by the *Comfort*Link control system. Certain applications might require that the two chillers be connected in series. For nominal 10°F (5.6°C) cooler ranges, use the minus 1 pass cooler arrangements to reduce the fluid-side pressure drop. Use the standard cooler pass arrangement for low flow, high cooler temperature rise applications.

Consider adding additional piping and isolation valves to isolate each chiller to allow for service on a machine, and still allow for partial capacity from the other chiller. See Fig. 51.

NOTE: Expansion tanks for 30XA hydronic kits must be installed for chillers piped in parallel in the primary water loop.

Fig. 48 — Typical Air Separator and Expansion Tank Location on Primary-Secondary Systems

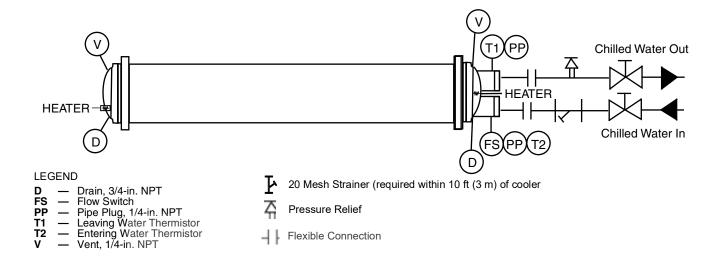


Fig. 49 — Typical Piping Diagram on 30XA Units without Hydronic Package (Flooded Cooler)

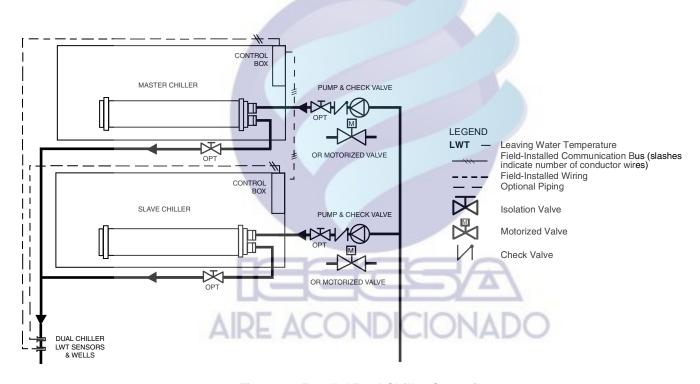


Fig. 50 — Parallel Dual Chiller Operation

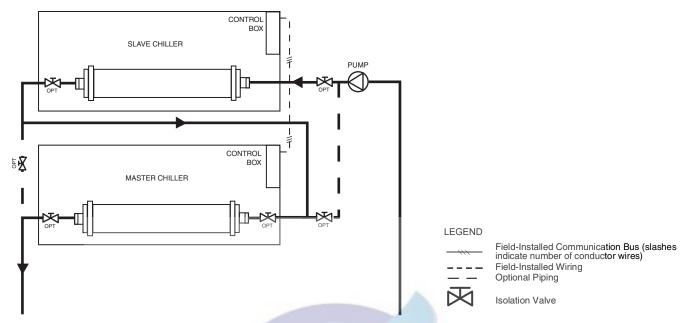


Fig. 51 — Series Dual Chiller Operation (Not Recommended for DX Cooler)

IMPORTANT: Automatic vents should be located in accessible locations for maintenance purposes and protected from freezing.

Flooded Cooler Cooler Pump Control

It is required that cooler pump control be utilized on all chillers unless the chilled water pump runs continuously or the chilled water system contains a suitable antifreeze solution. Control of dual external pumps requires installation of the external pump control accessory package (Part No. 00EFN900003200A).

A CAUTION

Applications that utilize fresh water as the circulated fluid require that the circulating pump be controlled directly by the chiller. Operation with fresh water is not fail-safe should there be a loss of power to the chiller or to the circulating pump. Freeze damage due to power loss or disabling chiller pump control in fresh water systems will impair or otherwise negatively affect the warranty.

It is required that the chiller be electrically interlocked with the chilled water pump starter. The interlock should be wired to terminals TB5-1 and TB5-2. If cooler pump control is not utilized, it is also required that the cooler pump output be used as an override to the chilled water pump control circuit to provide additional freeze protection.

Refer to the control and power wiring schematic on page 114 for proper connection of the cooler pump (PMP1 and PMP2). The cooler pump output will remain energized for 30 seconds after all compressors stop due to an OFF command. In the event a freeze protection alarm is generated, the cooler pump output will be energized regardless of the cooler pump control software configuration. The cooler pump output is also energized anytime a compressor is started and when certain alarms are generated. A thermal flow sensor is factory installed in the entering fluid nozzle to prevent operation without flow through the cooler. The flow sensor is factory wired.

Proper software configuration of the cooler pump control parameters is required to prevent possible cooler freeze-up. Refer to the Controls, Start-Up, Operation, Service and Troubleshooting guide for more information.

Flooded Cooler Brine Units

For operating units with fluid temperatures less than 40°F (4.4°C), add sufficient inhibited glycol or other suitable corrosion-resistant antifreeze solution to prevent cooler freeze-up.

DX COOLER UNITS

NOTE: It is recommended for units with the hydronic package that an inlet isolation (shut-off) valve be placed exterior to the unit to allow removal and service of the entire pump assembly, if necessary. The hydronic package is supplied from the factory with a combination valve for isolation of leaving water. Also, if the unit is isolated with valves, a properly sized pressure relief valve is recommended and should be installed in the piping between the unit and the valves, following all applicable local codes. Typical piping diagrams are shown in Fig. 52-54.

DX Cooler Air Separation

For proper system operation, it is essential that water loops be installed with proper means to manage air in the system. Free air in the system can cause noise, reduce terminal output, stop flow, or even cause pump failure due to pump cavitation. For closed systems, equipment should be provided to eliminate all air from the system.

The amount of air that water can hold in solution depends on the pressure and temperature of the water/air mixture. Air is less soluble at higher temperatures and at lower pressures. Therefore, separation can best be done at the point of highest water temperature and lowest pressure. Typically, this point would be on the suction side of the pump as the water is returning from the system or terminals. This is generally the optimal place to install an air separator, if possible.

- 1. Install automatic air vents at all high points in the system. (If the 30XA unit is located at the high point of the system, a vent can be installed on the cooler shell on the 1/4 in. NPT female port.)
- 2. Install an air separator in the water loop, at the place where the water is at higher temperatures and lower pressures usually in the chilled water return piping. On a primary-secondary system, the highest temperature water is normally in the secondary loop, close to the decoupler. Preference should be given to that point on the system (see Fig. 48). In-line or centrifugal air separators are readily available in the field.

It may not be possible to install air separators at the place of the highest temperature and lowest pressure. In such cases, preference should be given to the points of highest temperature. It is important that the pipe be sized correctly so that free air can be moved to the point of separation. Generally, a water velocity of at least 2 feet per second (0.6 m per second) will keep free air entrained and prevent it from forming air pockets.

Automatic vents should be installed at all physically elevated points in the system so that air can be eliminated during system operation. Provisions should also be made for manual venting during the water loop fill.

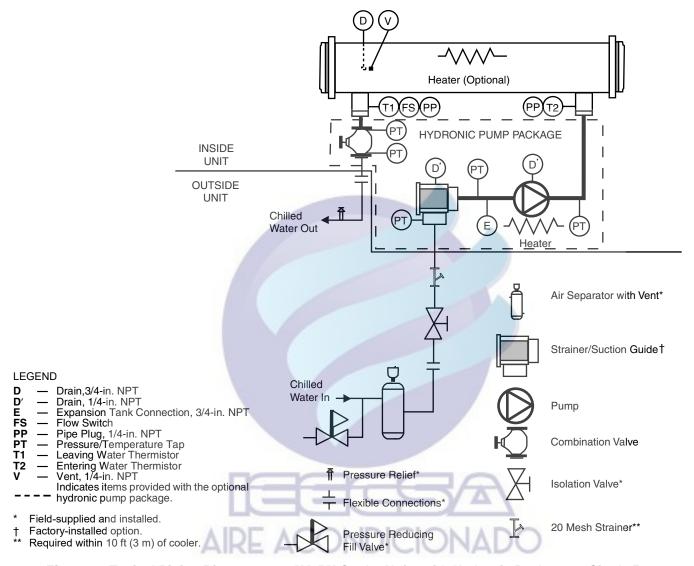


Fig. 52 — Typical Piping Diagram on 30XA DX Cooler Units with Hydronic Package — Single Pump

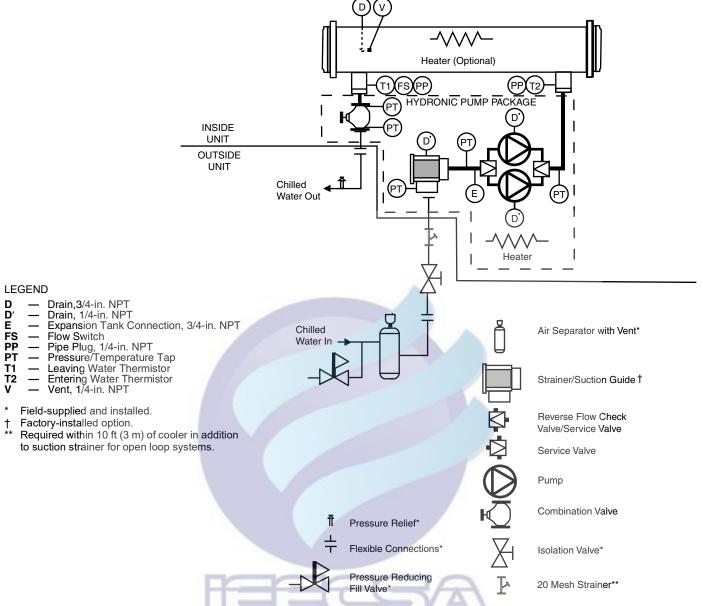


Fig. 53 — Typical Piping Diagram on 30XA DX Cooler Units with Hydronic Package — Dual Pumps

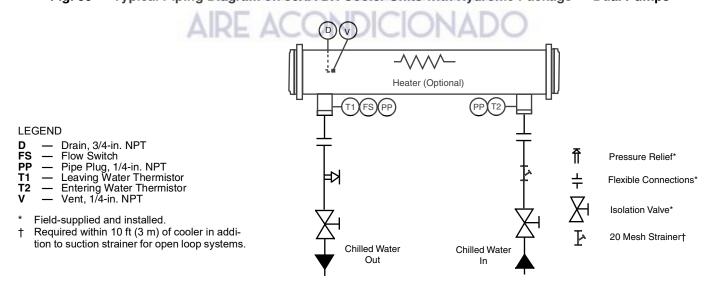


Fig. 54 — Typical Piping Diagram on 30XA082, 092,102,112,122,142,162,182, 202 without Hydronic Package

DX Cooler Units with Hydronic Pump Package

The 30XA092-162 units can be equipped with a factory-installed hydronic pump package consisting of a suction guide/strainer, pump, combination valve, internal piping and wiring connected at the factory.

The combination valve performs the following functions:

- drip-tight shut-off valve
- spring closure design with a non-slam check valve
- flow-throttling valve

When facing the cooler side of unit, the inlet (return) water connection is located on the right side of cooler. The outlet (supply) water connection is on the left side of cooler. The inlet is connected to the suction guide/strainer of the pump via a Victaulic-type connection. The cooler supply has water-side Victaulic-type connections (follow connection directions as provided by the coupling manufacturer). Provide proper support for the piping. If accessory security grilles have been added, holes must be cut in the grilles for field piping and insulation.

The combination valve is not installed during shipping and must be field installed during installation of the chiller. The valve is mounted internal to the unit to protect it during shipping. Remove the valve from its shipping location and mount it to the base frame using the 4 screws that supported the valve during shipping. The valve should be connected to the water outlet of the cooler using the Victaulic coupling which is provided (Fig. 55).

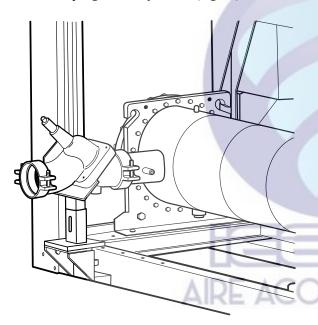


Fig. 55 — Balancing Valve

The suction guide/strainer is shipped from the factory with a runin screen. This screen is a temporary device used during the startup/clean-up process of the chilled water circuit to prevent construction debris from damaging the pump or internal tubes of the cooler. After all debris has been removed, or a maximum of 24 running hours, the temporary screen must be removed. See the Start-Up, Controls, Operation and Troubleshooting guide for further information.

⚠ CAUTION

The suction guide/strainer is shipped from the factory with a run-in screen. This temporary screen must be removed after all debris has been removed or a maximum of 24 running hours. Failure to remove the temporary screen may result in damage to the pump or cooler.

NOTE: It is required that a 20 mesh field-supplied strainer be installed in the inlet piping to the cooler on open loop systems.

A 3/4 in. NPT fitting is installed in the inlet piping of the pump for connection to an expansion tank. Install the tank in accordance with the manufacturer's instructions.

Figure 53 illustrates typical dual pump package.

Three drain connections are provided and are located at the bottom of the cooler shell located near water outlet, pump volute, and the suction guide. See Fig. 2-23 for connection location. Insulate the drain piping (in the same manner as the chilled water piping) for at least 12 in. (305 mm) from the cooler.

DX Cooler Units without Hydronic Pump Package

When facing the cooler side of the unit, the inlet (return) water connection is located on the right side of cooler. It is required that a field-supplied strainer with a minimum size of 20 mesh be installed within 10 ft (3.05 m) of the cooler inlet to prevent debris from damaging internal tubes of the cooler. The outlet (supply) water connection is on the left side of cooler. The cooler has water-side Victaulic-type connections (follow connection directions as provided by the coupling manufacturer). Provide proper support for the piping. If accessory security grilles have been added, holes must be cut in the grilles for field piping and insulation. See Fig. 49 for a typical piping diagram of a 30XA unit without a hydronic pump package.

A drain connection is located at the bottom of the cooler shell near the water outlet end of the cooler. See Fig. 2-23 for connection location. Insulate the drain piping (in the same manner as the chilled water piping) for at least 12 in. (305 mm) from the unit.

DX Cooler Dual Chiller Control

The *Comfort*Link controller allows two chillers (piped in parallel or series) to operate as a single chilled water plant with standard control functions coordinated through the master chiller controller. This standard *Comfort*Link feature requires a communication link between the two chillers on the CCN Bus.

There are several advantages to this type of control:

- redundancy (multiple circuits)
- better low load control, (lower tonnage capability)
- lower rigging lift weights (two machines rather than one large machine)
- chiller lead-lag operation (evens the wear between the two machines)

DX Cooler Dual Chiller Leaving Water Sensor

If the dual chiller algorithm is used, and the machines are installed in parallel, a dual chilled water sensor must be installed for each module. The Dual Chiller Leaving Water Sensor should be installed in a location that provides proper mixing to ensure proper temperature sensing. See Fig. 53.

DX Cooler Parallel Dual Chiller Operation

Parallel chiller operation is the recommended option for dual chiller control. In this case, each chiller must control its own dedicated pump or isolation valve. Balancing valves are recommended to insure proper flow in each chiller. Two field-supplied and installed dual chiller leaving water temperature sensors are required, one for each module for this function to operate properly.

Consider adding additional isolation valves to isolate each chiller to allow for service on a machine, and still allow for partial capacity from the other chiller. See Fig. 53.

DX Cooler Series Dual Chiller Operation

Series chiller operation is an alternate method supported by the *Comfort*Link control system but is not recommended for DX applications. Certain applications with high temperature rise across the units may require that two chillers be connected in series.

DX Cooler Pump Control

It is recommended that cooler pump control be utilized on all chillers unless the chilled water pump runs continuously or the chilled water system contains a suitable antifreeze solution. Control of dual external pumps requires installation of the external pump control accessory package (Part No. 00EFN900003200A).

⚠ CAUTION

Operation with fresh water is not fail-safe should there be a loss of power to the chiller or to the circulating pump. Freeze damage due to power loss or disabling chiller pump control in fresh water systems will impair or otherwise negatively affect the warranty.

If cooler pump control is not utilized, it is required that the chiller be electrically interlocked with the chilled water pump starter. The interlock should be wired to terminals TB5-1 and TB5-2. It is also recommended that the cooler pump output be used as an override to the chilled water pump control circuit to provide additional freeze protection.

Refer to the control and power wiring sections beginning on page 113 for proper connection of the cooler pump output (PMP1 and PMP2). The cooler pump output will remain energized for 30 seconds after all compressors stop due to an OFF command. In the event a freeze protection alarm is generated, the cooler pump output will be energized regardless of the cooler pump control software configuration. The cooler pump output is also energized anytime a compressor is started and when certain alarms are generated. A thermal flow sensor is factory installed in the leaving fluid nozzle to prevent operation without flow through the cooler. The flow sensor is factory wired.

Proper software configuration of the cooler pump control parameters is required to prevent possible cooler freeze-up. Refer to the Controls, Start-Up, Operation, Service and Troubleshooting guide for more information.

DX Cooler Brine Units

For operating units with fluid temperatures less than 40°F (4.4°C), add sufficient inhibited glycol or other suitable corrosion-resistant antifreeze solution to prevent cooler freeze-up.

PREPARATION FOR YEAR-ROUND OPERATION

In areas where the piping or unit is exposed to 32°F (0°C) or lower ambient temperatures, freeze-up protection is required using inhibited glycol or other suitable corrosion-resistant antifreeze solution and electric heater tapes. Heater tapes on piping should have a rating for area ambient temperatures and be covered with a suitable thickness of closed-cell insulation. Route power for the heater tapes from a separately fused disconnect. Mount the disconnect within sight from the unit per local or

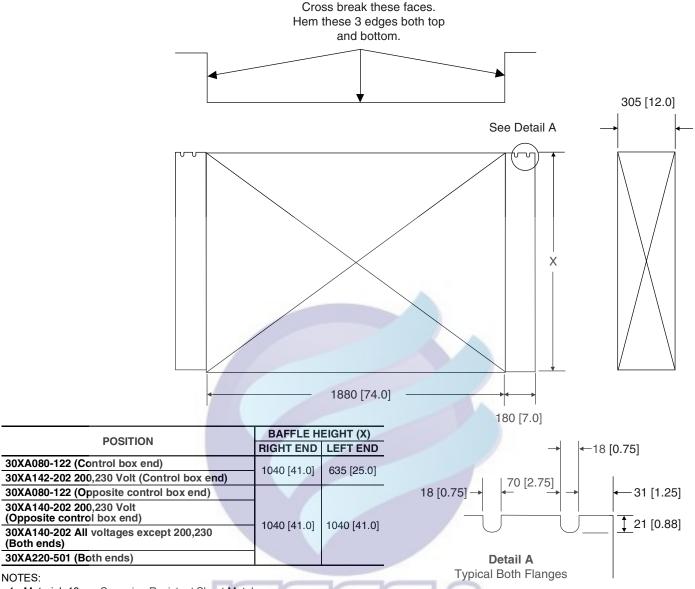
NEC (National Electric Code) codes. Identify disconnect at heater tape power source with a warning that power must not be turned off except when servicing unit.

IMPORTANT: Adding antifreeze solution is the only certain means of protecting the unit from freeze-up if heater fails or electrical power is interrupted or lost while temperatures are below 32°F (0°C).

A drain connection is located at the bottom of the cooler head or bottom of cooler shell. See Fig. 2-23 for connection location. Install shut-off valves to the drain line before filling the system with fluid.

Low Ambient Temperature Head Pressure Control

If the unit is equipped with the low ambient temperature head pressure control option, field-fabricated and field-installed wind baffles are required if the wind velocity is anticipated to be greater than 5 mph (8 km/h). Two different baffles may be required, facing the control box. Wind baffles should be constructed with minimum 18-gage galvanized sheet metal or other suitable corrosion-resistance material with cross breaks for strength. See Fig. 56. Use field-supplied screws to attach baffles to the corner posts of the machine. Be sure to hem or turn a flange on all edges to eliminate sharp edges on the baffles.


A WARNING

Disconnect all power to the unit before performing maintenance or service. Electrical shock and personal injury could result.

A CAUTION

To avoid damage to the refrigerant coils and electrical components, use extreme care when drilling screw holes and screwing in fasteners.

Mount the smaller height baffle on units with a control box located on the end of the unit. It is recommended that the upper notches be used for mounting the baffles. This reduces the risk of damaging the coil while drilling a mounting hole. Loosen the upper corner post bolts and slide the baffle under the bolt and washer. Tighten the bolt. Drill holes in the bottom of the flange of the baffle and mount with two screws to secure the bottom of the baffle to the corner post. Repeat the process for the opposite end. See Fig. 56.

1. Material: 18 ga. Corrosion Resistant Sheet Metal.

2. Dimensions are in mm [inches].

Fig. 56 — Field-Fabricated and Field-Installed Wind Baffles

Step 4 — Fill the Chilled Water Loop

IMPORTANT: Before starting unit, be sure all air has been purged from the system.

ACAUTION

In low ambient (below 32°F [0°C]) and/or low leaving fluid temperature applications (below 40°F [4.4°C]), a suitable antifreeze solution of the proper concentration for the specific operating conditions must be used as the fluid circulated through the cooler to prevent freezing and damage to the system. Failure to operate the system with an antifreeze solution of the proper concentration will impair or otherwise negatively affect the warranty should damage result from freezing.

The chilled water pump (if equipped) is rated for 150 psig (1034 kPa) duty. The maximum cooler water side pressure is 300 psig (2068 kPa). Check the pressure rating for all of the chilled water devices installed. Do not exceed the lowest pressure rated device.

WATER SYSTEM CLEANING

Proper water system cleaning is of vital importance. Excessive particulates in the water system can cause excessive pump seal wear, reduce or stop flow, and cause damage of other components.

- 1. Install a temporary bypass around the chiller to avoid circulating dirty water and particulates into the pump package and chiller during the flush. Use a temporary circulating pump during the cleaning process. Also, be sure that there is capability to fully drain the system after cleaning. See Fig. 57.
- 2. Use a cleaning agent that is compatible with all system materials. Be especially careful if the system contains any galvanized or aluminum components. Both detergent-dispersant and alkaline-dispersant cleaning agents are available.
- 3. It is recommended to fill the system through a water meter. This provides a reference point for the future for loop volume readings, and it also establishes the correct quantity of cleaner needed in order to reach the required concentration.
- 4. Use a feeder/transfer pump to mix the solution and fill the system. Circulate the cleaning system for the length of time recommended by the cleaning agent manufacturer.

- After cleaning, drain the cleaning fluid and flush the system with fresh water.
- b. A slight amount of cleaning residue in the system can help keep the desired, slightly alkaline, water pH of 8 to 9. Avoid a pH greater than 10, since this will adversely affect pump seal components.
- c. A side stream filter is recommended (Fig. 58) during the cleaning process. Filter side flow rate should be enough to filter the entire water volume every 3 to 4 hours. Change filters as often as necessary during the cleaning process.
- d. Remove temporary bypass when cleaning is complete.

A suction guide with an internal strainer and a fine-mesh startup strainer is standard on all 30XA units with factory-installed hydronic packages. The internal strainer allows removal of particulates from the chilled water loop. Using the combination valve and the field-installed isolation valve at the inlet, the strainer can be isolated from the chilled water loop to be cleaned.

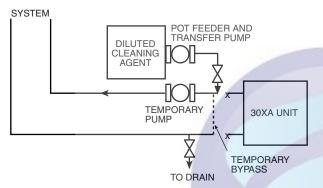


Fig. 57 — Typical Set Up for Cleaning Process

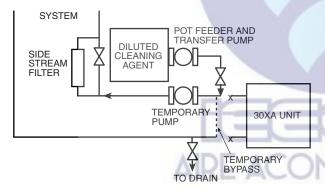


Fig. 58 — Cleaning Using a Side Stream Filter

Carrier's *Comfort*Link controls provided have a built-in feature to remind building owners or operators to clean the strainer at a preset time interval. Properly installed, cleaned and maintained systems will rarely need the strainer cleaned after the initial fill. This time interval is user-configurable.

Ideally, the chilled water loop will be cleaned before the unit is connected. If the run-in screen is left in the suction guide/strainer, it is recommended that Service Maintenance be set to alert the operator within 24 hours of start-up to ensure that the run-in screen in the suction guide/strainer is removed after 24 hours of operation.

NOTE: The suction guide/fine-mesh start-up strainer must be removed after the first 24 hours of operation. The internal strainer must remain in place.

To set the time for the parameter, go to *Time Clock* \rightarrow *MCFG* \rightarrow *W.FIL* in the handheld NavigatorTM display. To set the time for the parameter with the Touch PilotTM display, go to *Main Menu* \rightarrow *Service* \rightarrow *MAINTCFG* \rightarrow *wfilter_c*. Values for this item are input in days.

WATER TREATMENT

Fill the fluid loop with water (or brine) and a corrosion-resistant inhibitor suitable for the water of the area. Consult the local water treatment specialist for characteristics of system water and a recommended inhibitor for the cooler fluid loop.

Untreated or improperly treated water may result in corrosion, scaling, erosion, or algae. The services of a qualified water treatment specialist should be obtained to develop and monitor a treatment program.

A CAUTION

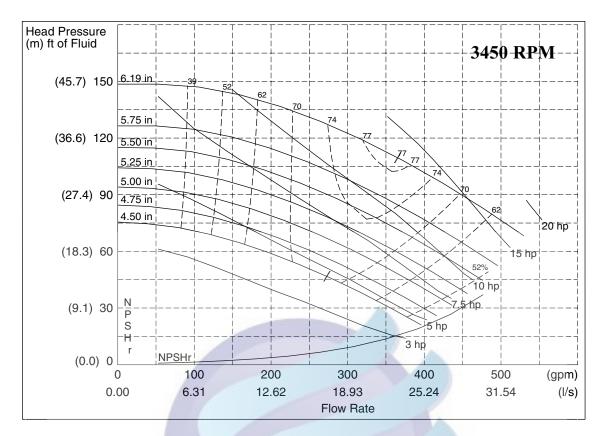
Water must be within design flow limits, clean, and treated to ensure proper chiller performance and reduce the potential of tube damage due to corrosion, scaling, erosion, and algae. Carrier assumes no responsibility for chiller damage resulting from untreated or improperly treated water.

NOTE: Do not use automobile anti-freeze, or any other fluid that is not approved for heat exchanger duty. Only use appropriately inhibited glycols, concentrated to provide adequate protection for the temperature considered.

SYSTEM PRESSURIZATION

A proper initial cold fill pressure must be established before filling of the unit. The initial cold fill pressure is the pressure applied at the filling point to fill a system to its highest point, plus a minimum pressure at the top of the system (4 psig minimum [27.6 kPa]) to operate air vents and positively pressurize the system. The expansion tank is very important to system pressurization. The expansion tank serves several purposes:

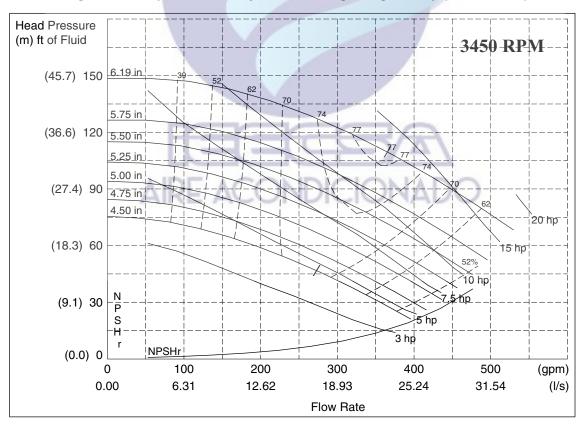
- Provides NPSHR (Net Positive Suction Head Required) for the pump to operate satisfactorily.
- Sets system pressure.
- Accommodates expansion/contraction of water due to temperature changes.
- 4. Acts as a pressure reference for the pump.


The expansion tank pressure must be set BEFORE the system is filled. Follow the manufacturer's recommendation for instructions on setting pressure in the expansion tank. NPSHR information is provided on the Pump Curves in Fig. 59 and 60 for units with factory-installed hydronic kits. See Table 11 for pump impeller sizes.

Once the system is pressurized, pressure at the connection point of the expansion tank to water piping will not change unless the water loop volume changes (either due to addition/subtraction of water or temperature expansion/contraction). The pressure at this point remains the same regardless whether the pump is running.

Since the expansion tank acts as a reference point for the pump, there cannot be two reference points (two expansion tanks) in a system, unless manifolded together. Where two or more 30XA chillers with the hydronic option are installed in parallel, there should not be more than one expansion tank in the system, unless manifolded together as seen in Fig. 48. It is permissible to install the expansion tank(s) in a portion of the return water line that is common to all pumps, providing that the tank is properly sized for combined system volume.

If the application involves two or more chillers in a primary-secondary system, a common place for mounting the expansion tank is in the chilled water return line, just before the decoupler. See Fig. 48 for placement of expansion tank in primary-secondary systems.


If a diaphragm expansion tank is utilized (a flexible diaphragm physically separates the water/air interface) it is not recommended to have any air in the water loop. See the section on air separation on page 100 for instructions on providing air separation equipment.

LEGEND

NPSHr — Net Positive Suction Head (Pressure) Required

Fig. 59 — Pump Curve I for Hydronic Package Single Pump (Fresh Water)

LEGEND

 ${f NPSHr}$ — Net Positive Suction Head (Pressure) Required

Fig. 60 — Pump Curve II for Hydronic Package Dual Pump (Fresh Water)

Table 11 — Pump Impeller Sizes

20VA LINIT CIZE	DUMD Us	SINGLE PUMP				DUAL PUMP					
30XA UNIT SIZE	РОМР ПР	Option Code*	Rpm	Impeller Dia. (in.)	Pump Curve	Option Code*	Rpm	Impeller Dia. (in.)	Pump Curve		
	5	1,G	3450	4.5	1	7,N	3450	4.5	II		
090-162	7.5	2,H	3450	5.0	I	8,P	3450	5.0	II		
090-162	10	3,J	3450	5.4	I	B,Q	3450	5.4	II		
	15	4,K	3450	6.0	I	C,R	3450	6.0	II		

Option Code refers to the Hydronic Option (position 11) in the model number. See Fig. 1 for option identification.

FILLING THE SYSTEM

- 1. Initial fill of the chilled water system must accomplish three goals:
- 2. The entire piping system must be filled with water.
- 3. The pressure at the top of the system must be high enough to vent air from the system (usually 4 psig [27.6 kPa] is adequate for most vents).
- 4. The pressure at all points in the system must be high enough to prevent flashing in the piping or cavitation in the pump.

The pressure created by an operating pump affects system pressure at all points except one — the connection of the expansion tank to the system. This is the only location in the system where pump operation will not give erroneous pressure indications during the fill. Therefore, the best location to install the fill connection is close to the expansion tank. An air vent should be installed close by to help eliminate air that enters during the fill procedure.

When filling the system, ensure the following:

- Remove temporary bypass piping and cleaning/flushing equipment.
- 2. Check to make sure all drain plugs are installed.

Normally, a closed system needs to be filled only once. The actual filling process is a fairly simple procedure. All air should be purged or vented from the system. Thorough venting at high points and circulation at room temperature for several hours is highly recommended.

NOTE: Local codes concerning backflow devices and other protection of the city water system should be consulted and followed to prevent contamination of the public water supply. This is critical when antifreeze is used in the system.

SET WATER FLOW RATE

Once the system is cleaned, pressurized, and filled, the flow rate through the chiller needs to be established. On units with the hydronic package, this can be accomplished by using the balancing valve. Follow the manufacturer's recommendations for setting the balancing valve. Local codes may prohibit restricting the amount of water using the balancing valve for a given motor horsepower. In this case, use the method listed in the Pump Modification/Trimming section. See below for the type of combination valve in 30XA units with the optional hydronic package.

30XA UNIT SIZE	SINGLE/DUAL PUMP
090-162	FTV-5 in.

NOTE: Carrier recommends a differential pressure gage when measuring pressures across the pumps or balancing valves. This provides for greater accuracy and reduces error build-up that often occurs when subtracting pressures made by different gages.

A rough estimate of water flow can also be obtained from the pressure gages across the 30XA heat exchanger.

The Controls, Start-Up Operation, Service, and Troubleshooting guide includes graphs that show the relationship between gpm and heat exchanger pressure drop. It should be noted that these curves are for fresh water and "clean" heat exchangers; they do not apply

to heat exchangers with fouling. To read the chart, subtract the readings of the two pressure gages on the hydronic kit. Be sure to use the correct graph for the cooler option (standard, +1/-1 pass, DX cooler). This number is the pressure drop across the heat exchanger. Adjust the factory-installed balancing valve or external balancing valve (in units without hydronic package) until the correct pressure drop is obtained for the required flow. See Table 10.

PUMP MODIFICATION/TRIMMING

Since the pumps are constant speed, the only way to obtain greater flow with a given pump/impeller is to decrease system head. This will allow the pump to "ride" its curve to the right, resulting in increased flow. If greater flow is necessary, consider opening the combination valve. Also, verify that the strainer is clean, and that no unnecessary system resistance is present, such as partially closed isolation valves.

Once the combination valve is set, note the stem position. If later service work requires the valve to be closed, it will be easier to rebalance the system, if the original balance point is known.

Increasing system resistance by closing the balancing valve will force the pump to "ride" its curve to the left, resulting in less flow. Although this does reduce power consumption slightly, it may not be the desirable method of reducing the flow, especially if a large reduction is needed.

The other method for reducing flow on a constant speed pump is impeller trimming. The impellers in the pumps provided in the 30XA hydronic kit can be easily removed for this purpose. Refer to the vendor literature packet supplied with the hydronic package information on Seal Replacement in the Service section, and follow instructions for impeller removal and trimming. See Fig. 59 and 60 for pump envelope curve information. Trimming should only be done by a qualified machine shop that has experience in this operation. Contact your local Carrier representative for a recommended machine shop.

A CAUTION

After trimming, the impeller MUST be balanced. Failure to balance trimmed impellers can result in excessive vibration, noise, and premature bearing failure.

Impeller trimming has the added benefit of maximum bhp (brake horsepower) savings, which can recover the cost incurred by performing the impeller trimming.

PUMP VFD

Pumps may be ordered with a variable frequency drive (VFD) for speed control.

SENSORLESS CONTROL (CLOSED LOOP), ACTIVE SETUP 1

The VFD provided with the pump from the factory is configured for sensorless control. Default set points are entered for the unit according to nominal tonnage of the unit. Table 12 shows the settings from the factory. For details on operating the drive display, see the pump installation and operation manual, and for more detailed information on the drive, see IVS 102 Operating Instructions. These manuals are supplied in the control box of the chiller.

Table 12 — Default Settings for Sensorless Control — Setup 1

SINGLE PUMP														
Unit Size (tons)					90,100,110,120				140,160					
	Pump						4380 3x3x6				4380 3x3x6			
	HP	5	7.5	10	15	5	7.5	10	15					
_	Impeller Dia (inches)					5.4	6.1	4.5	5	5.4	6.1			
20-21	20-21 Setpoint 1 Hd ft wc					90	120	35	45	80	115			
22-89	22-89 Flow at Design Point gpm					250				340				
22-87	Press at No Flow Speed	40% Hd	ft wc	16	20	36	48	14	18	32	46			

DUAL PUMP													
Unit Size (tons)					30,90,100	0,110,12	0	140,160					
	Pump					4382 4x4x6				4382 4x4x6			
	HP	5	7.5	10	15	5	7.5	10	15				
	Impeller Dia (inches)				5	5.4	6.1	4.5	5	5.4	6.1		
20-21	20-21 Setpoint 1 Hd ft wc					90	120	35	45	80	115		
22-89	22-89 Flow at Design Point gpm				250			340					
22-87	Press at No Flow Speed	40% Hd	ft wc	16	20	36	48	14	18	32	46		

The following set points should be verified or modified for the actual installation.

Parameter 20-21 Setpoint, Hdesign, Ft-Wc

Parameter 22-89 Design Flow Setpoint, GPM

Parameter 22-87 Pressure at no-flow speed, Hmin, GPM (40% of design flow)

When changing set points, ensure values are within the pump curve for the pump provided with the unit.

Minimum speed for the pump is set at 50 Hz, Parameter 4-12. This may be changed as long as the corresponding flow rate meets the minimum flow requirement for the chiller.

REMOTE SENSOR (CLOSED LOOP), ACTIVE SETUP 2

The drive may be set up to use a remote sensor instead of sensor-less pump control. For a remote sensor control change Active Setup on the drive from 1 to 2, Parameter 0-10. The drive will read a 0-10vdc or a 0/4-20 mA signal from the sensor. Switch S2-01 must be set to Off (default setting) for 0-10 vdc or On for 0/4-20 mA. The switch is located behind the display. The cover must be removed and the display will snap off to access this switch.

The set point is defined by Parameter 20-21, Setpoint 1. This is a percentage of the maximum signal from the sensor. The default is 80%.

REMOTE CONTROLLER (OPEN LOOP), ACTIVE SETUP 3

Drive may be controlled by external sources. For a remote control of the drive change Active Setup on the drive to 3, Parameter 0-10. An input signal can used to control the drive speed. Input signal may be 0-10 vdc or 0/4-20 mA. The setup is the same as a remote sensor.

A BACnet card is also included with the drive. For BACnet, use Setup 3. The communication settings are in section 8 of the drive parameters. See drive manual for details.

FREEZE PROTECTION

The 30XA units are provided with a flow switch to protect against freezing situations that occur from no water flow. While the flow switch is helpful in preventing freezing during no-flow situations, it does not protect the chiller in case of power failure during sub-freezing ambient temperatures, or in other cases where water temperature falls below the freezing mark. Appropriate concentrations of inhibited propylene or ethylene glycol or

other suitable inhibited antifreeze solution should be considered for chiller protection where ambient temperatures are expected to fall below 32°F (0°C). Consult a local water treatment specialist on characteristics of the system water and add a recommended inhibitor to the chilled water. The Carrier warranty does not cover damage due to freezing.

If the pump will be subjected to freezing temperatures, steps must be taken to prevent freeze damage. If the pump will not be used during this time, it is recommended to drain the pump and hydronic package and backflush these components with inhibited glycol. Otherwise, a glycol-water solution should be considered as the heat transfer fluid. Drains are located on the pump(s) and suction guide/strainer for units with hydronic kits. Units without hydronic kits have a drain plug mounted on the bottom of the cooler head at each end of the cooler, or at the bottom of the shell.

NOTE: Do not use automobile anti-freeze, or any other fluid that is not approved for heat exchanger duty. Only use appropriately inhibited glycols, concentrated to provide adequate protection for the temperature considered.

Use an electric tape heater for the external piping, if unit will be exposed to freezing temperatures.

Ensure that power is available to the chiller at all times, even during the off-season, so that the pump and cooler heaters have power. Also make sure that the piping tape heaters have power.

On units with pump packages, a heater is supplied with the hydronic package that will protect this section from freezing in outdoor-air temperatures down to -20°F (-29°C), except in the case of a power failure. The Carrier warranty does not cover damage due to freezing.

Flooded cooler units only

All units are equipped with cooler heaters. Units are protected from freezing down to $0^{\circ}F$ ($-18^{\circ}C$) through the cooler heaters and control algorithms. If the unit controls the chilled water pump and valves, allowing flow through the cooler, the unit is protected from freezing down to $-20^{\circ}F$ ($-29^{\circ}C$). The Carrier warranty does not cover damage due to freezing.

DX cooler units only

Cooler heaters that will protect components down to -20° F (-29° C) can be ordered as a factory-installed option. It should be noted that these heaters will not protect the cooler from freezing in the event of a power failure. The Carrier warranty does not cover damage due to freezing.

PREPARATION FOR WINTER SHUTDOWN

If the unit is not operational during the winter months, at the end of cooling season complete the following steps.

A CAUTION

Failure to remove power before draining heater equipped coolers and hydronic packages can result in heater tape and insulation damage.

- 1. If the cooler will not be drained, do not shut off power disconnect during off-season shutdown. If cooler is drained, open the circuit breaker for the heater, CB-13 or shut off power during off-season shutdown.
- Draining the fluid from the system is highly recommended. If the unit is equipped with a hydronic package, there are additional drains in the pump housing and strainer that must be opened to allow for all of the water to drain.
- Isolate the cooler from the rest of the system with water shutoff valves.
- 4. Replace the drain plug and completely fill the cooler with a mixture of water and a suitable corrosion-inhibited antifreeze solution such as propylene glycol. The concentration should be adequate to provide freeze protection to 15°F (8.3°C) below the expected low ambient temperature conditions. Antifreeze can be added through the vent on top of the cooler head for flooded units or the vent on the top of the cooler shell for DX units. If the unit has a hydronic pump package, the pump must be treated in the same manner.
- 5. Leave the cooler filled with the antifreeze solution for the winter, or drain if desired. Be sure to deenergize heaters (if installed) as explained in Step 1 to prevent damage if the cooler is drained. Use an approved method of disposal when removing antifreeze solution.

At the beginning of the next cooling season, be sure that there is refrigerant pressure on each circuit before refilling cooler, add recommended inhibitor, and reset the CB-HT (circuit breaker heater) (if opened) or restore power.

Step 5 — Make Electrical Connections

⚠ WARNING

Electrical shock can cause personal injury and death. Shut off all power to this equipment during installation. There may be more than one disconnect switch. Tag all disconnect locations to alert others not to restore power until work is completed.

POWER SUPPLY

The electrical characteristics of the available power supply must agree with the unit nameplate rating. Supply voltage must be within the limits shown. See Tables 13-18 for electrical and configuration data

FIELD POWER CONNECTIONS (SEE FIG. 61)

All power wiring must comply with applicable local and national codes. Install field-supplied, branch circuit fused disconnect(s) of a type that can be locked off or open. Disconnect(s)

must be located within sight and readily accessible from the unit in compliance with NEC Article 440-14 (U.S.A.). See Tables 13-18 for unit electrical data.

IMPORTANT: The 30XA units have a factory-installed option available for a non-fused disconnect for unit power supply. If the unit is equipped with this option, all field power wiring should be made to the non-fused disconnect since no terminal blocks are supplied.

Maximum wire size that the unit terminal block or non-fused disconnect will accept is 500 kcmil.

POWER WIRING

All power wiring must comply with applicable local and national codes. Install field-supplied branch circuit fused disconnect per NEC of a type that can be locked OFF or OPEN. Disconnect must be within sight and readily accessible from the unit in compliance with NEC Article 440-14. In the power box, 7/8 in. holes are provided for power entry. The holes will need to be enlarged to accept the appropriate conduit. NEC also requires all conduits from a conditioned space to the power box(es) be sealed to prevent air-flow and moisture into the control box.

The 30XA units require 1 or 2 power supplies, depending on the unit and circuit voltage. See Tables 13-16 for chiller electrical data. Cooler and pump heaters, if factory-installed, are wired in the control circuit. Heaters on chillers with the optional control transformer will be capable of operation only when the main power supply to the chiller is on. On chillers with separate control power, the heaters are capable of operation whenever the control power is supplied.

FIELD CONTROL POWER CONNECTIONS

Field control power connections are shown in Fig. 61. All units require 115-1-60 control circuit power, unless the control transformer option is installed.

Terminals TB5-1 and TB5-2 are provided for field installation of a chilled water (fluid) pump interlock (CWPI). The chilled water (fluid) flow sensor (CWFS) is factory installed. These devices are to be installed in series. Contacts must be rated for dry-circuit applications capable of handling a 24-vac at 50 mA load.

An accessory remote on-off switch can be wired into TB5-9 and TB5-10. Contacts must be rated for dry-circuit applications capable of handling a 24-vac at 50 mA load.

⚠ CAUTION

Do not use interlocks or other safety device contacts connected between TB5-9 and TB5-10 as remote on-off. Connection of safeties or other interlocks between these 2 terminals will result in an electrical bypass if the ENABLE-OFF-REMOTE contact switch is in the ENABLE position. If remote on-off unit control is required, a field-supplied relay must be installed in the unit control box and wired as shown in Fig. 61. Failure to wire the remote on-off as recommended may result in tube freeze damage.

Terminals 11 and 13 of TB5 are for control of the chilled water pump 1 (PMP1) starter. Terminals 13 and 15 of TB5 are for control of the chilled water pump 2 (PMP2) starter.

NOTES:

- Factory wiring is in accordance with UL 1995 standards. Field modifications or additions must be in compliance with all applicable codes.
- Wiring for main field supply must be rated 75 C minimum. Use copper for all units.

Incoming wire size range for the terminal block is #4 AWG to 500 kcmil. Incoming wire size range of non-fused disconnect with MCA up to 599.9 amps is 3/0 to 500 kcmil

Incoming wire size range of non-fused disconnect with MCA from 600 to 799.99 amps is 1/0 to 500 kcmil.

Incoming wire size range of non-fused disconnect with MCA from 800 to 1199.99 amps is 250 to 500 kcmil.

For clearance between multiple units, refer to product data.

- Terminals 9 and 10 of TB5 are for field external connections for remote onoff. The contacts must be rated for dry circuit application capable of handling a 24-VAC load up to 50 mA.
- dling a 24-VAC load up to 50 mA.

 Terminals 1 and 2 of TB5 are for external connections of chilled water pump interlock. The contacts must be rated for dry circuit application capable of handling a 24-VAC load up to 50 mA.
- Terminals 11 and 13 of TBS are for control of chilled water pump 1 (PMP 1) starter. Terminals 13 and 15 of TBS are for control of chilled water pump 2 (PMP 2) starter. The maximum load allowed for the chilled water pump relay is 5 VA sealed, 10 VA inrush at 24 V. Field power supply is not required.
- For control of chilled water pumps, a set of normally open contaces rated for dry circuit application must be supplied from field-supplied pump starter relay. Connect contacts to violet and pink wires in harness from main base board Channel 18. Wires in harness are marked PMP1-13 and PMP1-14.
- Terminals 12 and 13 of TB5 are for A alarm relay. The maximum load allowed for the alarm relay is 10 VA sealed, 25 VA inrush at 24V. Field power supply is not required.
- Make appropriate connections to TB6 as shown for Energy Management board options, the contacts for Occupancy Override, Demand Limit, and Ice Done options must be rated for dry circuit application capable of handling a 24 VAC load up to 50 mA.
- Terminal blocks TB5 and TB6 are located in the display panel box for all units. Refer to the certified dimensional drawing for each unit to get the exact locations.
- Refer to certified dimensional drawings for exact locations of the main power and control power entrance locations.
- J3-24 and 25 of EMM board are for run relay and shutdown relay. The maximum load allowed for the run and shutdown relay is 10 VA sealed, 25 VA innush at 24V.
- 12. Apply torque to main incoming power lug connection:

DISPLAY PANEL-460V, 575V ONLY

MAIN POWER ENTRY-ALL VOLTAGES

- Apply torque 275 in.-lb, 375 in.-lb, and 500 in.-lb for internal socket size lug 5/16, 3/8, and 1/2 inch respectively.
- b. For external drive hex head bolt with box lug on bus bar, apply torque 180 in.-lb for wire 1/0 AWG and 250 in.-lb for wire 2/0 AWG. Apply torque 325 in.-lb for wire size 250 Kcmil to 350 Kcmil and 375 in.-lb for wire size 500 Kcmil to 750 Kcmil.

-CONTROL POWER ENTRY

COMPRESSOR-SIDE

080-122 UNIT SIZE

LEGEND

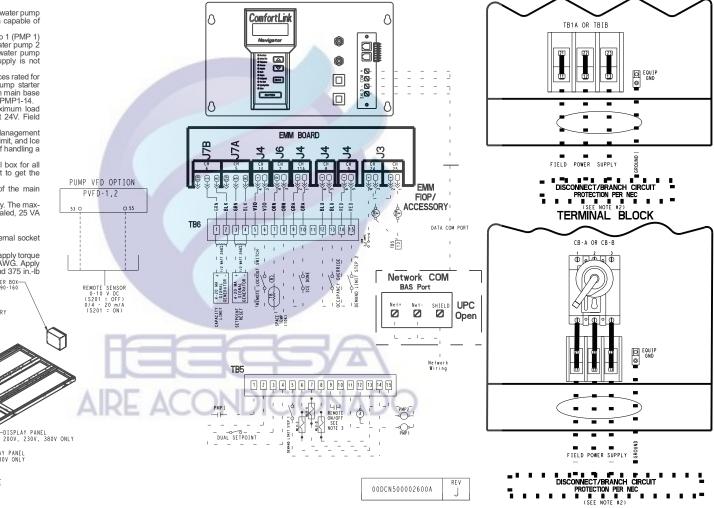
A — Alarm

EMM — Energy Management

HSCCR — High Short Circuit Current Rating

MLV — Minimum Load Valve

NEC — National Electric Code


PMP — Chilled Water Pump

PWPI — Chilled Water Pump Interlock

PVFD — Chilled Water Pump VFD

SCCR — Short Circuit Current Rating

TB — Terminal Block

NON-FUSED DISCONNECT

Fig. 61 — Control and Power Wiring Schematic

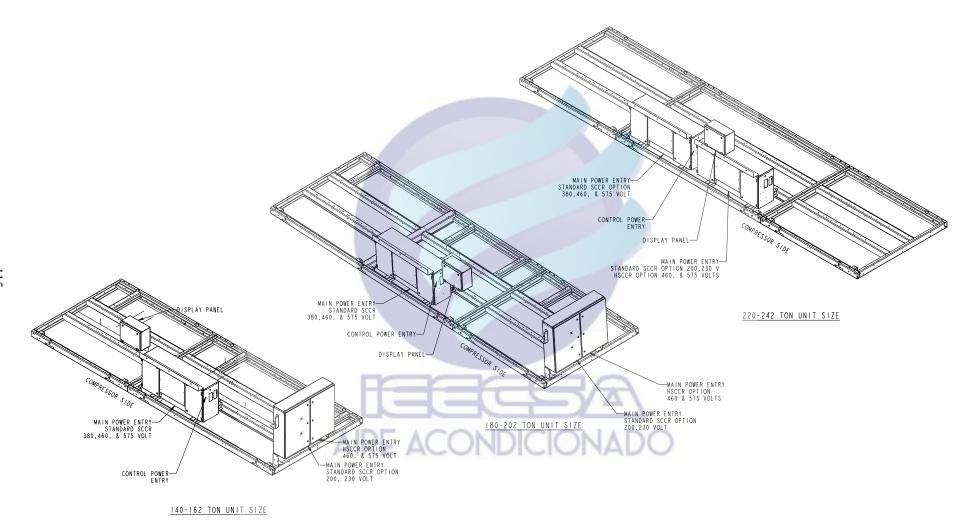


Fig. 61 — Control and Power Wiring Schematic (cont)

Fig. 61 — Control and Power Wiring Schematic (cont)

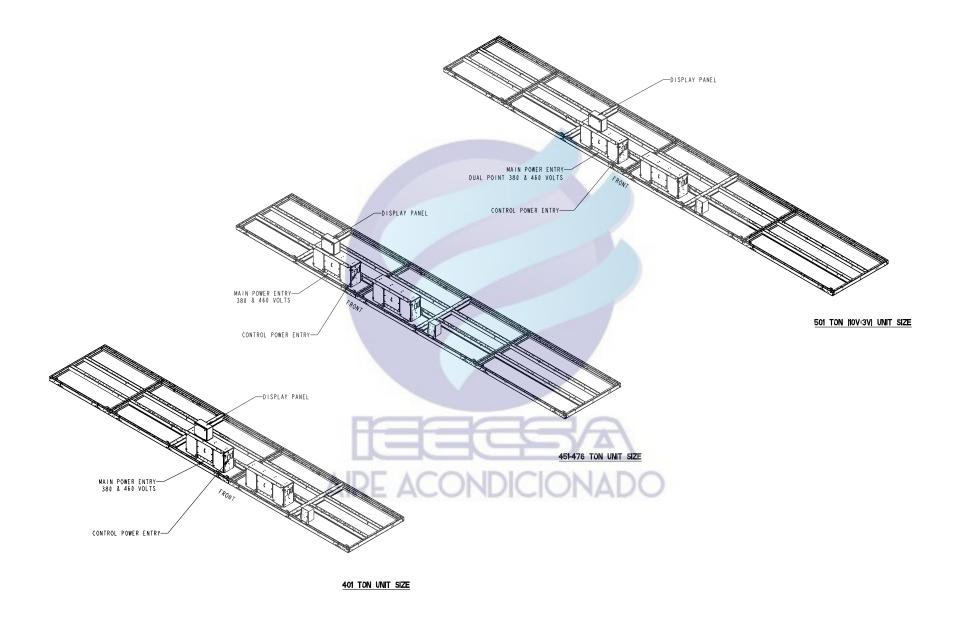


Fig. 61 — Control and Power Wiring Schematic (cont)

Table 13 — 30XA080-500 Electrical Data, Single Point (Standard Condenser Fan Motors)

	UNIT \	/OL T/	GE			IO HYDR	ONIC PA	CKAGE			5 HD D	UMP. 34	50 RPM			7 5 HD E	PUMP, 34	50 RPM		CONTROL	CIRCUIT
UNIT			plied	OF COND			IC		Rec		J111 1	,	CF	Rec		7.5111 1	IC		Rec	Voltage	MCA
30XA	V-Hz (3 Ph)	Min	Max	COND FANS	MCA	MOCP	WD	XL	Fuse Size	MCA	MOCP	WD	XL	Fuse Size	MCA	MOCP	WD	XL	Fuse Size	1 PH, 60 Hz	and MOCP
	230-60	207	253	6	315.5	400	484.2	1170.2	350	-	_	_	_	_	_	_	_	_	_	115	40
080,	200-60	187 414	220 506	6 6	347.6	450 200	549.6	1338.6 585.1	400	_	_	_	_	_	_	_	_	_		115	40 40
082	460-60 575-60	518	633	6	157.7 121.2	150	242.1 191.9	465.9	175 150	_	_	_	_		_	_	_	_	_	115 115	40
	380-60	342	418	6	183.5	250	289.7	704.7	225	_	_		_	_	_	_	_	_	_	115	40
	230-60	207	253	8	334.0	450	499.1	1185.1	400	350.0	450	515.1	1201.1	400	357.2	450	522.3	1208.3	400	115	40
090,	200-60 460-60	187 414	220 506	8 8	368.0 167.0	500 225	566.0 249.6	1355.0 592.6	450 200	385.7 175.0	500 225	583.7 257.6	1372.7 600.6	450 200	393.6 178.6	500 225	591.7 261.2	1380.7 604.2	450 200	115 115	40 40
092	575-60	518	633	8	128.5	175	197.8	471.8	150	134.9	175	204.2	478.2	150	137.7	175	207.0	481.0	150	115	40
	380-60	342	418	8	194.5	250	298.6	713.6	225	204.2	250	308.3	723.3	225	208.6	250	312.6	727.6	250	115	40
	230-60 200-60	207 187	253 220	8 8	364.6 401.3	500 500	536.7 607.8	1278.7 1461.8	400 450	380.6 419.0	500 500	552.7 625.5	1294.7 1479.5	450 500	387.8 427.0	500 500	559.9 633.5	1301.9 1487.5	450 500	115 115	40 40
100, 102	460-60	414	506	8	182.3	250	268.4	639.4	200	190.3	250	276.4	647.4	225	193.9	250	280.0	651.0	225	115	40
	575-60 380-60	518 342	633 418	8 8	139.5 212.7	175 250	211.7 321.7	508.7 770.7	175 250	145.9 222.4	175 300	218.1 331.3	515.1 780.3	175 250	148.8 226.7	200 300	220.9 335.7	517.9 784.7	175 250	115 115	40 40
	230-60	207	253	8	405.7	500	536.7		450	421.7	500	552.7	700.0	500	428.9	600	559.9	-	500	115	40
440	200-60	187	220	8	446.2	600	607.8	_	500	463.9	600	625.5	4	600	471.9	600	633.5	_	600	115	40
110, 112	460-60	414	506	8	202.4	250	268.4	639.4	225	210.4	250	276.4	647.4	250	214.0	300	280.0	651.0	250	115	40
	575-60 380-60	518 342	633 418	8 8	155.5 236.4	200 300	211.7 321.7	508.7 770.7	175 300	161.9 246.1	225 300	218.1	515.1 780.3	200 300	164.8 250.4	225 350	220.9 335.7	517.9 784.7	200 300	115 115	40 40
	230-60	207	253	8	438.6	600	569.6	_	500	454.6	600	585.6	-	500	461.8	600	592.8	_	600	115	40
120,	200-60	187	220	8	482.2	600	643.8	_	600	499.9	600	661.5	_	600	507.8	600	669.4	_	600	115	40
122	460-60 575-60	414 518	506 633	8 8	218.4 168.4	300 225	284.4 224.5	655.4 521.5	250 200	226.4 174.8	300 225	292.4	663.4 527.9	250 200	230.0 177.7	300 225	296.0 233.8	667.0 530.8	300 200	115 115	40 40
	380-60	342	418	8	255.3	350	340.6	789.6	300	265.0	350	350.3	799.3	300	269.4	350	354.7	803.7	300	115	40
	230-60	207	253	10	534.7	80 0	796.7	_	700	550.7	800	812.7	_	700	557.9	800	819.9	_	700	115	40
140,	200-60 460-60	187 414	220 506	10 10	588.5 267.3	800 400	906.1 398.4	1030.4	700 350	606.2 275.3	800 400	923.8 406.4	1038.4	700 350	614.1 278.9	800 400	931.8 410.0	— 1042.0	700 350	115 115	40 40
142	575-60	518	633	10	205.0	300	315.5	821.5	250	211.4	300	321.9	827.9	250	214.3	300	324.7	830.7	250	115	40
	380-60	342	418	10	311.2	450	478.9	1243.9	350	320.9	450	488.6	1253.6	400	325.3	450	493.0	1258.0	400	115	40
	230-60 200-60	207 187	253 220	10 10	621.1 682.8	80 0 1000	997.6 1136.1		700 800	637.1 700.5	800 1000	1013.6 1153.8		800	644.3 708.5	800 1000	1020.8 1161.7	_	800 800	115 115	40 40
160, 162	460-60	414	506	10	309.7	450	498.4	1306.4	350	317.7	450	506.4	1314.4	400	321.3	450	510.0	1318.0	400	115	40
	575-60 380-60	518 342	633 418	10 10	238.1	350 500	396.3	1042.3	300	244.5 370.8	350 500	402.7	1048.7	300	247.4 375.2	350	405.6	1051.6 1591.9	300 450	115	40 40
-	230-60	207	253	12	361.1 673.2	800	598.9 935.2	1577.9	450 800	370.6	_	608.6	1587.6	450	3/3.2	500	612.9	1591.9	430	115 115	60
	200-60	187	220	12	740.9	1000	1058.5	_	1000	1	_	_	1		_	_	_		_	115	60
180, 182	460-60	414	506	12 12	336.6	450	467.6	1099.6	400	_	_	_	_	_	_	_	_	_	_	115	60
	575-60 380-60	518 342	633 418	12	258.3 391.5	350 500	368.8 559.2	874.8 1324.2	300 450	-	_	-	_	_	-	_		_	_	115 115	60 60
	230-60	207	253	12	769.6	1000	1146.0	-	1000	7		E			7	_	_	_	_	115	60
200,	200-60	187	220	12	846.0	1000	1299.2		1000		_	7	_/	Albert	-7	n —	_	_	_	115	60
202	460-60 575-60	414 518	506 633	12 12	383.9 294.8	500 400	572.6 453.0	1380.6 1099.0	450 350	1	105.1	-	-	1-A	-				_	115 115	60 60
	380-60	342	418	12	447.2	600	685.0	1664.0	500	46				Λ	(\mathbf{L})					115	60
	230-60	207	253	13	850.2	1200	1152.0	_	1000	-			-	1		_	-	_	_	115	60
220, 222	200-60 460-60	187 414	220 506	13 13	935.1 424.7	1200 600	1305.9 575.6	1383.6	1200 500	_	_	_	_		_	_	_	_	_	115 115	60 60
222	575-60	518	633	13	326.3	450	455.4	1101.4	400	_	-	_	_	-	-	-	_	-	_	115	60
	380-60	342	418	13	494.5	700	688.6	1667.6	600				_						_	115	60
	230-60 200-60	207 187	253 220	13 13	910.0 1001.1	1200 1200	1211.8 1371.8	_	1200 1200	_	_	_	_	_	_	_	_	_	_	115 115	60 60
240, 242	460-60	414	506	13	455.0	600	605.9	1413.9	600	_	_	_	_	_	_	_	_	_	_	115	60
	575-60 380-60	518 342	633 418	13 13	349.6 529.5	450 700	478.7 723.5	1124.7 1702.5	400 600	_	_	_	_		_	_	_	_		115 115	60 60
	460-60	414	506	15	516.5	700	777.6	1999.6	600		_	_	_	_	_	_	_	_	_	115	60
260, 262	575-60	518	633	15	396.4	500	616.2	1594.2	450	_	_	_	_	_	_	_	_	_	_	115	60
	380-60	342	418	15	600.2	800	933.9	2412.9	700		_			_	_		_		_	115	60
280,	460-60 575-60	414 518	506 633	16 16	549.7 422.1	800 600	810.9 641.9	2032.9 1619.9	700 500	_	_	_	_		_	_		_		115 115	60 60
282	380-60	342	418	16	638.7	800	972.4	2451.4	800		_	_	_		_	_	_	_	_	115	60
200	460-60	414	506	16	610.9	800	810.9	2032.9	700		_]	_	-	-	_ ¯	_ ¯	-	-]	_	115	60
300, 302	575-60 380-60	518 342	633 418	16 16	468.7 710.3	600 1000	641.9 972.4	1619.9 2451.4	600 800	_	_	_	_		_		_	_	_	115 115	60 60
	460-60	414	506	18	624.3	800	885.5	2107.5	700											115	60
325, 327	575-60	518	633	18	479.1	600	698.9	1676.9	600	_	_	_	_		_	_		_	_	115	60
321	380-60	342	418	18	724.7	1000	1058.4	2537.4	800		_		_		_	_	_	_	_	115	60

Table 13 — 30XA080-500 Electrical Data, Single Point (Standard Condenser Fan Motors)

	UNIT \	/OLT	\GE	NUMBER	N	IO HYDR	ONIC PA	CKAGE			5 HP F	UMP, 34	50 RPM			7.5 HP F	UMP, 34	50 RPM		CONTROL	CIRCUIT
UNIT 30XA	V-Hz	Sup	plied	OF COND			IC	F	Rec			I	CF	Rec			IC	F	Rec	Voltage	MCA
OUNT	(3 Ph)	Min	Max	FANS	MCA	MOCP	WD	XL	Fuse Size	MCA	MOCP	WD	XL	Fuse Size	MCA	MOCP	WD	XL	Fuse Size	1 PH, 60 Hz	and MOCP
	460-60	414	506	18	685.5	800	885.5	2107.5	800	_	_	_	_	_	_	_	_	_	_	115	60
350, 352	575-60	518	633	18	525.7	700	698.9	1676.9	600	_	_	_	_	_	_	_	_	_	_	115	60
	380-60	342	418	18	796.3	1000	1058.4	2537.4	1000	_	_	_	_	_	_	_	_	_	_	115	60

LEGEND

ICF MCA MOCP WD XL Instantaneous Current Flow Minimum Circuit Amps
Maximum Overcurrent Protection
Wye-Delta

Across-the-Line

- NOTES:

 1. Units are suitable for use on electrical systems where voltage supplied to the unit terminals is not below or above the listed minimum and maximum limits. Maximum allowable phase imbalance is: voltage, 2%; amps 10%.

 2. Cooler heater is wired into the control circuit so it is always operable as long as the control power supply disconnect is on, even if any safety device is open.

 3. For MCA that is less than or equal to 380 amps, 3 conductors are required.

 4. For MCA between 381 and 760 amps, 6 conductors are required.

 5. For MCA between 761 and 1140 amps, 9 conductors are required.

- For MCA between 1141 and 1520 amps, 12 conductors are required. Calculation of conductors required is based on 75 C copper wire. Wiring for main field supply must be rated 75 C minimum. Use copper for all units.
 - a. Incoming wire size range for the terminal block is no. 4 AWG (American Wire Gage) to 500 kcmil.
 - b. Incoming wire size range of non-fused disconnect with MCA up to 599.9 amps is 3/0 to 500 kcmil.
 - c. Incoming wire size range of non-fused disconnect with MCA from 600 to 799.9 amps is 1/0 to 500 kcmil.
- d. Incoming wire size range of non-fused disconnect with MCA from 800 to 1199.9 amps is 250 kcmil to 500 kcmil.

 Data provided circuit A/circuit B where there are two circuits.

 Standard condenser fan motors are not used with sizes 30XA-401, 451, 476, and 501. These sizes use high ambient temperature condenser fans.

Table 13 — 30XA080-500 Electrical Data, Single Point (Standard Condenser Fan Motors) (cont)

	UNIT	VOLTA	GF			10 HP	PUMP, 3450	D RPM			15 HP	PUMP. 3450) RPM		CONTROL	CIRCUIT
UNIT			plied	NUMBER OF COND			IC		Rec			IC		Rec	Voltage	MCA
30XA	V-Hz (3 Ph)	Min	Max	FANS	MCA	MOCP	WD	XL	Fuse Size	MCA	MOCP	WD	XL	Fuse Size	1 PH, 60 Hz	and MOCP
	230-60	207	253	6	_	_	_	_	_	_	_	_	_	_	115	40
080,	200-60 460-60	187 414	220 506	6 6	_	_	_	_	_	_	_	_	_	_	115 115	40 40
082	575-60	518	633	6	_	_	_	_	_	_	_	_	_	_	115	40
	380-60	342	418	6	_	_	_	_	_	_	_	_	_	_	115	40
	230-60	207	253	8	364.4	450	529.5	1215.5	400	379.0	500	544.1	1230.1	450	115	40
090,	200-60	187	220	8	401.6	500	599.6	1388.6	450	417.7	500	615.8	1404.8	500	115	40
092	460-60 575-60	414 518	506 633	8 8	182.2 140.6	225 175	264.8 209.9	607.8 483.9	200 175	189.5 146.5	250 175	272.1 215.8	615.1 489.8	225 175	115 115	40 40
	380-60	342	418	8	212.9	250	317.0	732.0	250	221.8	250	325.8	740.8	250	115	40
	230-60	207	253	8	395.0	500	567.1	1309.1	450	409.6	500	581.7	1323.7	450	115	40
100,	200-60	187	220	8	434.9	500	641.5	1495.5	500	451.1	600	657.6	1511.6	500	115	40
102	460-60 575-60	414 518	506 633	8 8	197.5 151.7	250 200	283.6 223.8	654.6 520.8	225 175	204.8 157.5	250 200	290.9 229.7	661.9 526.7	225 175	115 115	40 40
	380-60	342	418	8	231.1	300	340.1	789.1	300	239.9	300	348.9	797.9	300	115	40
	230-60	207	253	8	436.1	600	567.1	_	500	450.7	600	581.7	_	500	115	40
110,	200-60	187	220	8	479.9	600	641.5	_	600	496.0	600	657.6	_	600	115	40
112	460-60 575-60	414 518	506 633	8 8	217.6 167.7	300 225	283.6 223.8	654.6 520.8	250 200	224.9 173.5	300 225	290.9 229.7	661.9 526.7	250 200	115 115	40 40
	380-60	342	418	8	254.8	350	340.1	789.1	300	263.6	350	348.9	797.9	300	115	40
	230-60	207	253	8	469.0	600	600.0	_	600	483.6	600	614.6	_	600	115	40
120,	200-60	187	220	8	515.8	700	677.4	_	600	531.9	700	693.5	_	600	115	40
122	460-60 575-60	414	506	8	233.6	300 225	299.6	670.6	300	240.9	300 250	306.9	677.9	300	115	40
	380-60	518 342	633 418	8 8	180.5 273.7	350	236.7 359.0	533.7 808.0	200 300	186.4 282.6	350	242.5 367.9	539.5 816.9	225 350	115 115	40 40
	230-60	207	253	10	565.1	800	827.1	_	700	579.7	800	841.7	_	700	115	40
440	200-60	187	220	10	622.1	800	939.7		700	638.2	800	955.9	_	800	115	40
140, 142	460-60	414	506	10	282.5	400	413.6	1045.6	350	289.8	400	420.9	1052.9	350	115	40
	575-60 380-60	518 342	633 418	10 10	217. 1 329.6	300 450	327.6 497.3	833.6 1262.3	250 400	223.0 338.5	300 450	333.5 506.2	839.5 1271.2	250 400	115 115	40 40
	230-60	207	253	10	651.5	800	1028.0	1202.0	800	666.1	800	1042.6		800	115	40
	200-60	187	220	10	716.4	1000	1169.7		1000	732.6	1000	1185.8		1000	115	40
160, 162	460-60	414	506	10	324.9	450	513.6	1321.6	400	332.2	450	520.9	1328.9	400	115	40
	575-60 380-60	518 342	633 418	10 10	250.2 379.5	350 500	408.5 617.3	1054.5 1596.3	300 450	256.1 388.4	350 500	414.3 626.1	1060.3 1605.1	300 450	115 115	40 40
-	230-60	207	253	12	3/9.5		017.3	1390.3	430	300.4	300	020.1	1005.1	430	115	60
	200-60	187	220	12	_		_	\ <u></u>	_		P _	_	_		115	60
180, 182	460-60	414	506	12	_	_	_	_	_	_	_	_	_	_	115	60
	575-60 380-60	518 342	633 418	12 12					_	_	_	_	_	_	115 115	60 60
	230-60	207	253	12		-		7	_		4/	1-1		_	115	60
	200-60	187	220	12				-	-)Z /	77	_		115	60
200, 202	460-60	414	506	12		-	_	_	_		- The		_	_	115	60
	575-60	518	633	12	ATIT		AFI	IAC	P41/	71/	LZC	A DV		_	115	60
-	380-60	342	418	12	All	(E/	40	JIN	7	JI	7FY/	ADV		_	115	60
	230-60 200-60	207 187	253 220	13 13		_	_	_			_	_	_	_	115 115	60 60
220, 222	460-60	414	506	13	_	_	_	_	_	_	_	_	_	_	115	60
	575-60 380-60	518 342	633 418	13	_	_	_	_ _	_ _	_ _	_	_	_ _	_	115 115	60 60
	230-60	207	253	13	_		_	_		_	_	_	_			60
	200-60	187	253	13 13	_	_	_	_		_	_	_	_	_	115 115	60
240, 242	460-60	414	506	13	_	_	_	_	_	_	_	_	_	_	115	60
	575-60	518	633	13	_	_	_	_	_	_	_	_	_	_	115	60
-	380-60	342	418	13					_	_	_			_	115	60
260,	460-60 575-60	414 518	506 633	15 15	_	_	_	_	_	_	_	_	_	_	115 115	60 60
262	380-60	342	418	15	_	_	_	_	_	_		_	_	_	115	60
202	460-60	414	506	16	-		-	-	_	_	-	-		1	115	60
280, 282	575-60	518	633	16	_	_	_	_	_	-	_	_	_	_	115	60
	380-60	342	418	16					_	_	_			_	115	60
300,	460-60 575-60	414 518	506 633	16 16	_	_		_	_	_			_	_	115 115	60 60
302	380-60	342	418	16	_	_	_	_	_			_		_	115	60
	460-60	414	506	18	_				_					_	115	60
325, 327	575-60	518	633	18	-	_	-	-	-	-	-	-	_	_	115	60
	380-60	342	418	18	_	_	_	_	_	_	_	_	_	_	115	60

Table 13 — 30XA080-500 Electrical Data, Single Point (Standard Condenser Fan Motors) (cont)

	UNIT	VOLTA	GE	NUMBER		10 HP	PUMP, 345	0 RPM			15 HP	PUMP, 345	RPM		CONTROL	CIRCUIT
UNIT 30XA	V-Hz	Sup	plied	OF COND			IC	F	Rec			IC	F	Rec	Voltage	MCA
30XA V-1	(3 Ph)	Min	Max	FANS	MCA	MOCP	WD	XL	Fuse Size	MCA	MOCP	WD	XL	Fuse Size	1 PH, 60 Hz	and MOCP
	460-60	414	506	18	_	_	_	_	_	_	_	_	_	_	115	60
350, 352	575-60	518	633	18	_	_	_	_	_	_	_	_	_	_	115	60
	380-60	342	418	18	_	_	_	_	_	_	_	_	_	_	115	60

LEGEND

ICF MCA MOCP WD XL Instantaneous Current Flow Minimum Circuit Amps Maximum Overcurrent Protection Wye-Delta Across-the-Line

- NOTES:

 1. Units are suitable for use on electrical systems where voltage supplied to the unit terminals is not below or above the listed minimum and maximum limits. Maximum allowable phase imbalance is voltage, 2%; amps 10%.

 2. Cooler heater is wired into the control circuit so it is always operable as long as the control power supply disconnect is on, even if any safety device is open.

 3. For MCA that is less than or equal to 380 amps, 3 conductors are required.

 4. For MCA between 381 and 760 amps, 6 conductors are required.

 5. For MCA between 761 and 1140 amps, 9 conductors are required.

 6. For MCA between 1141 and 1520 amps, 12 conductors are required.

 7. Calculation of conductors required is based on 75 C copper wire.

 8. Wiring for main field supply must be rated 75 C minimum. Use copper for all units.

 a. Incoming wire size range for the terminal block is no. 4 AWG (American Wire Gage) to

 - - a. Incoming wire size range for the terminal block is no. 4 AWG (American Wire Gage) to 500 kcmil.
 - b. Incoming wire size range of non-fused disconnect with MCA up to 599.9 amps is 3/0 to 500 kcmil.
 Incoming wire size range of non-fused disconnect with MCA from 600 to 799.9 amps is 1/0 to 500 kcmil.
 - d. Incoming wire size range of non-fused disconnect with MCA from 800 to 1199.9 amps is 250 kcmil to 500 kcmil.

 - be 250 km in to 300 km in to 300 km in 500 km

Table 14 — 30XA080-500 Electrical Data, Dual Point (Standard Condenser Fan Motors)

	UNIT \	/OLT/	AGE	NUMBER		NO H	YDRONIC PAC	CKAGE			5 H	IP PUMP, 3450	RPM		CONTROL	CIRCUIT
UNIT 30XA	V-Hz	Sup	plied	OF COND	MCA	МОСР	ı	CF	Rec	MCA	МОСР	J.	CF	Rec	Voltage 1 PH.	MCA
JUAN	(3 Ph)	Min	Max	FANS	MCA	MOCP	WD	XL	Fuse Size	MCA	MOCP	WD	XL	Fuse Size	60 Hz	and MOCP
	230-60 200-60	207 187	253 220	3/3 3/3	173.3/173.3 190.9/190.9	250/ 250 300/ 300	342.0/342.0 392.9/392.9	1028.0/1028.0 1181.9/1181.9	225/225 250/250	_	_	_	_	_	115 115	40 40
080, 082	460-60	414	506	3/3	86.6/ 86.6	125/ 125	171.0/171.0	514.0/ 514.0	110/110	_	_	_	_	_	115	40
	575-60 380-60	518 342	633 418	3/3 3/3	66.5/ 66.5 100.7/100.7	110/ 110 150/ 150	137.2/137.2 206.9/206.9	411.2/ 411.2 621.9/ 621.9	80/ 80 125/125	_		_	_		115 115	40 40
	230-60	207	253	4/4	182.9/182.9	300/ 300	348.0/348.0	1034.0/1034.0	225/225	182.9/198.9	300/300	348.0/364.0	1034.0/1050.0	225/250	115	40
090, 092	200-60 460-60	187 414	220 506	4/4 4/4	201.5/201.5 91.4/ 91.4	300/ 300 150/ 150	399.5/399.5 174.0/174.0	1188.5/1188.5 517.0/ 517.0	250/250 110/110	201.5/219.2 91.4/ 99.4	300/350 150/150	399.5/417.2 174.0/182.0	1188.5/1206.2 517.0/ 525.0	250/300 110/125	115 115	40 40
092	575-60 380-60	518 342	633 418	4/4 4/4	70.3/ 70.3 106.5/106.5	110/ 110 175/ 175	139.6/139.6 210.5/210.5	413.6/ 413.6 625.5/ 625.5	90/ 90 125/125	70.3/ 76.7 106.5/116.1	110/125 175/175	139.6/146.0 210.5/220.2	413.6/ 420.0 625.5/ 635.2	90/ 90 125/150	115 115	40 40
	230-60	207	253	4/4	199.9/199.9	300/ 300	372.0/372.0	1114.0/1114.0	250/250	199.9/215.9	300/350	372.0/388.0	1114.0/1130.0	250/300	115	40
100,	200-60 460-60	187 414	220 506	4/4 4/4	220.0/220.0 99.9/ 99.9	350/ 350 150/ 150	426.5/426.5 186.0/186.0	1280.5/1280.5 557.0/ 557.0	300/300 125/125	220.0/237.7 99.9/107.9	350/350 150/175	426.5/444.2 186.0/194.0	1280.5/1298.2 557.0/ 565.0	300/300 125/150	115 115	40 40
102	575-60 380-60	518 342	633 418	4/4 4/4	76.4/ 76.4 116.5/116.5	125/ 125 175/ 175	148.6/148.6 225.5/225.5	445.6/ 445.6 674.5/ 674.5	90/ 90 150/150	76.4/ 82.8 116.5/126.2	125/125 175/200	148.6/155.0 225.5/235.2	445.6/ 452.0 674.5/ 684.2	90/100 150/150	115 115	40 40
	230-60	207	253	4/4	241.0/199.9	400/ 300	372.0/372.0	——————————————————————————————————————	300/250	241.0/215.9	400/350	372.0 /388.0	——————————————————————————————————————	300/300	115	40
110,	200-60 460-60	187 414	220 506	4/4 4/4	264.9/220.0 120.0/ 99.9	450/ 350 200/ 150	426.5/426.5 186.0/186.0	 557.0/557.0	350/300 150/125	264.9/237.7 120.0/107.9	450/350 200/175	426.5/444.2 186.0/194.0	 557.0/ 565.0	350/300 150/150	115 115	40 40
112	575-60	518	633	4/4	92.5/ 76.4	150/ 125	148.6/148.6	445.6/445.6	110/90	92.5/ 82.8	150/125	148.6/155.0	445.6/ 452.0	110/100	115	40
	380-60	342	418 253	4/4	140.2/116.5	225/ 175	225.5/225.5	674.5/674.5	175/150	140.2/126.2	225/200	225.5/235.2	674.5/ 684.2	175/150	115	40
120,	230-60 200-60	207 187	220	4/4	241.0/241.0 264.9/264.9	400/ 400 450/ 450	372.0/372.0 426.5/426.5	_	300/300 350/350	241.0/257.0 264.9/282.6	400/400 450/450	372.0/388.0 426.5/444.2		300/350 350/350	115 115	40
122	460-60 575-60	414 518	506 633	4/4 4/4	120.0/120.0 92.5/ 92.5	200/ 200 150/ 150	186.0/186.0 148.6/148.6	557.0/557.0 445.6/445.6	150/150 110/110	120.0/128.0 92.5/ 98.9	200/200 150/150	186.0/194.0 148.6/155.0	557.0/ 565.0 445.6/ 452.0	150/150 110/125	115 115	40 40
	380-60	342	418	4/4	140.2/140.2	225/ 225	225.5/225.5	674.5/674.5	175/175	140.2/149.9	225/250	225.5/235.2	674.5/ 684.2	175/200	115	40
	230-60 200-60	207 187	253 220	6/4 6/4	370.0/199.9 407.2/220.0	600/ 300 700/ 350	632.0/372.0 724.8/426.5	_	450/250 500/300	370.0/215.9 407.2/237.7	600/350 700/350	632.0/388.0 724.8/444.2		450/300 500/300	115 115	40 40
140, 142	460-60 575-60	414 518	506 633	6/4 6/4	185.0/ 99.9 141.9/ 76.4	300/ 150 225/ 125	316.0/186.0 252.4/148.6	948.0/557.0	225/125 175/ 90	185.0/107.9	300/175 225/125	316.0/194.0 252.4/155.0	948.0/ 565.0 758.4/ 452.0	225/150 175/100	115	40 40
	380-60	342	418	6/4	215.1/116.5	350/ 175	382.8/225.5	758.4/445.6 1147.8/674.5	300/150	141.9/ 82.8 215.1/126.2	350/200	382.8/235.2	1147.8/ 684.2	300/150	115 115	40
	230-60	207	253	6/4	423.5/241.0	700/ 400	800.0/372.0	_	600/300	423.5/257.0	700/400	800.0/388.0	_	600/350	115	40
160, 162	200-60 460-60	187 414	220 506	6/4 6/4	465.6/264.9 211.3/120.0	800/ 450 350/ 200	918.8/426.5 400.0/186.0	1208.0/557.0	600/350 250/150	465.6/282.6 211.3/128.0	800/450 350/200	918.8/444.2 400.0/194.0	1208.0/ 565.0	600/350 250/150	115 115	40 40
102	575-60 380-60	518 342	633 418	6/4 6/4	162.2/ 92.5 246.0/140.2	250/ 150 400/ 225	320.4/148.6 483.8/225.5	966.4/445.6 1462.8/674.5	200/110 300/175	162.2/ 98.9 246.0/149.9	250/150 400/250	320.4/155.0 483.8/235.2	966.4/ 452.0 1462.8/ 684.2	200/125 300/200	115 115	40 40
	230-60	207	253	6/6	370.0/370.0	600/ 600	632.0/632.0	_	450/450	_	_	_	—	_	115	60
180,	200-60 460-60	187 414	220 506	6/6 6/6	407.2/407.2 185.0/185.0	700/ 700 300/ 300	724.8/724.8 316.0/316.0	948.0/ 948.0	500/500 225/225	_					115 115	60 60
182	575-60	518	633	6/6	141.9/141.9	225/ 225	252.4/252.4	758.4/ 758.4	175/175		_	N.E	_	_	115	60
	380-60 230-60	342 207	418 253	6/6 6/6	215.1/215.1 423.5/423.5	350/ 350 700/ 700	382.8/382.8 800.0/800.0	1147.8/1147.8	300/300					_	115 115	60
200.	200-60 460-60	187 414	220 506	6/6 6/6	465.6/465.6 211.3/211.3	800/ 800 350/ 350	918.8/918.8 400.0/400.0	1208.0/1208.0	600/600 250/250	_	_	_	_	–	115	60 60
202	575-60	518	633	6/6	162.2/162.2	250/ 250	320.4/320.4	966.4/ 966.4	200/200		=	= //	_	_	115 115	60
	380-60	342	418	6/6	246.0/246.0	400/ 400	483.8/483.8	1462.8/1462.8	300/300			-/	_		115	60
220.	230-60 200-60	207 187	253 220	7/6 7/6	504.2/423.5 554.7/465.6	800/ 700 800/ 800	806.0/800.0 925.4/918.8	=_/	600/600 700/600			all -	_	_	115 115	60 60
222	460-60 575-60	414 518	506 633	7/6 7/6	252.1/211.3 193.7/162.2	400/ 350 300/ 2 50	403.0/400.0 322.8/320.4	1211.0/1208.0 968.8/ 966.4	300/250 250/200	_	=	V =			115 115	60 60
	380-60	342	418	7/6	293.3/246.0	500/ 400	487.4/483.8	1466.4/1462.8	350/300	_	_	// -		_	115	60
	230-60	207 187	253 220	7/6 7/6	504.2/498.2 554.7/548.0	800/ 800 800/ 800	806.0/800.0 925.4/918.8	M/E	600/600 700/700		= 9		_		115 115	60 60
240, 242	460-60	414	506	7/6	252.1/249.1	400/ 400	403.0/400.0	1211.0/1208.0	300/300	=	-/	_	_	_	115	60
	575-60 380-60	518 342	633 418	7/6 7/6	193.7/191.3 293.3/289.7	300/ 300 500/ 500	322.8/320.4 487.4/483.8	968.8/ 966.4 1466.4/1462.8	250/250 350/350	=	1	_	_		115 115	60 60
260,	460-60	414	506	9/6	343.9/211.3	500/ 350	605.0/400.0	1827.0/1208.0	450/250	- 5	_	_	_	_	115	60
262	575-60 380-60	518 342	633 418	9/6 9/6	263.8/162.2 399.0/246.0	450/ 250 600/ 400	483.6/320.4 732.7/483.8	1461.6/ 966.4 2211.7/1462.8	350/200 500/300	-		_	_		115 115	60 60
280.	460-60	414	506	9/7	343.9/252.1	500/ 400	605.0/403.0	1827.0/1211.0	450/300		-	_	_	_	115	60
282	575-60 380-60	518 342	633 418	9/7 9/7	263.8/193.7 399.0/293.3	450/ 300 600/ 500	483.6/322.8 732.7/487.4	1461.6/ 968.8 2211.7/1466.4	350/250 500/350	V-			_		115 115	60 60
300.	460-60	414	506	10/6	408.0/249.1	700/ 400	608.0/400.0	1830.0/1208.0	500/300	-	V	1 6	_	_	115	60
302	575-60 380-60	518 342	633 418	10/6 10/6	312.8/191.3 474.2/289.7	500/ 300 800/ 500	486.0/320.4 736.3/483.8	1464.0/ 966.4 2215.3/1462.8	400/250 600/350		45	/	_		115 115	60 60
325,	460-60	414	506	9/9	343.9/343.9	500/ 500	605.0/605.0	1827.0/1827.0	450/450	-07.0	34-41	A 100	_	_	115	60
325,	575-60 380-60	518 342	633 418	9/9 9/9	263.8/263.8 399.0/399.0	450/ 450 600/ 600	483.6/483.6 732.7/732.7	1461.6/1461.6 2211.7/2211.7	350/350 500/500	C)Izl(A BC			115 115	60 60
350	460-60	414	506	9/9	405.0/343.9	700/ 500	605.0/605.0	1827.0/1827.0	500/450	7	1 4/	JU/	_		115	60
350, 352	575-60 380-60	518 342	633 418	9/9 9/9	310.4/263.8 470.5/399.0	500/ 450 800/ 600	483.6/483.6 732.7/732.7	1461.6/1461.6 2211.7/2211.7	400/350 600/500	_		_	_		115 115	60 60
	300-00	0+2	710	3/3	-10.0/033.U	300/ 000	102.1/102.1	LE 11.1/6611./	300/300						113	- 00

- NOTES:

 1. Units are suitable for use on electrical systems where voltage supplied to the unit terminals is not below or above the listed minimum and maximum limits. Maximum allowable phase imbalance is: voltage, 2%; amps 10%.

 2. Cooler heater is wired into the control circuit so it is always operable as long as the control power supply disconnect is on, even if any safety device is open.

 3. For MCA that is less than or equal to 380 amps, 3 conductors are required.

 4. For MCA between 381 and 760 amps, 6 conductors are required.

 5. For MCA between 761 and 1140 amps, 9 conductors are required.

 6. For MCA between 1141 and 1520 amps, 12 conductors are required.

 7. Calculation of conductors required is based on 75 C copper wire.

 8. Wiring for main field supply must be rated 75 C minimum. Use copper for all units.

 a. Incoming wire size range for the terminal block is no. 4 AWG (American Wire Gage) to

 - - a. Incoming wire size range for the terminal block is no. 4 AWG (American Wire Gage) to 500 kcmil.
 - b. Incoming wire size range of non-fused disconnect with MCA up to 599.9 amps is 3/0 to 500 kcmil.
 - c. Incoming wire size range of non-fused disconnect with MCA from 600 to 799.9 amps is 1/0 to 500 kcmil.

 - d. Incoming wire size range of non-fused disconnect with MCA from 800 to 1199.9 amps is 250 kcmil to 500 kcmil.

 Data provided circuit A/circuit B where there are two circuits.

 Standard condenser fan motors are not used with sizes 30XA-401, 451, 476, and 501.

 These sizes use high ambient temperature condenser fans.

Table 14 — 30XA080-500 Electrical Data, Dual Point (Standard Condenser Fan Motors) (cont)

	l															
UNIT	UNIT \			NUMBER OF		7.5 l	HP PUMP, 345		_		10 H	IP PUMP, 345			CONTROL	
30XA	V-Hz (3 Ph)	Sup	olied Max	COND	MCA	МОСР	WD	CF XL	Rec Fuse Size	MCA	МОСР	WD	CF XL	Rec Fuse Size	Voltage 1 PH, 60 Hz	MCA and MOCP
	230-60	207	253	3/3			_	_	_		_	_			115	40
	200-60	187	220	3/3	_	_	_	_	_	_	_	_	_	_	115	40
080, 082	460-60	414	506	3/3	_	_	_	_	_	_	_	_	_	_	115	40
	575-60	518	633	3/3	_	_	_	_	_	_	_	_	_	_	115	40
	380-60	342	418	3/3	_	_		_	_	_	_	_	_	_	115	40
	230-60	207	253	4/4	182.9/206.1	300/300	348.0/371.2	1034.0/1057.2	225/250	182.9/213.3	300/300	348.0/378.4	1034.0/1064.4	225/250	115	40
090.	200-60	187	220	4/4	201.5/227.1	300/350	399.5/425.2	1188.5/1214.2	250/300	201.5/235.1	300/350	399.5/433.2	1188.5/1222.2	250/300	115	40
092	460-60 575-60	414 518	506 633	4/4 4/4	91.4/103.0 70.3/ 79.6	150/150 110/125	174.0/185.6 139.6/148.9	517.0/ 528.6 413.6/ 422.9	110/125 90/100	91.4/106.6 70.3/ 82.5	150/150 110/125	174.0/189.2 139.6/151.8	517.0/ 532.2 413.6/ 425.8	110/125 90/100	115 115	40 40
	380-60	342	418	4/4	106.5/120.5	175/175	210.5/224.6	625.5/ 639.6	125/150	106.5/124.9	175/175	210.5/228.9	625.5/ 643.9	125/150	115	40
	230-60	207	253	4/4	199.9/223.1	300/350	372.0/395.2	1114.0/1137.2	250/300	199.9/230.3	300/350	372.0/402.4	1114.0/1144.4	250/300	115	40
	200-60	187	220	4/4	220.0/245.7	350/400	426.5/452.2	1280.5/1306.2	300/300	220.0/253.6	350/400	426.5/460.2	1280.5/1314.2	300/300	115	40
100, 102	460-60	414	506	4/4	99.9/111.5	150/175	186.0/197.6	557.0/ 568.6	125/150	99.9/115.1	150/175	186.0/201.2	557.0/ 572.2	125/150	115	40
	575-60	518	633	4/4	76.4/ 85.7	125/125	148.6/157.9	445.6/ 454.9	90/100	76.4/ 88.6	125/125	148.6/160.8	445.6/ 457.8	90/110	115	40
	380-60	342	418	4/4	116.5/130.6	175/200	225.5/239.6	674.5/ 688.6	150/175	116.5/134.9	175/200	225.5/243.9	674.5/ 692.9	150/175	115	40
	230-60	207	253	4/4	241.0/223.1	400/350	372.0/395.2	_	300/300	241.0/230.3	400/350	372.0/402.4	_	300/300	115	40
110,	200-60	187	220	4/4	264.9/245.7	450/400	426.5/452.2	_	350/300	264.9/253.6	450/400	426.5/460.2	-	350/300	115	40
112	460-60	414	506	4/4	120.0/111.5	200/175	186.0/197.6	557.0/ 568.6	150/150	120.0/115.1	200/175	186.0/201.2	557.0/ 572.2	150/150	115	40
	575-60 380-60	518 342	633 418	4/4 4/4	92.5/ 85.7 140.2/130.6	150/125 225/200	148.6/157.9 225.5/ 239.6	445.6/ 454.9 674.5/ 688.6	110/100 175/175	92.5/ 88.6 140.2/134.9	150/125 225/200	148.6/160.8 225.5/243.9	445.6/ 457.8 674.5/ 692.9	110/110 175/175	115 115	40 40
								017.5/ 000.0			//		017.5/ 032.8			
	230-60 200-60	207 187	253 220	4/4 4/4	241.0/264.2 264.9/290.6	400/400 450/450	372.0/395.2 426.5/452.2		300/350 350/350	241.0/271.4 264.9/298.5	400/400 450/450	372.0/402.4 426.5/460.2		300/350 350/350	115 115	40 40
120,	460-60	414	506	4/4	120.0/131.6	200/200	186.0/197.6	557.0/ 568.6	150/175	120.0/135.2	200/200	186.0/201.2	557.0/ 572.2	150/175	115	40
122	575-60	518	633	4/4	92.5/101.8	150/150	148.6/157.9	445.6/ 454.9	110/125	92.5/104.6	150/150	148.6/160.8	445.6/ 457.8	110/125	115	40
	380-60	342	418	4/4	140.2/154.3	225/250	225.5/239.6	674.5/ 688.6	175/200	140.2/158.6	225/250	225.5/243.9	674.5/ 692.9	175/200	115	40
	230-60	207	253	6/4	370.0/223.1	600/350	632.0/395.2	_	450/300	370.0/230.3	600/350	632.0/402.4	_	450/300	115	40
140	200-60	187	220	6/4	407.2/245.7	700/400	724.8/452.2	_	500/300	407.2/253.6	700/400	724.8/460.2	_	500/300	115	40
140, 142	460-60	414	506	6/4	185.0/111.5	300/175	316.0/197.6	948.0/ 568.6	225/150	185.0/115.1	300/175	316.0/201.2	948.0/ 572.2	225/150	115	40
	575-60	518	633	6/4	141.9/ 85.7	225/125	252.4/157.9	758.4/ 454.9	175/100	141.9/ 88.6	225/125	252.4/160.8	758.4/ 457.8	175/110	115	40
	380-60	342	418	6/4	215.1/130.6	350/200	382.8/239.6	1147.8/ 688.6	300/175	215.1/134.9	350/200	382.8/243.9	1147.8/ 692.9	300/175	115	40
	230-60 200-60	207 187	253 220	6/4 6/4	423.5/264.2 465.6/290.6	700/400 800/450	800.0/395.2 918.8/452.2	1	600/350 600/350	423.5/271.4 465.6/298.5	700/400 800/450	800.0/402.4 918.8/460.2	_	600/350 600/350	115 115	40 40
160,	460-60	414	506	6/4	211.3/131.6	350/200	400.0/197.6	1208.0/ 568.6	250/175	211.3/135.2	350/200	400.0/201.2	1208.0/ 572.2	250/175	115	40
162	575-60	518	633	6/4	162.2/101.8	250/150	320.4/157.9	966.4/ 454.9	200/125	162.2/104.6	250/150	320.4/160.8	966.4/ 457.8	200/125	115	40
	380-60	342	418	6/4	246.0/154.3	400/250	483.8/239.6	1462.8/ 688.6	300/200	246.0/158.6	400/250	483.8/243.9	1462.8/ 692.9	300/200	115	40
	230-60	207	253	6/6	_	_			_	- 7	_	_	_	_	115	60
400	200-60	187	220	6/6	_	_	_		_	-	_	_	_	_	115	60
180, 182	460-60	414	506	6/6	_	_	-	_	_	_	_	_	_	_	115	60
	575-60 380-60	518 342	633 418	6/6 6/6	_	-				_	_	8 -	_	_	115	60 60
-							-			_	f-	A -	<u> </u>		115	
	230-60 200-60	207 187	253 220	6/6 6/6	_		_					1	_	_	115 115	60 60
200,	460-60	414	506	6/6	_						_			_	115	60
202	575-60	518	633	6/6	- DA1	US F		II	212	NI POL	1-4	0.70	_	_	115	60
	380-60	342	418	6/6	$-\Delta$	ILIL	. A(() N)+((-)	Λ - V) ()		_	115	60
	230-60	207	253	7/6		111/15	-		-1	101	1/11		_	_	115	60
220	200-60	187	220	7/6	–	_	_	_	-	–	-	_	_	_	115	60
220, 222	460-60	414	506	7/6	_	_	_	_	-	-	-	_	_	_	115	60
	575-60 380-60	518 342	633 418	7/6 7/6	_	_	_	_			_	_	_	_	115 115	60 60
												_				
	230-60 200-60	207 187	253 220	7/6 7/6	_		_	_		_	_	_	_	_	115 115	60 60
240, 242	460-60	414	506	7/6	_	_	_	_	_	_	_	_	_	_	115	60
242	575-60	518	633	7/6	_	_	_	_	_	_	_	_	_	_	115	60
	380-60	342	418	7/6				_	_		_	_	_	_	115	60
	460-60	414	506	9/6	_	_	_	_	_	_	_	_	_	_	115	60
260, 262	575-60	518	633	9/6	_	_	_	_	_	_	_	_	_	_	115	60
	380-60	342	418	9/6								_		_	115	60
200	460-60	414	506	9/7	_	_	_	_	_	_	-	_	_	_	115	60
280, 282	575-60	518	633	9/7	_	_	_	_	-	_	-	-	_	_	115	60
	380-60	342	418	9/7										_	115	60
300,	460-60	414	506	10/6	_	_	_	_	-	_	-	_	_	_	115	60
302	575-60	518	633	10/6	_	_	_	_	-	_	-	-	_	_	115	60 60
	380-60	342	418	10/6		_						_	_	_	115	60
325,	460-60	414	506	9/9	_	_	_	_	_	_	_	_	_	_	115	60
327	575-60 380-60	518 342	633 418	9/9 9/9	_	_	_	_ _		<u> </u>	_		_	_	115 115	60 60
	300-00	342	410	9/9	_			_							115	00

Table 14 — 30XA080-500 Electrical Data, Dual Point (Standard Condenser Fan Motors) (cont)

	UNIT \	/OLT/	AGE	NUMBER		7.5 l	HP PUMP, 345	60 RPM			10 H	IP PUMP, 345	0 RPM		CONTROL	CIRCUIT
(3 Ph)	V-Hz	Sup	plied	OF COND				ICF	Rec				ICF	Rec	Voltage	MCA
	Min	Max	FANS	MCA	MOCP	WD	XL	Fuse Size	MCA	MOCP	WD	XL	Fuse Size	1 PH, 60 Hz	and MOCP	
	460-60	414	506	9/9	_	_	_	_	_	_	_	_	_	_	115	60
350, 352	575-60	518	633	9/9	_	_	_	_	_	_	_	_	_	_	115	60
302	380-60	342	418	9/9	_	_	_	_	_	_	_	_	_	_	115	60

LEGEND

ICF MCA MOCP WD XL Instantaneous Current Flow Minimum Circuit Amps
Maximum Overcurrent Protection
Wye-Delta

Across-the-Line

- NOTES:

 1. Units are suitable for use on electrical systems where voltage supplied to the unit terminals is not below or above the listed minimum and maximum limits. Maximum allowable phase imbalance is voltage, 2%; amps 10%.

 2. Cooler heater is wired into the control circuit so it is always operable as long as the control power supply disconnect is on, even if any safety device is open.

 3. For MCA that is less than or equal to 380 amps, 3 conductors are required.

 4. For MCA between 381 and 760 amps, 6 conductors are required.

 5. For MCA between 761 and 1140 amps, 9 conductors are required.

 6. For MCA between 1414 and 1520 amps, 12 conductors are required.

 7. Calculation of conductors required is based on 75 C copper wire.

 8. Wiring for main field supply must be rated 75 C minimum. Use copper for all units.

 a. Incoming wire size range for the terminal block is no. 4 AWG (American Wire Gage) to

 - - a. Incoming wire size range for the terminal block is no. 4 AWG (American Wire Gage) to 500 kcmil.
 - b. Incoming wire size range of non-fused disconnect with MCA up to 599.9 amps is 3/0 to 500 kcmil.
 Incoming wire size range of non-fused disconnect with MCA from 600 to 799.9 amps is 1/0 to 500 kcmil.

 - d. Incoming wire size range of non-fused disconnect with MCA from 800 to 1199.9 amps is 250 kcmil to 500 kcmil.

 - is 250 ktrill to 300 ktrill. Data provided circuit A/circuit B where there are two circuits. Standard condenser fan motors are not used with sizes 30XA-401, 451, 476, and 501. These sizes use high ambient temperature condenser fans.

Table 14 — 30XA080-500 Electrical Data, Dual Point (Standard Condenser Fan Motors) (cont)

	UNIT	VOLTAG	iE	NUMBER			15 HP PUMP, 3450 F	RPM		CONTROL	CIRCUIT
UNIT	V U-	Sup	plied	OF COND				ICF	Rec	Voltage	MCA
30XA	V-Hz (3 Ph)	Min	Max	FANS	MCA	MOCP	WD	XL	Fuse Size	Voltage 1 PH, 60 Hz	and MOCP
	230-60	207	253	3/3			2	Λ=	0.20	115	40
	200-60	187	220	3/3	_	_	_	_	_	115	40
080, 082	460-60	414	506	3/3	_	_	_	_	_	115	40
082	575-60	518	633	3/3	_	_	_	_	_	115	40
	380-60	342	418	3/3	_	_	_	_	_	115	40
	230-60	207	253	4/4	182.9/227.9	300/350	348.0/393.0	1034.0/1079.0	225/300	115	40
	200-60	187	220	4/4	201.5/251.2	300/350	399.5/449.3	1188.5/1238.3	250/300	115	40
090, 092	460-60	414	506	4/4	91.4/113.9	150/175	174.0/196.5	517.0/ 539.5	110/150	115	40
	575-60	518	633	4/4	70.3/ 88.3	110/125	139.6/157.6	413.6/ 431.6	90/110	115	40
	380-60	342	418	4/4	106.5/133.7	175/200	210.5/237.8	625.5/ 652.8	125/175	115	40
	230-60	207	253	4/4	199.9/244.9	300/350	372.0/417.0	1114.0/1159.0	250/300	115	40
100,	200-60	187	220	4/4	220.0/269.8	350/400	426.5/476.3	1280.5/1330.3	300/350	115	40
102	460-60	414	506	4/4	99.9/122.4	150/175	186.0/208.5	557.0/ 579.5	125/150	115	40
	575-60 380-60	518 342	633 418	4/4 4/4	76.4/ 94.4 116.5/143.8	125/125 175/225	148.6/166.6 225.5/252.8	445.6/ 463.6 674.5/ 701.8	90/110 150/175	115 115	40 40
					İ			074.3/ 701.0			
	230-60	207	253	4/4	241.0/244.9	400/350	372.0/417.0	_	300/300	115	40
110,	200-60 460-60	187 414	220 506	4/4 4/4	264.9/269.8 120.0/122.4	450/400	426.5/476.3	— EE7.0/.E70.E	350/350 150/150	115	40 40
112	575-60	518	633	4/4	92.5/ 94.4	200/175 150/125	186.0/208.5 148.6/166.6	557.0/ 579.5 445.6/ 463.6	110/110	115 115	40
	380-60	342	418	4/4	140.2/143.8	225/225	225.5/252.8	674.5/ 701.8	175/175	115	40
	230-60	207	253	4/4	241.0/286.0	400/450	372.0/417.0	//	300/350	115	40
	230-60	187	253	4/4	264.9/314.7	450/500	426.5/476.3		350/400	115	40
120,	460-60	414	506	4/4	120.0/142.5	200/225	186.0/208.5	557.0/ 579.5	150/175	115	40
122	575-60	518	633	4/4	92.5/110.5	150/175	148.6/166.6	445.6/ 463.6	110/150	115	40
	380-60	342	418	4/4	140.2/167.5	225/250	225.5/252.8	674.5/ 701.8	175/200	115	40
	230-60	207	253	6/4	370.0/244.9	600/350	632.0/417.0	A Aller	450/300	115	40
	200-60	187	220	6/4	407.2/269.8	700/400	724.8/476.3		500/350	115	40
140,	460-60	414	506	6/4	185.0/122.4	300/175	316.0/208.5	948.0/ 579.5	225/150	115	40
142	575-60	518	633	6/4	141.9/ 94.4	225/125	252.4/166.6	758.4/ 463.6	175/110	115	40
	380-60	342	418	6/4	215.1/143.8	350/225	382.8/252.8	1147.8/ 701.8	300/175	115	40
	230-60	207	253	6/4	423.5/286.0	700/450	800.0/417.0		600/350	115	40
	200-60	187	220	6/4	465.6/314.7	800/500	918.8/476.3		600/400	115	40
160, 162	460-60	414	506	6/4	211.3/142.5	350/225	400.0/208.5	1208.0/ 579.5	250/175	115	40
102	575-60	518	633	6/4	162.2/110.5	250/175	320.4/166.6	966.4/ 463.6	200/150	115	40
	380-60	342	418	6/4	246.0/167.5	400/250	483.8/252.8	1462.8/ 701.8	300/200	115	40
	230-60	207	253	6/6	_	-0	-)	_	_	115	60
400	200-60	187	220	6/6	_	N./=	-	_	_	115	60
180, 182	460-60	414	506	6/6	-	_	_	_	_	115	60
	575-60	518	633	6/6	_	_	_	_	_	115	60
-	380-60	342	418	6/6		-			_	115	60
	230-60	207	253	6/6		T (_	115	60
200,	200-60	187	220	6/6		T			_	115	60
202	460-60	414	506	6/6	_	_		_	_	115	60
	575-60	518	633	6/6	FAC		NOO	NADO	_	115	60
	380-60	342	418	6/6	EAU	UFNL	7100	NADU		115	60
	230-60	207	253	7/6					_	115	60
220.	200-60	187	220	7/6	_	_	_	_	_	115	60
220, 222	460-60 575-60	414 518	506 633	7/6 7/6	_	_	_		_	115 115	60 60
	380-60	342	418	7/6	_		_	_	_	115	60 60
-				İ							
	230-60 200-60	207 187	253 220	7/6 7/6	_	_	_	_	_	115	60
240,	460-60	414	506	7/6 7/6					_	115 115	60 60
242	575-60	518	633	7/6	_		_	_	_	115	60
	380-60	342	418	7/6	_	_	_	_	_	115	60
-	460-60	414	506	9/6	_	_	_	_	_	115	60
260,	575-60	518	633	9/6	_ _	_	_	_	_	115	60
262	380-60	342	418	9/6	_	_	_	_	_	115	60
-	460-60	414	506	9/7	_	_	_	_	_	115	60
280,	575-60	518	633	9/7			_	_	_	115	60
282	380-60	342	418	9/7	_	_	_	_	_	115	60
	460-60	414	506	10/6							60
300,	575-60	518	633	10/6	_		_	_		115 115	60
302	380-60	342	418	10/6	_ _		_	_	_	115	60
-											
325, 327	460-60 575-60	414 518	506 633	9/9 9/9	_		_	_	_	115 115	60 60
327	380-60	342	418	9/9	_		_	_		115	60
	500-00	UTZ	710	3/3						113	

Table 14 — 30XA080-500 Electrical Data, Dual Point (Standard Condenser Fan Motors) (cont)

,	UNIT	VOLTAG	ìΕ	NUMBER			15 HP PUMP, 3450 F	RPM		CONTROL	CIRCUIT
UNIT 30XA	V-Hz	Sup	plied	OF COND				ICF	Rec	Voltage	MCA
	(3 Ph)	Min	Max	FANS	MCA	MOCP	WD	XL	Fuse Size	1 PH, 60 Hz	and MOCP
	460-60	414	506	9/9	_	_	_	_	_	115	60
350, 352	575-60	518	633	9/9	_	_	_	_	_	115	60
002	380-60	342	418	9/9	_	_	_	_	_	115	60

LEGEND

Instantaneous Current Flow Minimum Circuit Amps Maximum Overcurrent Protection Wye-Delta ICF MCA MOCP WD XL

Across-the-Line

- NOTES:

 1. Units are suitable for use on electrical systems where voltage supplied to the unit terminals is not below or above the listed minimum and maximum limits. Maximum allowable phase imbalance is voltage, 2%; amps 10%.

 2. Cooler heater is wired into the control circuit so it is always operable as long as the control power supply disconnect is on, even if any safety device is open.

 3. For MCA that is less than or equal to 380 amps, 3 conductors are required.

 4. For MCA between 381 and 760 amps, 6 conductors are required.

 5. For MCA between 761 and 1140 amps, 9 conductors are required.

 6. For MCA between 1141 and 1520 amps, 12 conductors are required.

 7. Calculation of conductors required is based on 75 C copper wire.

 8. Wiring for main field supply must be rated 75 C minimum. Use copper for all units.

 a. Incoming wire size range for the terminal block is no. 4 AWG (American Wire Gage) to

 - a. Incoming wire size range for the terminal block is no. 4 AWG (American Wire Gage) to $500\ \mbox{kcmil}.$
 - b. Incoming wire size range of non-fused disconnect with MCA up to 599.9 amps is 3/0 to 500 kcmil.
 - c. Incoming wire size range of non-fused disconnect with MCA from 600 to 799.9 amps is 1/0 to 500 kcmil.
 - d. Incoming wire size range of non-fused disconnect with MCA from 800 to 1199.9 amps is 250 kcmil to 500 kcmil.

 - be 250 Ktrim to 500 Ktrim.

 Data provided circuit A/circuit B where there are two circuits.

 Standard condenser fan motors are not used with sizes 30XA-401, 451, 476, and 501. These sizes use high ambient temperature condenser fans.

Table 15 — 30XA140-501 Electrical Data, Single Point (High Ambient Option)

	UNIT \	VOLTA	GE	NUMBER		NO HYDR	ONIC PA	CKAGE			5 HP P	JMP, 345	0 RPM			7.5 HP F	PUMP, 34	50 RPM		CONTROL	CIRCUIT
UNIT		Sup	olied	OF			IC	F	Rec			IC	F	Rec			IC	CF.	Rec	Voltage	MCA
30XA	V-Hz (3 Ph)	Min	Max	COND FANS	MCA	MOCP	WD	XL	Fuse Size	MCA	MOCP	WD	XL	Fuse Size	MCA	MOCP	WD	XL	Fuse Size	1 PH, 60 Hz	and MOCP
	000.00			10	500.0	000				F70.0	000				E0E 0	000					
	230-60 200-60	207 187	253 220	10 10	562.0 618.8	800 800	838.9 952.8		700 700	578.0 636.5	800 800	854.9 970.5	_	700 800	585.2 644.4	800 800	862.1 978.5	_	700 800	115 115	40 40
140, 142	460-60	414	506	10	281.0	400	419.5	1051.5	350	289.0	400	427.5	1059.5	350	292.6	400	431.1	1063.1	350	115	40
142	575-60	518	633	10	216.3	300	332.5	838.5	250	222.7	300	338.9	844.9	250	225.6	300	341.8	847.8	250	115	40
	380-60	342	418	10	328.3	450	504.6	1269.6	400	338.0	450	514.3	1279.3	400	342.3	450	518.7	1283.7	400	115	40
	230-60	207	253	10	642.7	800	1036.7		800	658.7	800	1052.7	_	800	665.9	800	1059.9	_	800	115	40
	200-60	187	220	10	706.9	1000	1179.4	_	800	724.5	1000	1197.1	_	1000	732.5	1000	1205.0	_	1000	115	40
160, 162	460-60	414	506	10	320.5	450	518.0	1326.0	400	328.5	450	526.0	1334.0	400	332.1	450	529.6	1337.6	400	115	40
102	575-60	518	633	10	247.2	350	412.1	1058.1	300	253.6	350	418.5	1064.5	300	256.5	350	421.4	1067.4	300	115	40
	380-60	342	418	10	374.9	500	622.8	1601.8	450	384.6	500	632.5	1611.5	450	388.9	500	636.8	1615.8	450	115	40
	230-60	207	253	12	703.9	800	980.8	_	800	_	_	_	_	_	_	_	_	_	_	115	60
400	200-60	187	220	12	775.0	1000	1109.1	_	1000	–	_	_	_	_	_	_	_	_		115	60
180, 182	460-60	414	506	12	351.9	450	490.4	1122.4	400	—	—	_	_	_	_	-	-	-		115	60
	575-60	518	633	12	271.1	350	387.3	893.3	300	-	-	_	_	-	_	-	-	-	-	115	60
	380-60	342	418	12	410.8	500	587.2	1352.2	450								 -	 - -		115	60
	230-60	207	253	12	795.6	1000	1189.6	_	1000	_	-	_	_	-	-	-	-	-	-	115	60
200,	200-60	187	220	12	875.0	1200	1347.5		1000	_	_	-	_	-	_	-	-	-		115	60
202	460-60	414	506	12	396.9	500	594.4	1402.4	450			-		_	_	-	-	_		115	60
	575-60	518 342	633	12	305.8	400	470.7	1116.7	350	_	_	_	_		_	_	_	-	_	115 115	60
	380-60		418	12	463.8	600	711.7	1690.7	600										-		60
	230-60	207	253	13	876.7	1200	1200.4	7	1000	_	_	_	-			-	-	-	-	115	60
220,	200-60	187 414	220	13	964.6 438.0	1200 600	1359.4 599.8	— 1407.8	1200	_	_	_	_	P-		_	_	_		115 115	60
222	460-60 575-60	518	506 633	13 13	337.6	450	475.0	1121.0	500 400										_	115	60 60
	380-60	342	418	13	511.5	700	718.3	1697.3	600						7					115	60
	230-60	207	253	13	933.0	1200	1256.7	_	1200						LA.			_		115	60
	200-60	187	220	13	1026.7	1200	1421.6		1200										_	115	60
240,	460-60	414	506	13	466.5	600	628.3	1436.3	600	_	_	_	_	_	_	_	_	_	_	115	60
242	575-60	518	633	13	359.5	450	497.0	1143.0	400	_	_	_	_	_	_	_	l _	_	_	115	60
	380-60	342	418	13	544.4	700	751.2	1730.2	600	_	_	_	_	_		_	_	_		115	60
	460-60	414	506	15	529.1	700	806.6	2028.6	600	_	_	_	_	_	1/-	_	_	_	_	115	60
260, 262	575-60	518	633	15	407.4	500	639.7	1617.7	500	_	_	_	_	_	_	_	_	_	_	115	60
	380-60	342	418	15	616.7	800	969.3	2448.3	700	_	_	_	_	_/	_					115	60
	460-60	414	506	16	563.0	800	840.5	2062.5	700	_		_	_	y	_	l —	l —	_	_	115	60
280, 282	575-60	518	633	16	433.6	600	665.9	1643.9	500	_	/-	_	_	/_	_	_	_	_	_	115	60
	380-60	342	418	16	656.2	800	1008.8	2487.8	800	_	_	_	_/	_	_				_	115	60
	460-60	414	506	16	619.6	800	840.5	2062.5	700	/_	_	_	_	_	_	_	_	_	_	115	60
300, 302	575-60	518	633	16	476.7	600	665.9	1643.9	600	_	_	_	_	-	—	-	-	_		115	60
	380-60	342	418	16	722.3	1000	1008.8	2487.8	1000		_			_	_				_	115	60
	460-60	414	506	18	638.1	800	915.6	2137.6	700	100		8	-8	E-	1	_	_	_	-	115	60
325, 327	575-60	518	633	18	491.2	600	723.5	1701.5	600		<u></u>	-		-0	1-1	-	—	_	_	115	60
	380-60	342	418	18	743.0	1000	1095.6	2574.6	1000	_	_	1-	-41	_	-//	_	_			115	60
0=0	460-60	414	506	18	694.6	800	915.6	2137.6	800	-	District of	-	-	10.4	-	_	-	-	-	115	60
350, 352	575-60	518	633	18	534.2	700	723.5	1701.5	600	74(11-31	(=)	16	1		(-)	_	-	-	115	60
	380-60	342	418	18	809.1	1000	1095.6	2574.6	1000	1+1	1	0	4	44-		9	_	-		115	60
	460-60	414	506	20	853.6	1200	1018.6	2299.6	1000	_	-	_	_	-	_	_	-	_	-	115	60
401	575-60	518	633	20	671.6	800	802.6	1825.6	800	—	-	_	_	-	_	-	-	-		115	60
	380-60	342	418	20	1017.7	1200	1219.6	2773.6	1200	_						-	-		_	115	60
	460-60	414	506	22	864.4	1200	1029.4	2310.4	1000	_	-	_	_	-	_	-	_	_		115	60
451	575-60	518	633	22	680.2	800	811.2	1834.2	800	_	-	_	_	-	_	-	-	_		115	60
	380-60	342	418	22	1030.8	1200	1232.7	2786.7	1200	_	_	_	_							115	60
	460-60	414	506	22	861.5	1200	1055.4	2336.4	1000	_	-	_	_	-	_	-	-	_	-	115	60
476	575-60	518	633	22	687.2	800	840.5	1863.5	800	_	-	_	_	-	_	-	-	_	—	115	60
	380-60	342	418	22	1046.2	1200	1280.1	2834.1	1200			_								115	60
	460-60	414	506	26	912.9	1200	1077.9	2358.9	1200	_	-	_	_	-	_	-	-	_	_	115	60
501	575-60	518	633	26	729.1	1000	860.1	1883.1	1000	-	-	_	_	-	_	-	-	-	-	115	60
	380-60	342	418	26	_	<u> </u>	_	_	<u> </u>			_	_		_	<u> </u>			<u> </u>	115	60
LEGEN	D											5. For	MCA bet	ween 7	61 and 1	1140 amp	s, 9 cond	uctors are	e require	ed.	

- NOTES:
 1. Units are suitable for use on electrical systems where voltage supplied to the unit terminals is not below or above the listed minimum and maximum limits. Maximum allowable phase imbalance is: voltage, 2%; amps 10%.

 2. Cooler heater is wired into the control circuit so it is always operable as long as the control power supply disconnect is on, even if any safety device is open.

 3. For MCA that is less than or equal to 380 amps, 3 conductors are required.

 4. For MCA between 381 and 760 amps, 6 conductors are required.

- For MCA between 761 and 1140 amps, 9 conductors are required.
 For MCA between 1141 and 1520 amps, 12 conductors are required.
 Calculation of conductors required is based on 75 C copper wire.
 Wiring for main field supply must be rated 75 C minimum. Use copper for all units.
 a. Incoming wire size range for the terminal block is no. 4 AWG (American Wire Gage) to 500 kcmil.
- b. Incoming wire size range of non-fused disconnect with MCA up to 599.9 amps is 3/0 to 500 kcmil.
- Incoming wire size range of non-fused disconnect with MCA from 600 to 799.9 amps is 1/0 to 500 kcmil.
- d. Incoming wire size range of non-fused disconnect with MCA from 800 to 1199.9 amps is 250 kcmil to 500 kcmil.

 Data provided circuit A/circuit B where there are two circuits.

Table 15 — 30XA140-501 Electrical Data, Single Point (High Ambient Option) (cont)

	UNIT	VOLTA	GE	NUMBER		10 HP	PUMP, 3450	RPM			15 HP	PUMP, 3450	RPM		CONTROL	CIRCUIT
UNIT 30XA	V-Hz	Sup	plied	OF COND			IC	F	Rec			IC	F	Rec	Voltage	MCA
JUAA	(3 Ph)	Min	Max	FANS	MCA	MOCP	WD	XL	Fuse Size	MCA	MOCP	WD	XL	Fuse Size	1 PH, 60 Hz	and MOCP
	230-60	207	253	10	592.4	800	869.3	_	700	607.0	800	883.9	_	700	115	40
	200-60	187	220	10	652.4	800	986.5	_	800	668.6	800	1002.6	_	800	115	40
140, 142	460-60	414	506	10	296.2	400	434.7	1066.7	350	303.5	400	442.0	1074.0	350	115	40
	575-60	518	633	10	228.4	300	344.6	850.6	300	234.3	300	350.5	856.5	300	115	40
	380-60	342	418	10	346.7	450	523.0	1288.0	400	355.5	500	531.9	1296.9	400	115	40
	230-60	207	253	10	673.1	800	1067.1	_	800	687.7	800	1081.7	_	800	115	40
	200-60	187	220	10	740.5	1000	1213.0	_	1000	756.6	1000	1229.1	_	1000	115	40
160, 162	460-60	414	506	10	335.7	450	533.2	1341.2	400	343.0	450	540.5	1348.5	400	115	40
	575-60	518	633	10	259.4	350	424.3	1070.3	300	265.2	350	430.1	1076.1	300	115	40
	380-60	342	418	10	393.3	500	641.2	1620.2	450	402.1	500	650.0	1629.0	450	115	40
	230-60	207	253	12	_	_	_	_	_	_	_	_	_	_	115	60
100	200-60	187	220	12	_	_	_	_	_	_	_	_	_	_	115	60
180, 182	460-60	414	506	12	_	_	_	_	_	-	_	_	_	_	115	60
	575-60	518	633	12	_	_	_	_	_	_	_	_	_	_	115	60
	380-60	342	418	12											115	60
	230-60	207	253	12	_	_	_	_	_		_	_	_	_	115	60
200,	200-60	187	220	12	-	-	_	_	_		_	_	_	_	115	60
202	460-60	414	506	12	_	_	-	_		/-	_	_	_	_	115	60
	575-60	518	633	12	_	-	-	_	-9	_		_	_	_	115	60
	380-60	342	418	12	 	100	_	_			-	_			115	60
	230-60	207	253	13	- 77	/ //		_	_	_	V-/		_	_	115	60
220.	200-60	187	220	13	-/	_	_	_	_	_	D -		_	_	115	60
220, 222	460-60	414	506	13	-7/4	_	_	_	_	_	_	<i></i>	_	_	115	60
	575-60 380-60	518 342	633 418	13 13	7//	/-	_	_	_	_	_	/	_	_	115 115	60 60
	230-60	207	253	13				_							115	60
240, 242	200-60 460-60	187 414	220 506	13	_	\/							_	_	115	60 60
242	575-60	518	633	13 13		- A. A.									115 115	60
	380-60	342	418	13		_ /		_					_		115	60
	460-60	414	506	15	1_	_	/	_		_			_	_	115	60
260,	575-60	518	633	15	_	_ \		_	_			_	_	_	115	60
262	380-60	342	418	15	1	_		_	_		_/	_	_	_	115	60
	460-60	414	506	16		_	1		6	_	7	_	_	_	115	60
280,	575-60	518	633	16	_ \	_	_	_//	_	_	9	_	_	_	115	60
282	380-60	342	418	16	_		_	/_	_	_)	// O	_	_	_	115	60
	460-60	414	506	16	_	2		/	_		_	_	_	_	115	60
300,	575-60	518	633	16	_	_	_	_		_	_	_	_	_	115	60
302	380-60	342	418	16					_			_	_	_	115	60
	460-60	414	506	18			_		\neg			Marco —	_	_	115	60
325,	575-60	518	633	18				14	-			1	_	_	115	60
327	380-60	342	418	18	- b			7	-		/ Attends.		_	_	115	60
	460-60	414	506	18	_	_	_	_		_	_	_	_	_	115	60
350,	575-60	518	633	18	IDI		0	ND	10	(ALLA		_	_	115	60
352	380-60	342	418	18	/IKE	= 4					VΔ		_	_	115	60
	460-60	414	506	20			_	_	_		_	_	_	_	115	60
401	575-60	518	633	20	_	_	_	_	_	_	_	_	_	_	115	60
	380-60	342	418	20	_		<u>_</u>	_		_	_	_	_	_	115	60
	460-60	414	506	22	_	_	_	_	_	_	_	_	_	_	115	60
451	575-60	518	633	22	_	_	_	_	_	_	_	_	_	_	115	60
	380-60	342	418	22			_	_	_	_		_	_	_	115	60
	460-60	414	506	22	_	_		_	_	_	_	_	_	_	115	60
476	575-60	518	633	22	_	_	_	_	_		_	_	_	_	115	60
	380-60	342	418	22	_	_	_	_	_	_	_	_	_	_	115	60
	460-60	414	506	26	_	_		_	_	_	_	_	_	_	115	60
501	575-60	518	633	26	_	_	_	_	_		_		_	_	115	60
	380-60	342	418	26	_	_	_	_	_	l _	_	_	_	_	115	60
LEGEND							<u> </u>	i .	-	- 4041	. 704	and 1140 at				

- NOTES:
 1. Units are suitable for use on electrical systems where voltage supplied to the unit terminals is not below or above the listed minimum and maximum limits. Maximum allowable phase imbalance is: voltage, 2%; amps 10%.

 2. Cooler heater is wired into the control circuit so it is always operable as long as the control power supply disconnect is on, even if any safety device is open.

 3. For MCA that is less than or equal to 380 amps, 3 conductors are required.

 4. For MCA between 381 and 760 amps, 6 conductors are required.

- For MCA between 761 and 1140 amps, 9 conductors are required.
 For MCA between 1141 and 1520 amps, 12 conductors are required.
 Calculation of conductors required is based on 75 C copper wire.
 Wiring for main field supply must be rated 75 C minimum. Use copper for all units.
 a. Incoming wire size range for the terminal block is no. 4 AWG (American Wire Gage) to 500 kcmil.
 - b. Incoming wire size range of non-fused disconnect with MCA up to 599.9 amps is 3/0 to 500 kcmil.
 - c. Incoming wire size range of non-fused disconnect with MCA from 600 to 799.9 amps is 1/0 to 500 kcmil.
- d. Incoming wire size range of non-fused disconnect with MCA from 800 to 1199.9 amps is 250 kcmil to 500 kcmil.

 Data provided circuit A/circuit B where there are two circuits.

Table 16 — 30XA140-501 Electrical Data, Dual Point (High Ambient Option)

	UNIT \	/OLT/	AGE	NUMBER		NO HY	DRONIC PAC	KAGE			5 H	P PUMP, 3450	RPM		CONTROL	CIRCUIT
UNIT 30XA	V-Hz	Sup	plied	OF COND			ı	CF	Rec				CF	Rec	Voltage	MCA
JUXA	(3 Ph)	Min	Max	FANS	MCA	MOCP	WD	XL	Fuse Size	MCA	MOCP	WD	XL	Fuse Size	1 PH, 60 Hz	and MOCP
	230-60	207	253	6/4	383.8/211.9	600/ 300	660.8/391.2	_	450/250	383.8/227.9	600/350	660.8/407.2	_	450/300	115	40
440	200-60	187	220	6/4	422.6/233.3	700/ 350	756.7/447.8	_	500/300	422.6/251.0	700/350	756.7/465.5	_	500/300	115	40
140, 142	460-60	414	506	6/4	191.9/105.9	300/ 150	330.4/195.6	962.4/ 566.6	225/125	191.9/113.9	300/175	330.4/203.6	962.4/574.6	225/150	115	40
	575-60	518	633	6/4	147.7/ 81.4	225/ 125	263.9/156.3	769.9/ 453.3	175/100	147.7/ 87.8	225/125	263.9/162.7	769.9/459.7	175/110	115	40
	380-60	342	418	6/4	223.9/124.0	350/ 200	400.2/237.1	1165.2/ 686.1	300/150	223.9/133.7	350/200	400.2/246.8	1165.2/695.8	300/175	115	40
	230-60 200-60	207 187	253 220	6/4 6/4	434.8/249.1 478.1/273.9	700/ 400 800/ 450	828.8/391.2 950.7/447.8	_	600/300 600/350	434.8/265.1 478.1/291.6	700/400 800/450	828.8/407.2 950.7/465.5	<u> </u>	600/350 600/350	115	40 40
160,	460-60	414	506	6/4	216.9/124.1	350/ 200	414.4/195.6	1222.4/ 566.6	300/150	216.9/132.1	350/200	414.4/203.6	1222.4/574.6	300/175	115 115	40
162	575-60	518	633	6/4	167.0/ 95.9	250/ 150	331.9/156.3	977.9/ 453.3	200/125	167.0/102.3	250/150	331.9/162.7	977.9/459.7	200/125	115	40
	380-60	342	418	6/4	253.3/145.4	400/ 225	501.2/237.1	1480.2/ 686.1	300/175	253.3/155.1	400/250	501.2/246.8	1480.2/695.8	300/200	115	40
	230-60	207	253	6/6	383.8/383.8	600/ 600	660.8/660.8	_	450/450	_	_	_	_	_	115	60
100	200-60	187	220	6/6	422.6/422.6	700/ 700	756.7/756.7	_	500/500	_	–	_	_	–	115	60
180, 182	460-60	414	506	6/6	191.9/191.9	300/ 300	330.4/330.4	962.4/ 962.4	225/225	_	–	_	_	-	115	60
	575-60	518	633	6/6	147.7/147.7	225/ 225	263.9/263.9	769.9/ 769.9	175/175	_	-	_	_	_	115	60
	380-60	342	418	6/6	223.9/223.9	350/ 350	400.2/400.2	1165.2/1165.2	300/300	_	_	_	_	_	115	60
	230-60 200-60	207 187	253 220	6/6 6/6	434.8/434.8 478.1/478.1	700/ 700 800/ 800	828.8/828.8 950.7/950.7	_	600/600 600/600	_	_	_	_	_	115 115	60 60
200,	460-60	414	506	6/6	216.9/216.9	350/ 350	414.4/414.4	1222.4/1222.4	300/300			_			115	60
202	575-60	518	633	6/6	167.0/167.0	250/ 250	331.9/331.9	977.9/ 977.9	200/200	<u></u>	_	_	_	_	115	60
	380-60	342	418	6/6	253.3/253.3	400/ 400	501.2/501.2	1480.2/1480.2	300/300	_	W-	_	_		115	60
	230-60	207	253	7/6	515.9/434.8	800/ 700	839.6/828.8	_	700/600		<u></u>	_	_	_	115	60
000	200-60	187	220	7/6	567.8/478.1	800/ 800	962.6/950.7	_	700/600	_	-/	_	_	_	115	60
220, 222	460-60	414	506	7/6	258.0/216.9	400/ 350	419.8/414.4	1227.8/1222.4	350/300	_	_	-	_	_	115	60
	575-60	518	633	7/6	198.8/167.0	300/ 250	336.2/331.9	982.2/ 977.9	250/200	_	_		_	_	115	60
	380-60	342	418	7/6	301.0/253.3	500/ 400	507.8/501.2	1486.8/1480.2	400/300	_	_		_	_	115	60
	230-60	207	253	7/6	515.9/505.1	800/ 800	839.6/828.8		700/600	_		100	_	_	115	60
240,	200-60 460-60	187 414	220 506	7/6 7/6	567.8/555.8 258.0/252.6	800/ 800 400/ 400	962.6/950.7 419.8/414.4	1227.8/1222.4	700/700 350/300						115 115	60 60
242	575-60	518	633	7/6	198.8/194.5	300/ 300	336.2/331.9	982.2/ 977.9	250/250	_	_	_/	_	_	115	60
	380-60	342	418	7/6	301.0/294.5	500/ 450	507.8/501.2	1486.8/1480.2	400/350	_	_	<u> </u>	_	_	115	60
	460-60	414	506	9/6	349.1/216.9	500/ 350	626.6/414.4	1848.6/1222.4	450/300	_		10-	_	_	115	60
260, 262	575-60	518	633	9/6	268.6/167.0	450/ 250	500.9/331.9	1478.9/ 977.9	350/200	_	_	_	_	–	115	60
	380-60	342	418	9/6	406.2/253.3	600/ 400	758.8/501.2	2237.8/1480.2	500/300			_	_		115	60
280,	460-60	414	506	9/7	349.1/258.0	500/ 400	626.6/419.8	1848.6/1227.8	450/350	_	-/	_	_	–	115	60
280, 282	575-60	518	633	9/7	268.6/198.8	450/ 300	500.9/336.2	1478.9/ 982.2	350/250	_	7	_	_	-	115	60
	380-60	342	418	9/7	406.2/301.0	600/ 500	758.8/507.8	2237.8/1486.8	500/400		/-	_	_		115	60
300.	460-60	414	506	10/6	411.0/252.6	600/ 400	632.0/414.4	1854.0/1222.4	500/300		_	_	_	_	115	60
302	575-60 380-60	518 342	633 418	10/6 10/6	315.9/194.5 478.9/294.5	500/ 300 800/ 450	505.2/331.9 765.4/501.2	1483.2/ 977.9 2244.4/1480.2	400/250 600/350						115 115	60 60
										1	1/					
325,	460-60 575-60	414 518	506 633	9/9 9/9	349.1/349.1 268.6/268.6	500/ 500 450/ 450	626.6/626.6 500.9/500.9	1848.6/1848.6 1478.9/1478.9	450/450 350/350		1			_	115 115	60 60
327	380-60		418	9/9	406.2/406.2	600/ 600	758.8/758.8	2237.8/2237.8	500/500		W_*	- 1	_	_	115	60
	460-60	414	506	9/9	405.6/349.1	600/ 500	626.6/626.6	1848.6/1848.6	500/450		. =		_	_	115	60
350, 352	575-60		633	9/9	311.6/268.6	500/ 450	500.9/500.9	1478.9/1478.9	400/350		NJ/	DC	\ _	_	115	60
332	380-60		418	9/9	472.4/406.2	800/ 600	758.8/758.8	2237.8/2237.8	600/500		/M/	VIV.	/ -		115	60
	460-60	414	506	11/9	448.9/405.6	700/ 600	684.4/626.6	1965.4/1848.6	600/500	_	_	_	_	_	115	60
401	575-60		633	11/9	356.9/311.6	600/ 500	545.5/500.9	1568.5/1478.9	450/400	_	_	_	_	–	115	60
	380-60	342	418	11/9	544.8/472.4	800/ 800	829.9/758.8	2383.9/2237.8	700/600						115	60
	460-60		506	13/9	530.2/405.6	800/ 600	695.2/626.6	1976.2/1848.6	700/500	_	_	_	_	_	115	60
451	575-60		633	13/9	423.2/311.6	700/ 500	554.2/500.9	1577.2/1478.9	500/400	_	_	_	_	_	115	60
	380-60		418	13/9	641.1/472.4	1000/800	843.0/758.8	2397.0/2237.8	800/600	_	_	_	_	_	115	60
470	460-60		506	11/11	490.5/448.9	800/ 700	684.4/684.4	1965.4/1965.4	600/600	_	_	_	_	_	115	60
476	575-60 380-60		633 418	11/11 11/11	392.1/356.9 596.0/544.8	600/ 600 1000/ 800	545.5/545.5 829.9/829.9	1568.5/1568.5 2383.9/2383.9	500/450 800/700	_	_	_	_	_	115 115	60 60
-																_
501	460-60 575-60	414 518	506 633	14/12 14/12	535.6/495.9 427.5/396.5	800/ 800 700/ 600	700.6/689.8 558.5/549.8	1981.6/1970.8 1581.5/1572.8	700/600 600/500	_	_		_	_	115 115	60 60
301	380-60		418	14/12	647.6/602.6	1000/1000	849.5/836.4	2403.5/2390.4	800/800	_		_	_		115	60
LEGEN				•	•		•			For MCA bety	veen 761 :	and 1140 amps	s, 9 conductors a	are require		-
									ē.	Far MCA hat	1111	and 1520 amr	. 10		day of	

- NOTES:

 1. Units are suitable for use on electrical systems where voltage supplied to the unit terminals is not below or above the listed minimum and maximum limits. Maximum allowable phase imbalance is: voltage, 2%; amps 10%.

 2. Cooler heater is wired into the control circuit so it is always operable as long as the control power supply disconnect is on, even if any safety device is open.

 3. For MCA that is less than or equal to 380 amps, 3 conductors are required.

 4. For MCA between 381 and 760 amps, 6 conductors are required.

- For MCA between 761 and 1140 amps, 9 conductors are required. For MCA between 1141 and 1520 amps, 12 conductors are required. Calculation of conductors required is based on 75 C copper wire. Wiring for main field supply must be rated 75 C minimum. Use copper for all units. a. Incoming wire size range for the terminal block is no. 4 AWG (American Wire Gage) to 500 kcmil.
 - b. Incoming wire size range of non-fused disconnect with MCA up to 599.9 amps is 3/0 to 500 kcmil.
 - c. Incoming wire size range of non-fused disconnect with MCA from 600 to 799.9 amps is 1/0 to 500 kcmil.
- d. Incoming wire size range of non-fused disconnect with MCA from 800 to 1199.9 amps is 250 kcmil to 500 kcmil.

 Data provided circuit A/circuit B where there are two circuits.

Table 16 — 30XA140-501 Electrical Data, Dual Point (High Ambient Option) (cont)

	UNIT VOLTAGE		NUMBER			7.5 H	IP PUMP, 345	O RPM				CONTROL	CIRCUIT			
UNIT 30XA	V-Hz	Supp	olied	OF COND			ı	CF	Rec			I	CF	Rec	Voltage	MCA
JUAA	(3 Ph)	Min	Max	FANS	MCA	MOCP	WD	XL	Fuse Size	MCA	МОСР	WD	XL	Fuse Size	1 PH, 60 Hz	and MOCP
	230-60	207	253	6/4	383.8/235.1	600/350	660.8/414.4	_	450/300	383.8/242.3	600/350	660.8/421.6		450/300	115	40
	200-60	187	220	6/4	422.6/259.0	700/400	756.7/473.4	_	500/300	422.6/266.9	700/400	756.7/481.4	_	500/350	115	40
140, 142	460-60	414	506	6/4	191.9/117.5	300/175	330.4/207.2	962.4/578.2	225/150	191.9/121.1	300/175	330.4/210.8	962.4/581.8	225/150	115	40
	575-60	518	633	6/4	147.7/ 90.7	225/125	263.9/165.6	769.9 /462.6	175/110	147.7/ 93.5	225/125	263.9/168.4	769.9/465.4	175/110	115	40
	380-60	342	418	6/4	223.9/138.0	350/200	400.2/251.2	1165.2/700.2	300/175	223.9/142.4	350/200	400.2/255.5	1165.2/704.5	300/175	115	40
	230-60	207	253	6/4	434.8/272.3	700/400	828.8/414.4 950.7/473.4	_	600/350	434.8/279.5	700/400	828.8/421.6	_	600/350	115 115	40
160,	200-60 460-60	187 414	220 506	6/4 6/4	478.1/299.6 216.9/135.7	800/450 350/200	414.4/207.2	1222.4/578.2	600/350 300/175	478.1/307.6 216.9/139.3	800/450 350/200	950.7/481.4 414.4/210.8	1222.4/581.8	600/400 300/175	115	40 40
162	575-60	518	633	6/4	167.0/105.2	250/150	331.9/165.6	977.9/462.6	200/125	167.0/108.1	250/150	331.9/168.4	977.9/465.4	200/125	115	40
	380-60	342	418	6/4	253.3/159.5	400/250	501.2/251.2	1480.2/700.2	300/200	253.3/163.8	400/250	501.2/255.5	1480.2/704.5	300/200	115	40
	230-60	207	253	6/6	_	_	_	_	_	_	_	_	_	_	115	60
400	200-60	187	220	6/6	_	_	_	_	_	_	_	_	_	_	115	60
180, 182	460-60	414	506	6/6	_	_	_	_	_	_	_	_	_	_	115	60
	575-60	518	633	6/6	_	_	_	_	_	_	_	_	_	_	115	60
	380-60	342	418	6/6	_	_	_	_		_		_			115	60
	230-60	207	253	6/6	_	-	_	_	_	_	_	_	_	-	115	60
200,	200-60 460-60	187 414	220 506	6/6 6/6	_	_		_					_	_	115 115	60 60
202	575-60	518	633	6/6	_		- 4	_	_			_	_		115	60
	380-60	342	418	6/6			-	_		_ /					115	60
	230-60	207	253	7/6	_		/	-	_			_	_	_	115	60
	200-60	187	220	7/6	_	-/	_	_	_	-	b. =	M -	_	_	115	60
220, 222	460-60	414	506	7/6	_	700	_	_	_	_	_	 	_	_	115	60
	575-60	518	633	7/6	_	///	// -	_	_	_		// -	_	_	115	60
	380-60	342	418	7/6	_	/	_	_		_	-	4.0			115	60
	230-60	207	253	7/6	_	/ -	-/		_	_	- 3	_	_	_	115	60
240,	200-60 460-60	187 414	220 506	7/6 7/6				_					_		115 115	60 60
242	575-60	518	633	7/6			14	_					_		115	60
	380-60	342	418	7/6	_ 11	_		-//			_	// -	_		115	60
	460-60	414	506	9/6	_	\ <u> </u>	_	/	_	_	-4	_	_	_	115	60
260, 262	575-60	518	633	9/6	_	\-	-\	/-		_	-/	_	_	_	115	60
	380-60	342	418	9/6	_	_	- ^	/-				_			115	60
280,	460-60	414	506	9/7	_	-	_		-	_	<i>-</i>	_	_	–	115	60
282	575-60	518	633	9/7	_	-//	_	-/	_	- 0	/ -	_	_	_	115	60
	380-60	342	418	9/7	_	_	_	\ _/		-/	_	_	_		115	60
300,	460-60	414	506	10/6	_	-	-	_	_	_	_	_	_	-	115	60
302	575-60 380-60	518 342	633 418	10/6 10/6	_		_	-			_	_	_	_	115 115	60 60
	460-60	414	506	9/9								<u></u>			115	60
325,	575-60	518	633	9/9	_				_				_	_	115	60
327	380-60	342	418	9/9	_		-1				. attentil.			_	115	60
	460-60	414	506	9/9					_				_		115	60
350, 352	575-60	518	633	9/9	- 1	IRE	AC	() M	711		A	$\cap \cap$	_	_	115	60
	380-60	342	418	9/9	-A	IKE	AL	N A A	4		FTA				115	60
	460-60	414	506	11/9	_	_	_	_	_	_	_	_	_	_	115	60
401	575-60	518	633	11/9	_	_	_	_	_	_	_	_	_	_	115	60
	380-60		418	11/9	_		_			_		_			115	60
	460-60	414	506	13/9	_	–	_	_	_	_	_	_	_	–	115	60
451	575-60 380-60	518 342	633 418	13/9 13/9	_					_	_		_	_	115 115	60 60
						_		_				_				
476	460-60 575-60	414 518	506 633	11/11 11/11	_	_	_	_	_	_	_	_	_	_	115 115	60 60
710	380-60		418	11/11	_	_	_	_	_	_	_	_	_	_	115	60
	460-60	414	506	14/12	_	_	_	_	_	_	_	_		_	115	60
501	575-60	518	633	14/12	_	_	_	_	_	_			_	_	115	60
	380-60		418	14/12	_			_	_		_	_	_		115	60
LEGEN	D								- 5	For MCA be	twoon 761	and 1140 amp	s, 9 conductors	are require		

- NOTES:
 1. Units are suitable for use on electrical systems where voltage supplied to the unit terminals is not below or above the listed minimum and maximum limits. Maximum allowable phase imbalance is: voltage, 2%; amps 10%.

 2. Cooler heater is wired into the control circuit so it is always operable as long as the control power supply disconnect is on, even if any safety device is open.

 3. For MCA that is less than or equal to 380 amps, 3 conductors are required.

 4. For MCA between 381 and 760 amps, 6 conductors are required.

- For MCA between 761 and 1140 amps, 9 conductors are required.
 For MCA between 1141 and 1520 amps, 12 conductors are required.
 Calculation of conductors required is based on 75 C copper wire.
 Wiring for main field supply must be rated 75 C minimum. Use copper for all units.
 a. Incoming wire size range for the terminal block is no. 4 AWG (American Wire Gage) to 500 kcmil.
 - b. Incoming wire size range of non-fused disconnect with MCA up to 599.9 amps is 3/0 to 500 kcmil.
 - c. Incoming wire size range of non-fused disconnect with MCA from 600 to 799.9 amps is 1/0 to 500 kcmil.
- d. Incoming wire size range of non-fused disconnect with MCA from 800 to 1199.9 amps is 250 kcmil to 500 kcmil.

 Data provided circuit A/circuit B where there are two circuits.

Table 16 — 30XA140-501 Electrical Data, Dual Point (High Ambient Option) (cont)

	UNIT	VOLTAG	iE	NUMBER		CONTROL CIRCUIT					
UNIT	V 11-	Sup	plied	OF				CF	Rec	Voltage	MCA
30XA	V-Hz (3 Ph)	Min	Max	COND FANS	MCA	MOCP	WD	XL	Fuse Size	Voltage 1 PH, 60 Hz	and MOCP
	200.00			0/4	000.0/050.0	000/050					
	230-60	207	253	6/4	383.8/256.9	600/350	660.8/436.2	_	450/300	115	40
140,	200-60	187	220	6/4	422.6/283.1	700/400	756.7/497.5		500/350	115	40
142	460-60	414	506	6/4	191.9/128.4	300/175	330.4/218.1	962.4/589.1	225/150	115	40
	575-60	518	633	6/4	147.7/ 99.4	225/150	263.9/174.3	769.9/471.3	175/125	115	40
	380-60	342	418	6/4	223.9/151.2	350/225	400.2/264.4	1165.2/713.4	300/175	115	40
	230-60	207	253	6/4	434.8/294.1	700/450	828.8/436.2	_	600/350	115	40
160	200-60	187	220	6/4	478.1/323.7	800/500	950.7/497.5	_	600/400	115	40
160, 162	460-60	414	506	6/4	216.9/146.6	350/225	414.4/218.1	1222.4/589.1	300/175	115	40
	575-60	518	633	6/4	167.0/113.9	250/175	331.9/174.3	977.9/471.3	200/150	115	40
	380-60	342	418	6/4	253.3/172.7	400/250	501.2/264.4	1480.2/713.4	300/200	115	40
	230-60	207	253	6/6	_	_	_	_	_	115	60
	200-60	187	220	6/6	_	_	_	_	_	115	60
180, 182	460-60	414	506	6/6	_	_	_	_	_	115	60
102	575-60	518	633	6/6	_	_	_	_	_	115	60
	380-60	342	418	6/6	_	_	_	_	_	115	60
	230-60	207	253	6/6	_	_	_	_		115	60
	200-60	187	220	6/6	_			_	_	115	60
200,	460-60	414	506	6/6	_	_		_	_	115	60
202	575-60	518	633	6/6		_	_///	_	_	115	60
	380-60	342	418	6/6		_		_	_	115	60
					1000		- 4				
	230-60	207	253 220	7/6	////		_		_	115	60
220, 222	200-60	187 414		7/6	6	_	_	P-1 -	_	115	60
222	460-60		506	7/6	_	_	_	<u>-</u> //	_	115	60
	575-60 380-60	518 342	633 418	7/6 7/6			_		_	115 115	60 60
				A	_	_	_				
	230-60	207	253	7/6	_	_	_	- A	_	115	60
240	200-60	187	220	7/6	\ -A	_	_	777-	_	115	60
240, 242	460-60	414	506	7/6		_	_	_	_	115	60
	575-60	518	633	7/6	-/	_	_	-//	_	115	60
	380-60	342	418	7/6	_	_	_		_	115	60
000	460-60	414	506	9/6	_	/ -	_	-	_	115	60
260, 262	575-60	518	633	9/6	-\/		-	- V	_	115	60
	380-60	342	418	9/6	- 0.0	_	_		_	115	60
	460-60	414	506	9/7	_	_	<i>a</i> –		_	115	60
280, 282	575-60	518	633	9/7	V	-//		_	_	115	60
	380-60	342	418	9/7			- /	-	_	115	60
	460-60	414	506	10/6	_	N./_		_	_	115	60
300,	575-60	518	633	10/6	_	_		_	_	115	60
302	380-60	342	418	10/6	_			_	_	115	60
	460-60	414	506	0/0						115	60
325,	575-60	414	506 633	9/9		7.7			_	115	60 60
327	380-60	518	418	9/9 9/9		- A		V77 -	_	115 115	60
		342									
250	460-60	414	506	9/9	P I	ON THE	IOIO	LIDO	_	115	60
350, 352	575-60	518	633	9/9	L A(()(()	N(A+)()	_	115	60
	380-60	342	418	9/9	E AU			MEC	_	115	60
	460-60	414	506	11/9	_	_	_	_	_	115	60
401	575-60	518	633	11/9	_	_	_	_	_	115	60
	380-60	342	418	11/9	_	_	_	_	_	115	60
	460-60	414	506	13/9	_	_	_	_	_	115	60
451	575-60	518	633	13/9	_	_	_	_	_	115	60
-	380-60	342	418	13/9	_	_	_	_	_	115	60
476	460-60	414	506	11/11	_	_	_	_	_	115	60
476	575-60	518 342	633	11/11	_	_	_	_	_	115	60 60
	380-60		418	11/11	_		-	_	_	115	
	460-60	414	506	14/12	_	_	_	_	_	115	60
501	575-60	518	633	14/12	_	_	_	_	_	115	60
	380-60	342	418	14/12	_	_	_	I —		115	60

- NOTES:
 1. Units are suitable for use on electrical systems where voltage supplied to the unit terminals is not below or above the listed minimum and maximum limits. Maximum allowable phase imbalance is: voltage, 2%; amps 10%.

 2. Cooler heater is wired into the control circuit so it is always operable as long as the control power supply disconnect is on, even if any safety device is open.

 3. For MCA that is less than or equal to 380 amps, 3 conductors are required.

 4. For MCA between 381 and 760 amps, 6 conductors are required.

- For MCA between 761 and 1140 amps, 9 conductors are required.
 For MCA between 1141 and 1520 amps, 12 conductors are required.
 Calculation of conductors required is based on 75 C copper wire.
 Wiring for main field supply must be rated 75 C minimum. Use copper for all units.
 a. Incoming wire size range for the terminal block is no. 4 AWG (American Wire Gage) to 500 kcmil.
 - b. Incoming wire size range of non-fused disconnect with MCA up to 599.9 amps is 3/0 to 500 kcmil.
 - c. Incoming wire size range of non-fused disconnect with MCA from 600 to 799.9 amps is 1/0 to 500 kcmil.
- d. Incoming wire size range of non-fused disconnect with MCA from 800 to 1199.9 amps is 250 kcmil to 500 kcmil.

 Data provided circuit A/circuit B where there are two circuits.

Table 17 — Compressor and Fan Electrical Data

					COMPRESSOR											
				ENSER .NS			Α				В		С			
30XA	UNIT VOLTAGE	NUMBER			LRA (All	Units)	R	LA	LRA (All	Units)	R	LA	LRA (A	II Units)	RI	-A
UNIT	V-Hz (3 Ph, 60 Hz)	OF COND FANS*	High Ambient Temp Cond. Fans (1140 rpm)	Standard Cond. Fans (850 rpm)	XL	WD	High Ambient Temp Cond. Fans (1140 rpm)	Standard Cond. Fans (850 rpm)	XL	WD	High Ambient Temp Cond. Fans (1140 rpm)	Standard Cond. Fans (850 rpm)	XL	WD	High Ambient Temp Cond. Fans (1140 rpm)	Standard Cond. Fans (850 rpm)
	200	3/3	11.9	6.6	1162	373		136.8	1162	373	_	136.8				
080/	230 380	3/3	10.8 6.5	6.0 3.6	1010 611	324 196		124.2 71.9	1010 611	324 196	_	124.2 71.9				
082	460	3/3	5.4	3.0	505	162		62.1	505	162		62.1		$\vdash \equiv \vdash$		
	575	3/3	4.3	2.4	404	130	_	47.5	404	130	_	47.5	_	_	_	_
	200	4/4	11.9	6.6	1162	373	_	140.0	1162	373	_	140.0	_	<u> </u>	_	_
000/	230	4/4	10.8	6.0	1010	324	_	127.1	1010	324	_	127.1	_		_	_
090/ 092	380	4/4	6.5	3.6	611	196	_	73.5	611	196	_	73.5				_
	460	4/4	5.4	3.0	505	162	_	63.6	505	162		63.6		 - -		
	575 200	4/4	4.3 11.9	2.4 6.6	404 1254	130 400	_	48.6 154.8	404 1254	130 400	_	48.6 154.8		 _	_	
	230	4/4	10.8	6.0	1090	348		140.7	1090	348		140.7		$\vdash \equiv \vdash$		
100/ 102	380	4/4	6.5	3.6	660	211	_	81.6	660	211	_	81.6	_	<u> </u>		_
102	460	4/4	5.4	3.0	545	174	_	70.4	545	174	_	70.4	<u> </u>	_	_	_
	575	4/4	4.3	2.4	436	139	_	53.5	436	139	· –	53.5		_	_	_
	200	4/4	11.9	6.6	1254	400		190.7	1254	400	_	154.8		_		
110/	230	4/4	10.8	6.0	1090	348		173.6	1090	348	_	140.7		<u> </u>		_
112	380	4/4	6.5	3.6	660	211	_	100.6	660	211		81.6				_
	460 575	4/4	5.4 4.3	3.0 2.4	545 436	174 139	_	86.4 66.3	545 436	174 139		70.4 53.5		 -		_
	200	4/4	11.9	6.6	1254	400		190.7	1254	400	7 -	190.7		$\vdash \equiv$		
	230	4/4	10.8	6.0	1090	348	_	173.6	1090	348	_	173.6	_	<u> </u>		_
120/ 122	380	4/4	6.5	3.6	660	211	_	100.6	660	211	- 3	100.6	<u> </u>	_	_	_
122	460	4/4	5.4	3.0	545	174	_	86.4	545	174	-	86.4	_	_	_	_
	575	4/4	4.3	2.4	436	139	/-	66.3	436	139	- //	66.3	_		_	_
	200	6/4	11.9	6.6	2139	685	280.8	293.9	1254	400	148.4	154.8				_
140/	230	6/4	10.8	6.0	1860	596	255.2	267.2	1090	348	134.9	140.7				
142	380 460	6/4	6.5 5.4	3.6	1126 930	361 298	147.7 127.6	154.6 133.6	660 545	211 174	78.3 67.5	81.6 70.4		 -	_	
	575	6/4	4.3	2.4	744	238	97.5	102.0	436	139	51.3	53.5	_	_		
-	200	6/4	11.9	6.6	2737	879	325.2	340.6	1254	400	180.9	190.7	_		_	_
	230	6/4	10.8	6.0	2380	764	296.0	310.0	1090	348	164.7	173.6	_	_	_	_
160/ 162	380	6/4	6.5	3.6	1441	462	171.3	179.4	660	211	95.4	100.6		<u> </u>	_	_
	460	6/4	5.4	3.0	1190	382	147.6	154.6	545	174	82.0	86.4				_
	575	6/4	4.3	2.4	952	306	112.9	118.2	436	139	62.9	66.3		_		
	200	6/6 6/6	11.9 10.8	6.6 6.0	2139 1860	685 596	280.8 255.2	293.9 267.2	2139 1860	685 596	280.8 255.2	293.9 267.2		_	_	
180/	380	6/6	6.5	3.6	1126	361	147.7	154.6	1126	361	147.7	154.6	_	1 =		
182	460	6/6	5.4	3.0	930	298	127.6	133.6	930	298	127.6	133.6		<u> </u>	_	_
	575	6/6	4.3	2.4	744	238	97.5	102.0	744	238	97.5	102.0	_	<u> </u>	_	_
	200	6/6	11.9	6.6	2737	879	325.2	340.6	2737	879	325.2	340.6			_	_
200/	230	6/6	10.8	6.0	2380	764	296.0	310.0	2380	764	296.0	310.0	_	_		
202	380	6/6	6.5	3.6	1441	462	171.3	179.4	1441	462	171.3	179.4				
	460	6/6	5.4	3.0	1190	382	147.6	154.6	1190	382	147.6	154.6		-		
	575 200	6/6 7/6	4.3 11.9	2.4 6.6	952 2737	306 879	112.9 387.3	118.2 406.6	952 2737	306 879	112.9 325.2	118.2 340.6		 -	_	
	230	7/6	10.8	6.0	2380	764	352.3	369.8	2380	764	296.0	310.0			_	
220/ 222	380	7/6	6.5	3.6	1441	462	204.2	214.3	1441	462	171.3	179.4	_	_	_	_
	460	7/6	5.4	3.0	1190	382	176.1	184.9	1190	382	147.6	154.6				_
	575	7/6	4.3	2.4	952	306	134.8	141.5	952	306	112.9	118.2	_	_		
	200	7/6	11.9	6.6	2737	879	387.3	406.6	2737	879	387.3	406.6				
240/	230	7/6 7/6	10.8	6.0 3.6	2380 1441	764 462	352.3 204.2	369.8 214.3	2380	764	352.3 204.2	369.8	_	_	_	
242	380 460	7/6	6.5 5.5	3.6	1190	382	176.1	184.9	1441 1190	462 382	176.1	214.3 184.9	_	_	_	
	575	7/6	4.3	2.4	952	306	134.8	141.5	952	306	134.8	141.5			_	
	380	9/6	6.5	3.6	2179	700	277.9	293.0	1441	462	171.3	179.4	_	_	_	_
260/ 262	460	9/6	5.4	3.0	1800	578	240.4	253.5	1190	382	147.6	154.6	_	_	_	_
	575	9/6	4.3	2.4	1440	462	183.7	193.7	952	306	112.9	118.2	_	_	_	
280/	380	9/7	6.5	3.6	2179	700	277.9	293.0	1441	462	204.2	214.3	_	_	_	_
282	460	9/7	5.4	3.0	1800	578	240.4	253.5	1190	382	176.1	184.9	_		_	_
	575 380	9/7 10/6	4.3 6.5	2.4 3.6	1440 2179	462 700	183.7 330.8	193.7 350.3	952 1441	306 462	134.8 204.2	141.5 214.3			_	_
300/	460	10/6	5.4	3.0	1800	578	285.6	302.4	1190	382	176.1	184.9		_	_	
302	575	10/6	4.3	2.4	1440	462	218.2	231.0	952	306	134.8	141.5			_	
	380	9/9	6.5	3.6	2179	700	277.9	293.0	2179	700	277.9	293.0	_	_	_	_
325/ 327	460	9/9	5.4	3.0	1800	578	240.4	253.5	1800	578	240.4	253.5	_	_	_	_
	575	9/9	4.3	2.4	1440	462	183.7	193.7	1440	462	183.7	193.7	_	_	_	

Table 17 — Compressor and Fan Electrical Data

										CC	MPRESSOR					
			CONDENSER FANS		A				В				С			
	UNIT					RA (All Units) RLA		-A	LRA (All Units) RI		LA	LRA (All Units)		RLA		
30XA UNIT	VOLTAGE V-Hz	NUMBER OF COND	FI	_A			High				High				High	
SIZE	(3 Ph, 60 Hz)	FANS*	High Ambient Temp Cond. Fans (1140 rpm)	Standard Cond. Fans (850 rpm)	XL	WD	Ambient Temp Cond. Fans (1140 rpm)	Standard Cond. Fans (850 rpm)	XL	WD	Ambient Temp Cond. Fans (1140 rpm)	Standard Cond. Fans (850 rpm)	XL	WD	Ambient Temp Cond. Fans (1140 rpm)	Standard Cond. Fans (850 rpm)
	380	9/9	6.5	3.6	2179	700	330.8	350.3	2179	700	277.9	293.0	-	_	_	_
350/ 352	460	9/9	5.4	3.0	1800	578	285.6	302.4	1800	578	240.4	253.5		-	_	
	575	9/9	4.3	2.4	1440	462	218.2	231.0	1440	462	183.7	193.7	_		_	_
	380	11/9	6.5	_	2312	758	449.8	_	2179	700	418.9	_	_	_	_	
401	460	11/9	5.4	_	1906	625	371.0	_	1800	578	346.3	_	_	_	_	
	575	11/9	4.3	_	1521	498	294.8	_	1440	462	275.0	_	_	_	_	
	380	13/9	6.5	_	2312	758	529.4	_	2179	700	403.9	_	_	_	_	
451	460	13/9	5.4	_	1906	625	438.2	_	1800	578	346.3	_	_	_	_	
	575	13/9	4.3	_	1521	498	349.5	_	1440	462	266.4	_	_	_	_	
	380	11/11	6.5	_	2312	756	490.8	_	2312	758	449.8	_	_	_		
476	460	11/11	5.4	_	1906	625	404.3	_	1906	625	371.0	_	_	_		
	575	11/11	4.3	_	1521	498	323.0	_	1521	498	294.8	_	_	_	_	
	380	14/12	6.5	_	2312	758	535.9	_	2312	758	497.3	_	_		_	
501	460	14/12	5.4	_	1906	625	443.6	_	1906	625	409.7	_	_	_	_	_
	575	14/12	4.3	_	1521	498	353.8	_	1521	498	327.3	_	_	_	_	_

LRA — Locked Rotor Amps RLA — Rated Load Amps WD — Wye Delta XL — Across-the-Line

*Quantity of fan motors for incoming power supply Circuit 1/Circuit 2.

- NOTES:

 1. For 30XA080-352, 401, 451, and 476 units with dual power supply, main power supply 1 uses refrigerant circuit A components to calculate MCA and MOCP. Main power supply 2 uses refrigerant circuit B components to calculate MCA and MOCP.

 2. 30XA400, 450, and 500 units have dual power supply. Main power supply 1 uses refrigerant circuit C components to calculate MCA and MOCP. Main power supply 2 uses refrigerant circuit A and B components to calculate MCA and MOCP.

 3.

Table 18 — Pump Electrical Data

PUMP HP	UNIT VOLTAGE V-Hz (3 Ph)	HYDRONIC SYSTEM (SINGLE OR DUAL) FLA (Each)	30XA UNIT SIZE
	230-60	11.6	
	200-60	12.6	
5	460-60	5.8	090-162
	575-60	4.6	
	380-60	7.0	
	230-60	17.4	
	200-60	18.5	
7.5	460-60	8.7	090-162
	575-60	7.0	
	380-60	10.4	
	230-60	23.0	
	200-60	25.0	
10	460-60	11.5	090-162
	575-60	9.2	
	380-60	14.0	
·	230-60	34.0	
	200-60	36.7	
15	460-60	17.0	090-162
	575-60	14.0	
	380-60	21.0	

FLA - Full Load Amps

CCN COMMUNICATION BUS WIRING

The communication bus wiring is a shielded, 3-conductor cable with drain wire and is field supplied and installed in the field.

The system elements are connected to the communication bus in a daisy chain arrangement. The positive pin of each system element communication connector must be wired to the positive pins of the system elements on either side of it. This is also required for the negative and signal ground pins of each system element. Wiring connections for CCN (Carrier Comfort Network) should be made at TB (terminal block) 3. Consult the CCN Contractor's Manual for further information. See Fig. 62.

NOTE: Conductors and drain wire must be 20 AWG (American Wire Gage) minimum stranded, tinned copper. Individual conductors must be insulated with PVC, PVC/nylon, vinyl, Teflon¹, or polyethylene. An aluminum/polyester 100% foil shield and an

1. Teflon is a registered trademark of DuPont.

outer jacket of PVC, PVC/nylon, chrome vinyl, or Teflon with a minimum operating temperature range of $-4^{\circ}F$ ($-20^{\circ}C$) to $140^{\circ}F$ ($60^{\circ}C$) is required. See Table 19 for a list of manufacturers that produce CCN bus wiring that meet these requirements.

It is important when connecting to a CCN communication bus that a color coding scheme be used for the entire network to simplify the installation. It is recommended that red be used for the signal positive, black for the signal negative, and white for the signal ground. Use a similar scheme for cables containing different colored wires. At each system element, the shields of its communication bus cables must be tied together. If the communication bus is entirely within one building, the resulting continuous shield must be connected to a ground at one point only. If the communication bus cable exits from one building and enters another, the shields must be connected to grounds at the lightning suppressor in each building where the cable enters or exits the building (one point per building only).

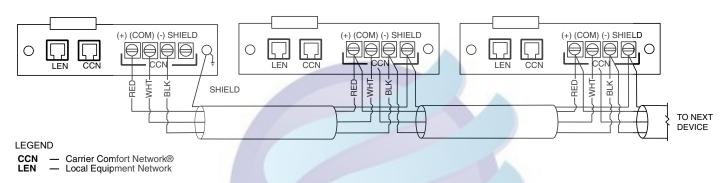


Fig. 62 — TB3 — CCN Wiring

Table 19 — CCN Communication Bus Wiring

MANUEACTURER	PART NUMBER						
MANUFACTURER	Regular Wiring	Plenum Wiring					
Alpha	1895	_					
American	A21451	A48301					
Belden	8205	884421					
Columbia	D6451	_					
Manhatten	M13402	M64430					
Quabik	6130						

To connect the unit to the network:

- 1. Turn off power to the control box.
- Cut the CCN wire and strip the ends of the red (+), white (ground), and black (-) conductors. Substitute appropriate colors for different colored cables.
- 3. Connect the red wire to (+) terminal on TB3 of the plug, the white wire to COM terminal, and the black wire to the (-) terminal.
- The RJ14 CCN connector on TB3 can also be used, but is only intended for temporary connection (for example, a laptop computer running service tool).

IMPORTANT: A shorted CCN bus cable will prevent some routines from running and may prevent the unit from starting. If abnormal conditions occur, disconnect the machine from the CCN. If conditions return to normal, check the CCN connector and cable. Run new cable if necessary. A short in one section of the bus can cause problems with all system elements on the bus.

NON-CCN COMMUNICATION WIRING

The 30XA units offer several non-CCN translators. Refer to the separate installation instructions for additional wiring steps.

FIELD CONTROL OPTION WIRING

Install field control wiring options. Some options, such as 4 to 20 mA demand limit that requires the energy management module, may require that accessories be installed first (if not factory installed) for terminal connections.

DUAL CHILLER LEAVING WATER SENSOR

If the dual chiller algorithm is used and the machines are installed in parallel, an additional chilled water sensor must be installed for each chiller. Install the wells in the common leaving water header. See Fig. 63. DO NOT relocate the chiller's leaving water thermistors. They must remain in place for the unit to operate properly.

The thermistor well is a 1/4 in. NPT fitting for securing the well in the piping. The piping must be drilled and tapped for the well. Select a location that will allow for removal of the thermistor without any restrictions.

Once the well is inserted, install the thermistors. Insert the thermistor into the well until the O-ring reaches the well body. Use the nut on the thermistor to secure the thermistor in place. Once the thermistor is in place, it is recommended that a thermistor wire loop be made and secured with a wire tie to the chilled water pipe. See Fig. 63.

For dual chiller control a CCN bus must be connected between the two modules (Fig. 62). See the Carrier Comfort Network Communication Bus Wiring section for additional information.

Fig. 63 — Dual Chiller Accessory Kit Leaving Water Thermistor and Well (Part No. 00EFN900044000A)

Step 6 — Install Accessories

A number of accessories are available to provide the following optional features (for details, refer to the Controls and Troubleshooting guide shipped with the unit).

ENERGY MANAGEMENT MODULE

The energy management module is used for any of the following types of temperature reset, demand limit and ice features:

- 4 to 20 mA inputs for cooling set point reset and capacity limit (requires field-supplied 4 to 20 mA generator)
- 0 to 10 v output for percentage total capacity running
- 24 v discrete outputs for shutdown and running relays
- 10k space temperature input

Discrete inputs for occupancy override, demand limit switch 2 (step 1 demand limit is wired to the base board, requires field-supplied dry contacts), remote lockout switch and ice done switch (requires field-supplied dry contacts).

REMOTE ENHANCED DISPLAY

For applications where remote monitoring of equipment is required; the remote enhanced display (or Touch Pilot display) provides an indoor display, capable of monitoring any equipment on the Carrier Comfort Network® (CCN) bus. A CCN bus is required.

LOW AMBIENT TEMPERATURE OPERATION

If outdoor ambient operating temperatures below 32°F (0°C) are expected, refer to separate installation instructions for low-ambient operation using the low ambient temperature head pressure control accessory.

MINIMUM LOAD ACCESSORY

Contact your local Carrier representative for more details if a minimum load accessory is required for a specific application. For installation details, refer to separate installation instructions supplied with the accessory package.

UNIT SECURITY/PROTECTION ACCESSORIES

For applications with unique security and/or protection requirements, several options are available for unit protection. Security grilles and hail guards are available. Contact a local Carrier representative for more details. For installation details, refer to separate installation instructions supplied with the accessory package.

COMMUNICATION ACCESSORIES

A number of communication options are available to meet any requirement. Contact your local Carrier representative for more details. For installation details, refer to separate installation instructions supplied with the accessory package.

SERVICE OPTIONS

Two accessories are available to aid in servicing 30XA units: a ground fault convenience outlet (GFI-CO) and a remote service port.

The GFI-CO is a convenience outlet with a 4-amp GFI receptacle.

The remote service port is housed in a weather-proof enclosure with a communication port to plug in the NavigatorTM device.

Contact your local Carrier representative for more details. For installation details, refer to separate installation instructions supplied with each accessory package.

Step 7 — Leak Test Unit

The 30XA units are shipped with a complete operating charge of R-134a (see Tables 1-8) and should be under sufficient pressure to conduct a leak test.

IMPORTANT: These units are designed for use with R-134a only. DO NOT USE ANY OTHER refrigerant in these units.

Perform a leak test to ensure that leaks have not developed during unit shipment. Dehydration of the system is not required unless the entire refrigerant charge has been lost. There are several O-ring face seal fittings utilized in the oil line piping. If a leak is detected at any of these fittings, open the system and inspect the O-ring surface for foreign matter or damage. Do not reuse O-rings. Repair any leak found following good refrigeration practice.

A CAUTION

DO NOT OVERTIGHTEN THESE FITTINGS. Overtightening will result in O-ring damage.

Step 8 — Refrigerant Charging

DEHYDRATION

Refer to Carrier Standard Service Techniques Manual, Chapter 1, Refrigerants, Sections 6 and 7 for details. Do not use compressor to evacuate system.

REFRIGERANT CHARGE

IMPORTANT: These units are designed for use with R-134a only. DO NOT USE ANY OTHER refrigerant in these units.

The liquid charging method is recommended for complete charging or when additional charge is required.

⚠ CAUTION

When charging, circulate water through the cooler at all times to prevent freezing. Freezing damage is considered abuse and may void the Carrier warranty.

A CAUTION

DO NOT OVERCHARGE system. Overcharging results in higher discharge pressure with higher cooling fluid consumption, possible compressor damage, and higher power consumption.

The 30XA units are shipped from the factory with a full charge of R-134a. The unit should not need to be charged at installation unless a leak was detected in Step 7 — Leak Test Unit section. If dehydration and recharging is necessary, use industry standard practices or refer to Carrier Standard Service Techniques Manual as required.

Step 9 — Optional BACnet¹ Communication Wiring

The BACnet communication option uses the UPC Open controller. The controller communicates using BACnet on an MS/TP network segment communicationi-s at 9600 bps, 19.2 kbps, 38.4 kbps, or 76.8 kbps. The UPC Open controller is mounted in a separate enclosure below the main control box.

Wire the controllers on an MS/TP network segment in a daisychain configuration. Wire specifications for the cable are 22 AWG (American Wire Gage) or 24 AWG, low-capacitance, twisted, stranded, shielded copper wire. The maximum length is 2000 ft.

Install a BT485 terminator on the first and last controller on a network segment to add bias and prevent signal distortions due to echoing. See Fig. 64-66.

To wire the UPC Open controller to the BAS network:

- Pull the screw terminal connector from the controller's BAS Port.
- 2. Check the communications wiring for shorts and grounds.
- 3. Connect the communications wiring to the BAS port's screw terminals labeled Net +, Net -, and Shield.

NOTE: Use the same polarity throughout the network segment.

- Insert the power screw terminal connector into the UPC Open controller's power terminals if they are not currently connected.
- 1. BACnet is a trademark of ASHRAE.

 Verify communication with the network by viewing a module status report. To perform a module status report using the BACview keypad/display unit, press and hold the "FN" key then press the "." key.

To install a BT485 terminator, push the BT485 on to the BT485 connector located near the BACnet connector.

NOTE: The BT485 terminator has no polarity associated with it. To order a BT485 terminator, consult Commercial Products i-Vu® Open Control System Master Prices.

MS/TP WIRING RECOMMENDATIONS

Recommendations are shown in Tables 20 and 21. The wire jacket and UL temperature rating specifications list two acceptable alternatives. The Halar² specification has a higher temperature rating and a tougher outer jacket than the SmokeGard³ specification, and it is appropriate for use in applications where the user is concerned about abrasion. The Halar jacket is also less likely to crack in extremely low temperatures.

NOTE: Use the specified type of wire and cable for maximum signal integrity.

- 2. Halar is a registered trademark of Solvay Plastics.
- 3. SmokeGard is a trademark of AlphaGary-Mexichem Corp.

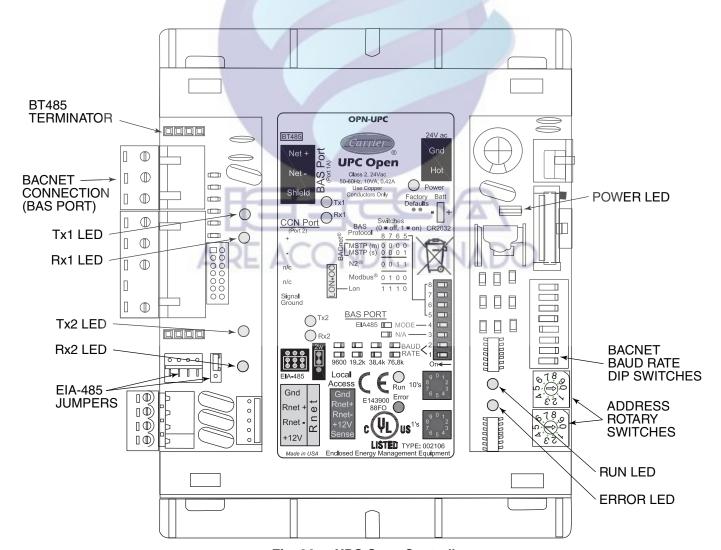


Fig. 64 — UPC Open Controller

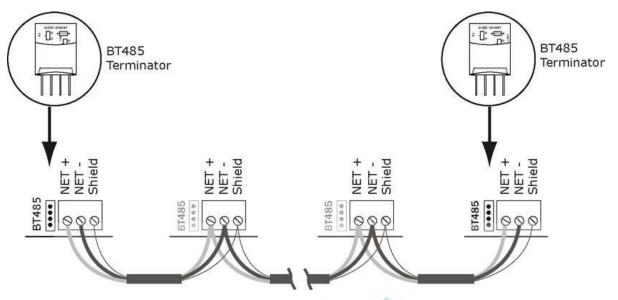


Fig. 65 — Network Wiring

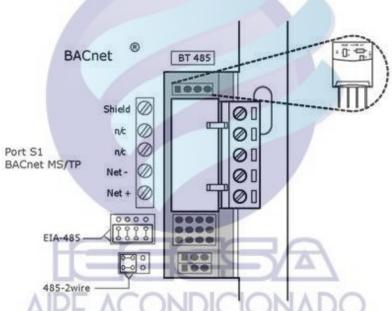


Fig. 66 — BT485 Terminator Installation

Table 20 — MS/TP Wiring Recommendations

SPECIFICATION	RECOMMMENDATION
Cable	Single twisted pair, low capacitance, CL2P, 22 AWG (7x30), TC foam FEP, plenum rated cable
Conductor	22 or 24 AWG stranded copper (tin plated)
Insulation	Foamed FEP 0.015 in. (0.381 mm) wall 0.060 in. (1.524 mm) O.D.
Color Code	Black/White
Twist Lay	2 in. (50.8 mm) lay on pair 6 twists/foot (20 twists/meter) nominal
Shielding	Aluminum/Mylar shield with 24 AWG TC drain wire
Jacket	SmokeGard Jacket (SmokeGard PVC) 0.021 in. (0.5334 mm) wall 0.175 in. (4.445 mm) O.D. Halar Jacket (E-CTFE) 0.010 in. (0.254 mm) wall 0.144 in. (3.6576 mm) O.D.
DC Resistance	15.2 Ohms/1000 feet (50 Ohms/km) nominal
Capacitance	12.5 pF/ft (41 pF/meter) nominal conductor to conductor
Characteristic Impedance	100 Ohms nominal
Weight	12 lb/1000 feet (17.9 kg/km)
UL Temperature Rating	SmokeGard 167°F (75°C), Halar -40 to 302°F (-40 to 150°C)
Voltage	300 Vac, power limited
Listing	UL: NEC CL2P, or better

LEGEND

AWG CL2P DC FEP NEC O.D. TC UL — American Wire Gage
— Class 2 Plenum Cable
— Direct Current
— Fluorinated Ethylene Polymer
— National Electrical Code
— Outside Diameter
— Tinned Copper
— Underwriters Laboratories

Table 21 — Open System Wiring Specifications and Recommended Vendors

	WIRING SPECIFICATIONS	RECOMMENDED VENDORS AND PART NUMBERS					
Wire Type	Description	Connect Air International	Belden	RMCORP	Contractors Wire and Cable		
MS/TP	22 AWG, single twisted shielded pair, low capacitance, CL2P, TC foam FEP, plenum rated. See MS/TP Installation Guide for specifications.			25160PV	CLP0520LC		
Network (RS-485)	24 AWG, single twisted shielded pair, low capacitance, CL2P, TC foam FEP, plenum rated. See MS/TP Installation Guide for specifications.	W241P-2000F	82841	25120-OR	_		
Rnet	4 conductor, unshielded, CMP, 18 AWG, plenum rated.	W184C-2099BLB	6302UE	21450	CLP0442		

LEGEND

AWG CL2P CMP FEP TC American Wire Gage
Class 2 Plenum Cable
Communications Plenum Rated
Fluorinated Ethylene Polymer
Tinned Copper

