
Documentation Center

RAK7289V2/RAK7289CV2 Supported LoRa
Network Servers
AWS IoT Core for LoRaWAN
Execute the following steps to set up your AWS account and permissions:

Set up Roles and Policies in IAM
Add an IAM Role for CUPS Server
Adding an IAM role will allow the Configuration and Update Server (CUPS) to handle the wireless gateway

credentials.

This procedure needs to be done only once, but must be performed before a LoRaWAN gateway tries to connect

with AWS IoT Core for LoRaWAN.

1. Go to the IAM Roles page on the IAM console.

2. Choose Create role.

3. On the Create Role page, choose Another AWS account.

4. Enter your Account ID, then select Next.

5. In the search box next to the Filter Policies, type AWSIoTWirelessGatewayCertManager.

If the search results show the policy named AWSIoTWirelessGatewayCertManager, select it by clicking the

checkbox.

If the policy does not exist, create one.

Choose Create Policy, then select the JSON tab to open the policy editor.

Replace the existing template with a trust policy document.

Select Next Tags and click Next: Review to open the Review Page.

For the Name, type AWSIoTWirelessGatewayCertManager.

{

"Version": "2012-10-17",

"Statement": [

{

"Sid": "IoTWirelessGatewayCertManager",

"Effect": "Allow",

"Action": [

"iot:CreateKeysAndCertificate",

"iot:DescribeCertificate",

"iot:ListCertificates",

"iot:RegisterCertificate"

],

"Resource": "*"

 }

]

}

json

https://console.aws.amazon.com/iam/home#/roles

Documentation Center

📝 NOTE:

You must enter the name as AWSIoTWirelessGatewayCertManager and must not use a different

name. This is for consistency with future releases.

For the Description, enter a description of your choice.

Then choose Create policy. You will see a confirmation message showing the policy has been created.

6. Click Next.

7. In Role name, enter IoTWirelessGatewayCertManagerRole, and then choose to Create role.

📝 NOTE:

You must not use a different name. This is for consistency with future releases.

8. In the confirmation message, choose IoTWirelessGatewayCertManagerRole to edit the new role.

9. In the Summary, choose the Trust relationships tab, and then choose Edit trust relationship.

10. In the Policy Document, change the Principal property to represent the IoT Wireless service:

After changing the Principal property, the complete policy document should look like the following:

11. Choose Update Trust Policy to save your changes and exit. At this point, you have created the

IoTWirelessGatewayCertManagerRole and you won't need to do this again.

📝 NOTE:

The examples in this document are intended only for dev environments. All devices in your fleet must have

credentials with privileges that authorize only intended actions on specific resources. The specific

permission policies can vary for your use case. Identify the permission policies that best meet your

business and security requirements. For more information, refer to Example Policies and Security Best
Practices

"Principal": {

"Service": "iotwireless.amazonaws.com"

},

{

"Version": "2012-10-17",

"Statement": [

 {

"Effect": "Allow",

"Principal": {

"Service": "iotwireless.amazonaws.com"

 },

"Action": "sts:AssumeRole",

"Condition": {}

 }

]

}

json

json

https://docs.aws.amazon.com/iot/latest/developerguide/example-iot-policies.html
https://docs.aws.amazon.com/iot/latest/developerguide/security-best-practices.html

Documentation Center

Add IAM Role for Destination to AWS IoT Core for
LoRaWAN
Creating a Policy

Creating a policy gives the role permissions to describe the IoT endpoint and publish messages to AWS IoT.

1. Go to the IAM console .

2. Choose Policies from the navigation pane.

3. Choose Create Policy, then choose the JSON tab to open the policy editor. Replace the existing template with

this trust policy document:

4. Click Next: Tags then Next: Review to open the Review page.

5. For Name, enter a name of your choice.

6. For Description, enter a description of your choice.

7. Choose Create policy. You will see a confirmation message indicating that the policy has been created.

Creating the Role

1. In the IAM console, choose Roles from the navigation pane to open the Roles page.

2. Choose Create Role.

3. In Select type of trusted entity, select AWS account and click Next.
4. In Account ID, enter your AWS account ID, and then choose Next: Permissions.

5. Search for the IAM policy you just created by entering the policy name in the search bar.

6. In the search results, select the checkbox corresponding to the policy.

7. Click Next.
8. For Role name, enter an appropriate name of your choice.

9. For Description, enter a description of your choice.

10. Choose Create role. You will see a confirmation message indicating that your role has been created.

Updating your Trust Policy

Update your role's trust relationship to grant AWS IoT Core for LoRaWAN permission to assume this IAM role

when delivering messages from devices to your account.

1. In the IAM console, choose Roles from the navigation pane to open the Roles page.

2. Enter the name of the role you created earlier in the search window, and click on the role name in the search

results. This opens up the Summary page.

3. Choose the Trust relationships table to navigate to the Trust relationships page.

{

"Version": "2012-10-17",

"Statement": [

 {

"Effect": "Allow",

"Action":

[

"iot:DescribeEndpoint",

"iot:Publish"

],

"Resource": "*"

 }

]

}

json

http://console.aws.amazon.com/iam

Documentation Center

4. Click Edit trust relationship. The principal AWS role in your trust policy document defaults to root and must be

changed. Replace the existing policy with this:

5. Choose Update Trust Policy.

Add the Gateway to AWS IoT
Requirements

To complete setting up your gateway, you need the following:

LoRaWAN region. For example, if the gateway is deployed in a US region, the gateway must support LoRaWAN

region US915.

Gateway LNS-protocols. Currently, the LoRa Basics Station protocol is supported.

Gateway ID (GatewayEUI) or serial number. This is used to establish the connection between the LNS and the

gateway. Consult the documentation for your gateway to locate this value.

Add minimum software versions required, including Basics Station 2.0.5.

Add the LoRaWAN Gateway
To register the gateway with AWS IoT Core for LoRaWAN, execute these steps:

1. Go to the AWS IoT console .

2. Select Wireless connectivity in the navigation panel on the left.

3. Choose Gateways, and then click Add Gateway.

4. In the Add gateway section, fill in the GatewayEUI and Frequency band (RF Region) fields.

5. Enter a descriptive name in the Name – optional field. It is recommended that you use the GatewayEUI as the

name.

6. Choose Add gateway.

7. On the Configure your Gateway page, find the section titled Gateway certificate.

8. Select Create certificate.

9. Once the Certificate created and associated with your gateway message is shown, select Download
certificates to download the certificate (xxxxx.cert.pem) and private key (xxxxxx.private.key).

10. In the section Provisioning credentials, choose Download server trust certificates to download the CUPS
(cups.trust) and LNS (lns.trust) server trust certificates.

11. Copy the CUPS and LNS endpoints and save them in a .txt file for use while configuring the gateway.

12. Choose Submit to add the gateway.

{

"Version": "2012-10-17",

"Statement": [

{

"Sid": "",

"Effect": "Allow",

"Principal": {

"Service": "iotwireless.amazonaws.com"

},

"Action": "sts:AssumeRole",

"Condition": {}

 }

]

}

json

http://console.aws.amazon.com/iot

Documentation Center

Add a LoRaWAN Device to AWS IoT
Requirements:

Locate and note the following specifications about your endpoint device.

LoRaWAN Region - This must match the gateway LoRaWAN region. The following Frequency bands (RF

regions) are supported: o EU868 o US915 o EU433

MAC Version - This must be one of the following: o V1.0.2 o v1.0.3 o v1.1

OTAA v1.0x and OTAA v1.1 are supported.

ABP v1.0x and ABP v1.1 are supported.

Locate and note the following information from your device manufacturer:

For OTAA v1.0x devices: DevEUI, AppKey, AppEUI

For OTAA v1.1 devices: DevEUI, AppKey, NwkKey, JoinEUI

For ABP v1.0x devices: DevEUI, DevAddr, NwkSkey, AppSkey

For ABP v1.1 devices: DevEUI, DevAddr, NwkSEnckey, FNwkSIntKey, SNwkSIntKey, AppSKey

Verify Profiles
AWS IoT Core for LoRaWAN supports device profiles and service profiles. Device profiles contain the

communication and protocol parameter values the device needs to communicate with the network server. Service

profiles describe the communication parameters the device needs to communicate with the application server.

Some pre-defined profiles are available for device and service profiles. Before proceeding, verify that these profile

settings match the devices you will be setting up to work with AWS IoT Core for LoRaWAN.

1. Navigate to the AWS IoT console . In the navigation pane, choose Wireless connectivity then click Profiles.

2. In the Device Profiles section, there are some pre-defined profiles listed.

3. Check each of the profiles to determine if one of them will work for you. If not, select Add device profile and

set up the parameters as needed. For US 915 as an example, the values are:

MacVersion 1.0.3

RegParamsRevision RP002-1.0.1

MaxEirp 10

MaxDutyCycle 10

RfRegion US915

SupportsJoin true

4. Click Add device profile once you have set a device profile that will work for you.

5. In the Service Profiles section, click Add service profile and set up the parameters as needed. As an

example, the default service profile parameters are shown below. However, only the AddGwMetadata setting

can be changed at this time.

UlRate 60

UlBucketSize 4096

DlRate 60

DlBucketSize 4096

AddGwMetadata true

DevStatusReqFreq 24

DrMax 15

TargetPer 5

http://console.aws.amazon.com/iot

Documentation Center

MinGwDiversity 1

6. Proceed only if you have a device and service profile that will work for you.

Set up a Destination for Device Traffic
Because most LoRaWAN devices don't send data to AWS IoT Core for LoRaWAN in a format that can be

consumed by AWS services, traffic must first be sent to a Destination. A Destination represents the AWS IoT rule

that processes a device's data for use by AWS services. This AWS IoT rule contains the SQL statement that

selects the device's data and the topic rule actions that send the result of the SQL statement to the services that

will use it.

For more information on Destinations, refer to the AWS LoRaWAN Developer Guide .

A destination consists of a Rule and a Role. To set up the destination, execute the following steps:

1. Navigate to the AWS IoT console . In the navigation pane, choose Wireless connectivity, and then

Destinations.

2. Choose Add Destination.

3. For the Destination name, enter ProcessLoRa, and then add an appropriate description under Destination
description – optional.

4. For Rule name, enter LoRaWANRouting. Ignore the section Rules configuration – Optional for now. The

Rule will be set up later in the "Hello World" sample application. See Create the IoT Rule for the destination.

5. In the Permissions section, choose Select an existing service role and select the IAM role you had created

earlier, from the drop-down.

📝 NOTE:

The Destination name can be anything. For getting started and consistency, choose ProcessLoRa for the

first integration with AWS IoT Core for LoRaWAN.

5. Choose Add Destination. You will see a message "Destination added", indicating the destination has been

successfully added.

Register the Device
Now, register an endpoint device with AWS IoT Core for LoRaWAN as follows:

1. Go to the AWS IoT console .

2. Select Wireless connectivity in the navigation panel on the left.

3. Select Devices, then choose Add wireless device.

4. On the Add device page, select the LoRaWAN specification version in the drop-down under Wireless device
specification.

5. Under LoRaWAN specification and wireless device configuration, enter the DevEUI and confirm it in the

Confirm DevEUI field.

6. Enter the remaining fields as per the OTAA/ABP choice you made above.

7. Enter a name for your device in the Wireless device name – optional field.

8. In the Profiles section, under Wireless device profile, from the drop-down option find the device profile you

have created or the one that corresponds to your device and region.

📝 NOTE:

Compare your device details to ensure the device profile is correct. If there are no valid default options,

you will have to create a new profile. See the Verify Profiles section.

https://docs.aws.amazon.com/iot/latest/developerguide/connect-iot-lorawan.html
http://console.aws.amazon.com/iot
http://console.aws.amazon.com/iot

Documentation Center

9. Click Next and then choose the destination you created earlier (ProcessLoRa) from the drop-down under

Choose destination.

10. Choose Add device. You will see a message saying "Wireless device added", indicating that your device has

been set up successfully.

Set up the Gateway
Set up the Gateway Hardware
Set up the Gateway Software

Configure the Gateway Device
1. Using your preferred Web browser, access the gateway. To access the gateway, see the Quick Start guide.

Figure 1: Web User Interface Log-in

Figure 2: Checking the Firmware Version

2. Configure Network Mode to Basics Station.

3. Navigate to LoRa. For Work mode, select Basics station and click Configure Basics Station server setup to

expand the Basics Station settings.

https://docs.rakwireless.com/Product-Categories/WisGate/RAK7268-V2/Quickstart/#power-on-the-gateway
https://docs.rakwireless.com/Product-Categories/WisGate/RAK7268-V2/Quickstart/#access-the-gateway

Documentation Center

Figure 3: Basics Station work mode

4. Select LNS Server from Server, then choose TLS Server and Client Authentication from Authentication

Mode.

Figure 4: Configuring Network Mode to Basics Station

5. Configure URI, Port, and Authentication Mode.

Documentation Center

Figure 5: Configuring URI, Port, and Authentication Mode

6. Click Save. Check if the gateway is online in AWS IoT console.

Figure 6: Verifying Operation

Add End Devices
This section shows an example of how to join the AWS IoT LoRaWAN server.

1. Add Device Profile.

Documentation Center

Figure 7: Adding the Device Profile

2. Add Service Profile.

Figure 8: Adding the Service Profile

3. Add Destination.

Before adding the destination, follow the Add IAM role for Destination to AWS IoT Core for LoRaWAN section to

configure the IAM policy and role.

Documentation Center

Figure 9: Adding Destination

4. Add Device.

Before adding a device to AWS IoT, retrieve the DevEui, AppEui, and AppKey from the end Device's console.

You can use AT command at+get_config=lora:status to obtain the information.

For more AT commands, refer to the RAK4200 AT Command Manual.

at+get_config=lora:status\r\n

OK Work Mode: LoRaWAN

Region: EU868

Send_interval: 600s

Auto send status: false.

MulticastEnable: true.

Multi_Dev_Addr: 260XXXXX

Multi_Apps_Key: F13DDFA2619B10411F02XXXXXXXXXXXX

Multi_Nwks_Key: 1D1991F5377C675879C3XXXXXXXXXXXX

Join_mode: OTAA

DevEui: 70B3XXXXXXXXXXXX

AppEui: F573D2XXXXXXXXXX

AppKey: 70B3DXXXXXXXXXXXXXXXXXXXXXXXXXXX

Class: C

Joined Network:false

IsConfirm: unconfirm

AdrEnable: true

EnableRepeaterSupport: false

RX2_CHANNEL_FREQUENCY: 869525000, RX2_CHANNEL_DR:0

RX_WINDOW_DURATION: 3000ms

RECEIVE_DELAY_1: 1000ms

RECEIVE_DELAY_2: 2000ms

JOIN_ACCEPT_DELAY_1: 5000ms

JOIN_ACCEPT_DELAY_2: 6000ms

Current Datarate: 4

Primeval Datarate: 4

ChannelsTxPower: 0

UpLinkCounter: 0

DownLinkCounter: 0

https://docs.rakwireless.com/Product-Categories/WisDuo/RAK4200-Evaluation-Board/AT-Command-Manual/

Documentation Center

Figure 10: LoRaWAN specifications and wireless device configuration

Figure 11: Choosing a Wireless Device Profile

Figure 12: Choosing a Destination

5. Restart the end Device, and it should join the AWS IoT LoRaWAN server.

EVENT:0:STARTUP

SYSLOG:4:OTAA Join Request

SYSLOG:4:OTAA Join Success

EVENT:1:JOIN_NETWORK

SYSLOG:4:LoRa Tx :

Documentation Center

Figure 13: Joined device

Verifying Operation
Once setup is completed, provisioned OTAA devices can join the network and start to send messages. Messages

from devices can then be received by AWS IoT Core for LoRaWAN and forwarded to the IoT Rules Engine.

Instructions for a sample Hello World application are given below, assuming that the device has joined and is

capable of sending uplink traffic.

Figure 14: Sending Uplink Architecture

Create a Lambda Function for Destination Rule
Create the lambda function to process device messages processed by the destination rule.

1. Go to the AWS Lambda console .

2. Click Functions in the navigation pane.

3. Click Create function.

4. Select Author from scratch.

5. Under Basic Information, enter the function name and choose Runtime Python 3.8. from the drop-down

under Runtime.

6. Click Create function.

7. Under Function code, paste the copied code into the editor under the lambda_function.py tab.

http://console.aws.amazon.com/lambda

Documentation Center

import base64

import json

import logging

import ctypes

import boto3

define function name

FUNCTION_NAME = 'RAK-HelloWorld'

Second Byte in Payload represents Data Types

Low Power Payload Reference: https://developers.mydevices.com/cayenne/docs/lora/

DATA_TYPES = 1

Type Temperature

TYPE_TEMP = 0x67

setup iot-data client for boto3

client = boto3.client('iot-data')

setup logger

logger = logging.getLogger(FUNCTION_NAME)

logger.setLevel(logging.INFO)

def decode(event):

 data_base64 = event.get('PayloadData')

 data_decoded = base64.b64decode(data_base64)

 result = {

 'devEui': event.get('WirelessMetadata').get('LoRaWAN'

).get('DevEui'),

 'fPort': event.get('WirelessMetadata').get('LoRaWAN'

).get('FPort'),

 'freq': event.get('WirelessMetadata').get('LoRaWAN'

).get('Frequency'),

 'timestamp': event.get('WirelessMetadata').get('LoRaWAN'

).get('Timestamp'),

 }

 if data_decoded[DATA_TYPES] == TYPE_TEMP:

 temp = data_decoded[DATA_TYPES + 1] << 8 \

 | data_decoded[DATA_TYPES + 2]

 temp = ctypes.c_int16(temp).value

 result['temperature'] = temp / 10

 return result

def lambda_handler(event, context):

 data = decode(event)

 logger.info('Data: %s' % json.dumps(data))

 response = client.publish(topic=event.get('WirelessMetadata'

).get('LoRaWAN').get('DevEui')

 + '/project/sensor/decoded', qos=0,

 payload=json.dumps(data))

 return response

py

Documentation Center

8. Once the code has been pasted, choose Deploy to deploy the lambda code.

9. Click the Configuration tab of the lambda function and click Permissions.

10. Change the Lambda Role Policy permission.

Under Execution role, click the hyperlink under Role name.

On the Permissions tab, find the policy name and select it.

Choose Edit policy, and choose the JSON tab.

Append the following to the Statement section of the policy to allow publishing to AWS IoT.

After the change the code should look like this:

Choose Review Policy, then Save changes.

11. Go back to the Lambda function Code source and create a test event that will allow you to test the functionality

of the lambda function.

Click Test next to Deploy.

In the Configure test event, enter a name for the test event in the Event name field.

Paste the following sample payload in the area under Event JSON field:

 {

 "Effect":"Allow",

 "Action":[

 "iot:Publish"

],

 "Resource":[

 "*"

]

}

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Effect":"Allow",

 "Action":[

 "iot:Publish"

],

 "Resource":[

 "*"

]

 }

]

}

json

json

Documentation Center

11. Choose Save to save the event.

12. In a new window, navigate to the AWS IoT console, choose Test on the navigation pane, and select MQTT test

client.

13. In Subscription topic field type “#” (all topics) and click Subscribe to topic. The MQTT will subscribe to all topics.

14. Click on Test in the Lambda function page to generate the test event you just created.

15. Verify the published data in the AWS IoT Core MQTT Test client. The output should look similar to this:

Create the Destination Rule
In this section, create the IoT rule that forwards the device payload to your application. This rule is associated with

the destination created earlier in Set up a Destination for Device Traffic section.

1. Navigate to the AWS IoT console .

2. In the navigation pane, choose Act, then select Rules.

3. On the Rules page, choose Create.

4. On the Create a rule page, enter as follows:

Name: LoRaWANRouting
Description: Any description of your choice.

 {

 "WirelessDeviceId": "65d128ab-90dd-4668-9556-fe47c589610b",

 "PayloadData": "AWf/1w==",

 "WirelessMetadata": {

 "LoRaWAN": {

 "DataRate": "4",

 "DevEui": "0000000000000088",

 "FPort": 1,

 "Frequency": "868100000",

 "Gateways": [

 {

 "GatewayEui": "80029cffXXXXXXXX",

 "Rssi": -109,

 "Snr": 5

 }

],

 "Timestamp": "2021-02-08T04:00:40Z"

 }

 }

 }

 000000000000000088/project/sensor/decoded February 09, 2021, 14:45:29 (UTC+0800)

 {

 "devEui": "000000000000000088",

 "fPort": 1,

 "freq": "868100000",

 "timestamp": "2021-02-08T04:00:40Z",

 "temperature": -4.1

 }

json

json

http://console.aws.amazon.com/iot

Documentation Center

📝 NOTE:

The Name of your Rule is the information needed when you provision devices to run on AWS IoT Core

for LoRaWAN.

5. Leave the default Rule query statement: 'SELECT * FROM 'iot/topic' unchanged. This query has no effect at

this time, as traffic is currently forwarded to the rules engine based on the destination.

6. Under Set one or more actions, choose Add action.

7. On the Select an action page, choose Republish a message to an AWS IoT topic. Scroll down and choose

Configure action.

8. On the Configure action page, for Topic, enter project/sensor/decoded. The AWS IoT Rules Engine will

forward messages to this topic.

9. Under Choose or create a role to grant AWS IoT access to perform this action, select Create Role.

10. For Name, enter a name of your choice.

11. Choose Create role to complete the role creation. You will see a "Policy Attached" tag next to the role name,

indicating that the Rules Engine has been permitted to execute the action.

12. Choose Add action.

13. Add one more action to invoke the Lambda function. Under Set one or more actions, choose Add action.

14. Choose Send a message to a Lambda function.

15. Choose Configure action.

16. Select the Lambda function created earlier and choose Add action.

17. Then choose Create rule.

18. A "Success" message will be displayed at the top of the panel, and the destination has a rule bound to it.

You can now check that the decoded data is received and republished by AWS by triggering a condition or event

on the device itself.

Go to the AWS IoT console. In the navigation pane, select Test, and choose MQTT client.
Subscribe to the wildcard topic '#' to receive messages from all topics.

Send message from endDevice using AT command: at+send:lora:1:01670110 .

You should see traffic similar to that shown below.

 393331375d387505/project/sensor/decoded February 09, 2021, 14:47:21 (UTC+0800)

 {

 "devEui": "393331375d387505",

 "fPort": 1,

 "freq": "867100000",

 "timestamp": "2021-02-09T06:47:20Z",

 "temperature": 27.2

 }

json

Documentation Center

Configuring Amazon SNS
You will be using the Amazon Simple Notification Service to send text messages (SMS) when certain conditions

are met.

1. Go to the Amazon SNS console .

2. Select Text Messaging (SMS) and choose Publish text message.

3. Under Message type, select Promotional.
4. Enter your phone number (phone number that will receive text alerts).

5. Enter "Test message" for the Message and choose Publish message.

6. If the phone number you entered is valid, you will receive a text message and your phone number will be

confirmed.

7. Create an Amazon SNS Topic as follows:

In the navigation pane, choose Topics.

Select Create topic.

Under Type, select Standard.

Enter a name of your choice. Here, you will use "text_topic".

Select Create topic.

8. Create a subscription for this topic:

On the newly created text_topic page, choose the Subscriptions tab.

Choose Create subscription.

In Topic ARN, choose the topic you have created earlier.

Select Protocol as SMS from the drop-down.

Under Endpoint, enter the previously validated phone number to receive the SMS alerts.

Choose Create subscription. You should see a "_Subscription to text_topic created successfully_"

message.

Add a Rule for Amazon SNS Notification
Now, add a new rule to send an Amazon SNS notification when certain conditions are met in a decoded message.

1. Navigate to the AWS IoT console .

 project/sensor/decoded February 09, 2021, 14:47:21 (UTC+0800)

 {

 "WirelessDeviceID": "3eff83dd-9159-XXXX-XXXX-XXXXXXXXXXXX",

 "PayloadData": "AWcBEA==",

 "WirelessMetadata": {

 "LoRaWAN": {

 "DataRate": "4",

 "DevEui": "3933XXXXXXXXXXXX ",

 "FPort": 1,

 "Frequency": "867100000",

 "Gateways": [

 {

 "GatewayEui": "ac1ff09ffXXXXXXXX",

 "Rssi": -103,

 "Snr": 8.5

 }

],

 "Timestamp": "2021-02-09T06:47:20Z"

 }

 }

 }

json

http://console.aws.amazon.com/sns
http://console.aws.amazon.com/iot

Documentation Center

2. In the navigation pane, choose Act. Then, choose Rules.

3. On the Rules page, choose Create.

4. Enter the Name as text_alert and provide an appropriate Description.

5. Under the Rule query statement, enter the following query:

6. Under Set one or more actions, choose Add action.

7. Choose Send a message as an SNS push notification.

8. Choose Configure action.

9. Under SNS target, select text_topic from the drop-down.

10. Select RAW under Message format.
11. Under Choose or create a role to grant AWS IoT access to perform this action, choose Create role.

12. Enter a name for the role and choose Create role.

13. Choose Create rule. You should see a "Success" message, indicating that the rule has been created.

Test the Rule for Amazon SNS Notification
After adding the rule for Amazon SNS notification, you should receive a text message when hitting the event.

Wait for an uplink from the device. Here is the message from mobile after sending an uplink message.

Send Downlink Payload
This section shows how to send downlink payload from AWS IoT LoRaWAN Server to the end Device.

1. Install the AWS SAM CLI .

2. Deploy SAM template to AWS .

3. Send Payload to End Device.

Go to the AWS IoT console.

In the navigation pane, select Test and choose MQTT client.
Subscribe to the wildcard topic '#' to receive messages from all topics.

Specify the topic to cmd/downlink/{WirelessDeviceId} and a base64-encoded message.

Figure 15: Specifying a topic

4. You should see traffic on AWS similar as shown below:

 SELECT devEui as device_id, "Temperature exceeded 25" as message, temperature as temp, timest

 {

 "device_id": "3933XXXXXXXXXXXX",

 "message": "Temperature exceeded 25",

 "temp": 27.2,

 "time": "2021-02-22T07:58:54Z"

 }

json

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-sam-cli-install.html
https://github.com/aws-samples/aws-iot-core-lorawan/tree/main/send_downlink_payload

Documentation Center

Figure 16: Traffic on AWS

5. You should see traffic on your console of end device similar as shown below.

IoT Analytics
You will use IoT Analytics to visually display data via graphs if there is a need in the future to do further analysis.

Create an IoT Analytics Rule

Create a Rule First

1. Navigate to the AWS IoT console .

2. In the navigation pane, choose Act and then, choose Rules.

downlink/status/3eff83dd-9159-XXXX-XXXX-XXXXXXXXXXXX February 09, 2021, 15:09:29 (UTC+0800)

{

 "sendresult": {

 "status": 200,

 "RequestId": "4f1d36e1-8316-4436-8e9d-2207e3711755",

 "MessageId": "60223529-0011d9f5-0095-0008",

 "ParameterTrace": {

 "PayloadDate": "QQ==",

 "WirelessDeviceId": "3eff83dd-9159-XXXX-XXXX-XXXXXXXXXXXX",

 "Fport": 1,

 "TransmitMode": 1

 }

 }

}

SYSLOG:4:LoRa rX : 41 - 14

SYSLOG:4:LoRa Tx :

json

http://console.aws.amazon.com/iot

Documentation Center

3. On the Rules page, choose Create.

4. Enter the Name as Visualize, and provide an appropriate Description.

5. Under the Rule query statement, enter the following query:

6. Choose Add action.

7. Select Send a message to IoT Analytics.

8. Choose Configure Action.

9. Choose Quick Create IoT Analytics Resources.

10. Under Resource Prefix, enter an appropriate prefix for your resources, such as LoRa.

11. Choose Quick Create.

12. Once the Quick Create Finished message is displayed, choose Add action.

13. Choose Create rule. You should see a Success message, indicating that the rule has been created.

Configure AWS IoT Analytics

Set up AWS IoT Analytics

1. Go to the AWS IoT Analytics console .

2. In the navigation panel, choose Datasets.

3. Select the data set generated by the Quick Create in Create an IoT Analytics Rule

4. In the Details section, click Edit in the SQL query.

5. Replace the query with as follows:

6. Click **Update.

7. Navigate to Schedule, and click Edit.
8. Under Frequency, choose Every 1 minute, and then click Update.

Configure Amazon QuickSight

Amazon QuickSight lets you easily create and publish interactive BI dashboards that include Machine Learning-

powered insights.

1. Go to AWS Management console .

2. From the management console, enter QuickSight in the "Search for services, features.." search box.

3. Click on QuickSight in the search results.

4. If you haven't signed up for the service before, go ahead and sign up, as there is a free trial period.

5. Select the Standard Edition, and choose Continue.

6. Enter a unique name in the field QuickSight account name.

7. Fill in the Notification email address.

8. Review the other checkbox options and change them as necessary. The AWS IoT Analytics option must be

selected.

9. Choose Finish. You will see a confirmation message.

10. Choose Go to Amazon QuickSight.
11. Select Datasets.

12. Select New dataset.
13. Select AWS IoT Analytics.

SELECT * FROM 'project/sensor/decoded'

SELECT devEui as device_id, temperature as temp, timestamp as time FROM LoRa_datastore

http://console.aws.amazon.com/iotanalytics
http://console.aws.amazon.com/

Documentation Center

14. Under Select an AWS IoT Analytics data set to import, choose the data set created in Create an IoT Analytics
Rule.

15. Choose Create data source, and then choose Visualize.

16. Select the dataset created, then select Refresh or Schedule Refresh for a periodic refresh of the dataset.

Testing Your "Hello Word" Application

Using your device, create a condition to generate an event such as a high-temperature condition. If the

temperature is above the configured threshold then you will receive a text alert on your phone. This alert will

include key parameters about the alert.

You can also visualize the data set as follows:

1. Go to the AWS IoT Analytics console .

2. Choose Data sets.

3. Select the dataset created earlier.

4. Select Content and ensure there are at least few uplink entries available in the data set.

5. Go to the QuickSight console .

6. Choose New analysis.

7. Choose the dataset created in Create an IoT Analytics Rule.

8. Select time on the X-axis, Value as temp (Average), and Color as device_id to see a chart of your dataset.

Debugging
After login to the device using the web browser, the system log can be viewed from Diagnostics > System Log.

Figure 17: System Log

Troubleshooting
1. Unable to see the web login:

Check that your wifi is connected to RAK7268_XXXX.

Try ping 192.168.230.1.

2. Lost password to login to the web login.

Hold the reset button for 10 seconds to factory reset the device

http://console.aws.amazon.com/iotanalytics
http://quicksight.aws.amazon.com/

Documentation Center

AWS IoT Core Integration
AWS IoT Core Integration is a software service that enables your LoRaWAN gateway to work with AWS IoT Core.

The AWS Integration for WisGate Edge V2 tutorial will show you how to set up a LoRaWAN end-node and view

its data on the AWS IoT Console. In addition, it’ll show you how to send a message from AWS IoT Console to the

end-node as well.

The Things Network (TTN)
WisGateOS 2 Basics Station to TTNv3
This tutorial illustrates how to configure and connect your RAK Edge Gateway V2 with WisGateOS 2 to a

LoRaWAN Network Server by using the Basics Station protocol. For this example, it will be shown how to connect

the gateway to TTNv3.

📝 NOTE:

LoRa Basics Station is an implementation of a LoRa packet forwarder. This protocol simplifies the

management of large-scale LoRaWAN Networks. More information about the Basics Station protocol can

be found in the explanatory document provided by Semtech.

Registering the Gateway
1. Log in first and head on to TTNv3 website . If you already have a TTN account, you can use your The Things

ID credentials to log in.

Figure 18: The Things Stack login page

📝 NOTE:

This tutorial is for the EU868 Frequency band.

2. To register a commercial gateway, choose Register a gateway (for new users that do not already have a

registered gateway) or go to Gateways > + Add gateway (for users that have registered gateways before).

https://docs.rakwireless.com/Knowledge-Hub/Learn/AWS-Integration-for-WisGate-Edge-V2/
https://lora-developers.semtech.com/build/software/lora-basics/lora-basics-for-gateways/
https://eu1.cloud.thethings.network/console

Documentation Center

Figure 19: Console Page after a successful login

3. You will be redirected to the Register gateway page.

4. In the Gateway EUI field, type the EUI of the gateway. The gateway's EUI can be found either on the sticker on

the casing or by going to the LoRa Network Settings page in the LoRa Gateway menu accessible via the Web

UI. Instructions on how to access your gateway via Web UI can be found in the product's Quick Start Guide .

Figure 20: Register gateway

5. After typing the EUI, click on Confirm. Additional fields will pop up. Fill in the following information:

Gateway ID – This will be the unique ID of your gateway in the Network. An ID based on the EUI is

automatically generated. You can change it if you need. Note that the ID must contain only lowercase letters,

numbers, and dashes (-).

Gateway name – Optionally, you can type a name for your gateway.

Frequency plan - The frequency plan used by the gateway.

📝 NOTE:

The other settings are optional and can be changed to satisfy your requirements.

For this tutorial, we will use Europe 863-870 MHz (SF12 for RX2).

https://docs.rakwireless.com/Product-Categories/WisGate/RAK7289-V2/Quickstart/

Documentation Center

Figure 21: Adding a gateway

6. To register your gateway, click Register gateway.

Figure 22: Successfully added a gateway

TTNv3 supports TLS server authentication and Client token, which requires a trust file and a key file to configure

the gateway to successfully connect it to the network.

Generating the Token
1. To generate a key file, from the Overview page of the registered gateway navigate to API keys.

Documentation Center

Figure 23: Overview page

2. On the API keys page, choose + Add API key.

Figure 24: API key page

3. In the Name field, type the name of your key (for example - mykey). Choose Grant individual rights and

select Link as Gateway to a Gateway for traffic exchange, i.e. read uplink and write downlink.

Documentation Center

Figure 25: Generating an API key

4. To generate the key, choose Create API key. The following window will pop up, telling you to copy the key you

just generated.

Figure 26: Copying the generated key

⚠ WARNING:

Copy the key and save it in a .txt file (or other), because you won’t be able to view or copy your key

after that.

5. Click I have copied the key to proceed.

Configuring the Gateway
1. To configure the gateway, access it via the Web UI. To learn how to do that, refer to the Quick Start Guide for

each gateway.

2. Navigate to LoRa > Configuration > Work mode and select Basics station.

Documentation Center

Figure 27: Changing the working mode

3. Expand the Basics Station settings by clicking Configure Basics Station server setup.

Figure 28: Expanded Basics Station settings

4. To connect the gateway to TTNv3, configure the following parameters:

Basics Station Server Type – For server type, choose LNS Server.
Server URL – This is the link to The Things Stack server. Note that, for this tutorial, the gateway is connected to

the European cluster. For Europe fill in the following:

Documentation Center

Server Port – The LNS Server uses port 8887. Type in 8887.

Authentication Mode – Choose TLS server authentication and Client token. When selected, the Trust (CA
Certificate) and Client token fields will show up.

Trust (CA Certificate) – For trust, upload the Let’s Encrypt ISRG ROOT X1 Trust certificate by clicking

choose file. The file with the certificate can be downloaded directly .

Client Token - This is the generated API key. The key must start with Authorization:.

For example:

📝 NOTE:

Replace YOUR_API_KEY with the key generated previously. Have in mind that there should be a space
between Authorization: and YOUR_API_KEY, as shown in the example.

Figure 29: Basics Station settings

5. To save the changes, click Save Changes.

wss://eu1.cloud.thethings.network

Authorization: YOUR_API_KEY

https://letsencrypt.org/certs/isrgrootx1.pem

Documentation Center

Now, you can see that their gateway is connected to TTNv3 as Basics Station.

Figure 30: Successful connection

ChirpStack
This guide will show you how to connect the RAKWireless Commercial V2 gateway running WisGateOS 2 to a

ChirpStack Network server, whether it is installed in the local or external network.

The guide is not about how to install the ChirpStack, but how to configure the gateway to send data to it.

Configuring the Edge Gateway V2 to ChirpStack
As mentioned before, the guide is for all RAK Edge V2 Series gateways running WisGateOS 2. It will be separated

into two main sections based on where the ChirpStack Network server is installed:

Local ChirpStack

External ChirpStack

Different methods on how to connect the gateway to the server will be shown.

Local ChirpStack
In this case, the ChirpStack is installed in the local network. Three options will be considered here:

Connecting the Gateway via Packet Forwarder
Connecting the Gateway via MQTT Bridge
Connecting the Gateway via Basics Station

Each option is explained in a separate section.

Connecting the Gateway via Packet Forwarder
In this method, you will configure the gateway’s packet forwarder to send data to the ChirpStack Gateway Bridge.

1. Start by accessing the gateway. To see how to access the gateway, refer to the Access the Gateway section.

https://docs.rakwireless.com/Product-Categories/wisgate/rak7289-v2/Quickstart/#access-the-gateway

Documentation Center

Figure 31: Login page

2. Login using the set credentials you have set in the Access the Gateway section.

3. On the left side, head to LoRa. By default, the gateway is configured to work as a Built-in network server.

Figure 32: Network server settings

https://docs.rakwireless.com/Product-Categories/wisgate/rak7289-v2/Quickstart/#access-the-gateway

Documentation Center

4. From Work Mode, select Packet forwarder. Click Choose from the available protocols to expand the Packet

forwarder settings.

Figure 33: Setting Packet Forwarder Mode

4. By default, when Packet Forwarder mode is chosen, the Semtech UDP GWMP Protocol is selected.

5. To point the gateway to the ChirpStack network using the packet forwarder, you only need to set the Server
address of the ChirpStack.

In this case, the ChirpStack is installed locally on an Ubuntu machine on IP 192.168.0.130 (yours will be

different). The other fields are filled with default parameters and can be left by default.

Documentation Center

Figure 34: Configuring Packet Forwarder to ChirpStack

6. Click Save changes to save the changes.

Now you need to register the gateway in ChirpStack. The steps are the same for all options.

Registering the Gateway in ChirpStack Network Server
1. To register the gateway in the ChirpStack Network server, access the ChirpStack UI. To do that, open a web

browser and type the server address of the ChirpStack with port 8080.

In this case, the ChirpStack is installed on a local Ubuntu machine with IP 192.168.0.130 . The server address

will be 192.168.0.130:8080 .

<IP address of ChirpStack>:8080

Documentation Center

Figure 35: ChirpStack Login page

2. Login using the following credentials:

Username/email: admin
Password: admin

Figure 36: ChirpStack dashboard

3. Head to Gateways, on the left pane.

Documentation Center

Figure 37: Gateway list

4. By default, no gateways are registered. To register one, click + Create.

5. In the General menu, you need to set the gateway parameters.

Figure 38: Register the gateway

Gateway name – unique name for the gateway on the Network server. The name may only contain words,

numbers, and dashes.

Gateway description – a brief description of the gateway.

Documentation Center

Gateway ID – the Extended Unique Identifier (EUI) of the gateway. The EUI can be found, on the Overview

page of the Dashboard menu of the web UI of the gateway.

Network-server - the network server to which the gateway will connect. When no network servers are available

in the dropdown, make sure a service profile exists for this organization.

Service profile - the service profile under which the gateway must be added. The available service profiles

depend on the selected network server, which must be selected first.

Gateway profile – this field is optional. When assigning a gateway profile to the gateway, ChirpStack Network

Server will attempt to update the gateway according to the gateway profile. Note that this does require a

gateway with ChirpStack Concentratord.

Gateway discovery enabled - When enabled (and ChirpStack Network Server is configured with the gateway

discover feature enabled), the gateway will send out periodical pings to test its coverage by other gateways in

the same network.

Gateway attitude - When the gateway has an onboard GPS, this value will be set automatically when the

network has received statistics from the gateway.

Gateway location – you can drag the marker to the location of the gateway. When the gateway has an onboard

GPS, this value will be set automatically when the network receives statistics from the gateway.

6. Once, everything is set, click Create gateway to register the gateway. You will see the registered gateway in

the Gateway list.

Figure 39: Registered gateway

7. If everything is set correctly, the Last seen status will state a few seconds ago in a while.

Documentation Center

Figure 40: Connect the gateway

You can click the gateway name to inspect the gateway traffic.

Figure 41: Gateway details

Connect the Gateway via MQTT Bridge
In this method, you will configure the gateway’s built-in gateway bridge to send data to the ChirpStack Broker.

1. Start by accessing the gateway. To access the gateway check the Access the gateway.

Documentation Center

Figure 42: Login page

2. Login using the set credentials you have set in the Access the gateway.

3. On the left side, head to LoRa. By default, the gateway is configured to work as a Built-in network server.

Figure 43: Network server settings

Documentation Center

4. From Work Mode, select Packet forwarder. Click Choose from the available protocols to expand the Packet

forwarder settings.

Figure 44: Setting Packet Forwarder Mode

5. By default, when Packet Forwarder mode is chosen, the Semtech UDP GWMP Protocol is selected. To use

the built-in gateway bridge, from the Protocol select LoRa Gateway MQTT Bridge.

Documentation Center

Figure 45: LoRa Gateway MQTT Bridge

The latest ChirpStack version supports both MQTT for ChirpStack 3.x (JSON) and MQTT for ChirpStack 3.x
(PROTOBUF).

📝 NOTE

If you want to use JSON protocol, you need to change the payload marshaler in the gateway bridge .toml

file to “JSON”.

To configure the payload marshaler you need to access the configuration file of the gateway bridge. You can

access it with the configuration file of the gateway bridge. You can also access it with an SSH connection. In this

case, you will use the SSH client PuTTY to access the configuration files.

6. Access the ChirpStack via PuTTY. You need to type the address of the ChirpStack server in the Host name
field and click Open. In this case on IP 192.168.0.130.

Documentation Center

Figure 46: PuTTY client

7. In the /etc/chirpstack-gateway-bridge/chirpstack-gateway-bridge.toml , find the Integration section

and change the marshaler to JSON.

Figure 47: Payload Marshaler

8. Save and exit the file.

9. However, if you are using an earlier version of ChirpStack (V2), you will need to select MQTT for ChirpStack 2.
x. The option MQTT for Embedded RAK Network Server is for a mesh network, where one gateway plays the

role of a network server.

For this example, you will choose MQTT for ChirpStack 3. x (PROTOBUF).

Documentation Center

Figure 48: MQTT for Chirpstack Protocol

10. By default, the built-in gateway bridge is pointed to the local Broker (127.0.0.1). To point the gateway to the

ChirpStack network, you need to set the ChirpStack Broker address in the MQTT Broker Address field.

In this case, the ChirpStack is installed locally on an Ubuntu machine on IP 192.168.0.130 (yours will be different).

The default port that the MQTT Broker uses is 1883.

Figure 49: Configuring Packet Forwarder to ChirpStack

11. Click Save changes to save the changes.

12. Now you need to register the gateway in the ChirpStack Network server. When Packet Forwarder mode is

chosen, the Semtech UDP GWMP Protocol is selected by default. To register the gateway in ChirpStack, see

Registering gateway in ChirpStack Network server section.

13. If everything is set correctly, the Last seen status will state a few seconds ago.

Documentation Center

Figure 50: Registered gateway

You can click the gateway's name to inspect the gateway traffic.

Figure 51: Gateway details

Now your gateway is connected to the ChirpStack Network server.

Connecting the Gateway via Basics Station
1. In this method, you will connect the gateway to the ChirpStack via Basics Station. The LoRa Basics™

Station is an implementation of a LoRa packet forwarder.

Documentation Center

Figure 52: Login page

2. Login using the set credentials you have set in the Access the gateway.

3. n the left side, head to LoRa. By default, the gateway is configured to work as a Built-in network server.

Figure 53: Network Server Settings

Documentation Center

4. For Work Mode, select Basics station and click Configure Basics Station server setup to expand the Basics

Station settings.

Figure 54: Setting Basics Station mode

Here you need to point the gateway to the ChirpStack Network server:

Server – For server, choose LNS Server.

URI – the address of the ChirpStack server. In this case, the ChirpStack is installed locally on an Ubuntu

machine on IP 192.168.0.130 (yours will be different). The URI will be ws://192.168.0.130 .

📝 NOTE

The URL starts with ws:// in case a plain text connection is used. Using the wss:// scheme will trigger a

TLS connection based on the tc.{cert,key,trust} credentials set.

Port – the port to which the Websocket listens. The port is 3001.

Authentication Mode – authentication for the ChirpStack server. For this case, you will use no authentication.

Documentation Center

Figure 55: Configuring Basics Station to ChirpStack

5. Click Save changes to save the changes.

Now your gateway is configured to work as Basics Station, and it is pointed to the ChirpStack gateway bridge. The

default installation of the ChirpStack setups the backend configuration of the ChirpStack gateway bridge to

semtech_udp .

6. To configure the backend of the ChirpStack gateway bridge, you need to access the configuration file of the

bridge. To access it, you will need an SSH terminal. In this case, you will use a PuTTY client.

Figure 56: PuTTY client

Documentation Center

Copy the configuration file's text in the ChirpStack Gateway bridge webpage and place it in /etc/chirpstack-

gateway-bridge/chirpstack-gateway-bridge.toml .

7. In the file, find the Gateway backend configuration paragraph and replace the type with basic_station.

Figure 57: Configure gateway bridge type

8. Now scroll down until you find the Concentrator configuration paragraph and uncomment the following text as

shown below. Uncommenting the text, enables the configuration for the SX1301 concentrator chips.

Figure 58: Configure gateway bridge backend

9. Save and exit the .toml file and restart the gateway bridge service to apply the changes by restarting the

gateway bridge service with the following command:

Now the ChirpStack backend configuration is set to basics station.

10. Then, you need to register the gateway in the ChirpStack Network server. To register the gateway in

ChirpStack, see Registering gateway in ChirpStack Network server section.

If everything is set correctly, the Last seen status will state a few seconds ago. You can click the gateway name to

inspect the gateway traffic.

sudo systemctl restart chirpstack-gateway-bridge.service

https://www.chirpstack.io/gateway-bridge/install/config/

Documentation Center

Figure 59: Registered gateway

Figure 60: Gateway details

Now your gateway is connected to the ChirpStack Network server.

External ChirpStack
In this case, the ChirpStack is installed on an external network. In the following example, the ChirpStack Network

server is installed on the AWS cloud. A guide on how to install it on AWS can be found in the Knowledge Hub

section.

To access the ChirpStack web UI, you need to enable TCP port 8080 and to make the gateway to communicate

with the Network server you need to enable the following ports in the inbound rules of the instance:

The Semtech Packet Forwarder needs UDP port 1700.

MQTT Bridge (unsecured) needs TCP port 1883.

MQTT Bridge (secured) needs TCP port 8883.

Basics Station needs TCP port 3001.

https://docs.rakwireless.com/Knowledge-Hub/Learn/Amazon-Web-Services/#installing-chirpstack

Documentation Center

📝 NOTE

A guide on how to open the above ports can be found in the guide on how to install ChirpStack on AWS.

Three options will be considered here:

Connecting the Gateway via Packet Forwarder
Connecting the Gateway via MQTT Bridge
Connecting the Gateway via Basics Station

Each option is explained in its own separate section.

Connecting the Gateway via Packet Forwarder
In this method, you will configure the gateway’s packet forwarder to send data to the ChirpStack Gateway Bridge.

📝 NOTE

When connecting the gateway to the ChirpStack, you will need to open ports 1700 and 8080 to enable the

communication between the gateway and the server and be able to access the ChirpStack.

Figure 61: Opened 1700 UDP port

1. Start by accessing the gateway.

Figure 62: Login page

2. Login using the set credentials you have set in the Access the gateway.

3. On the left side, head to LoRa. By default, the gateway is configured to work as a Built-in network server.

https://docs.rakwireless.com/Knowledge-Hub/Learn/Amazon-Web-Services/#installing-chirpstack

Documentation Center

Figure 63: Network server settings

4. From Work Mode, select Packet forwarder. Click Choose from the available protocols to expand the Packet

forwarder settings.

Documentation Center

Figure 64: Setting packet forwarder settings

When Packet Forwarder mode is chosen, the Semtech UDP GWMP Protocol is selected by default.

To point the gateway to the ChirpStack network using the packet forwarder, you only need to set the When Packet

Forwarder mode. The Semtech UDP GWMP Protocol is selected by default of the ChirpStack.

In this case, the ChirpStack is installed on the AWS cloud instance with public IP 18.156.176.220 (yours will be

different). The default ports that the packet forwarder is using are 1700.

Documentation Center

Figure 65: Configure packet forwarder to ChirpStack

5. Click Save changes to save the changes.

Now you need to register the gateway in the ChirpStack Network server.

Registering the Gateway in ChirpStack
The steps for registering the gateway in ChirpStack are the same for all options.

1. To register the gateway in the ChirpStack Network server, access the ChirpStack UI. To do that, open a web

browser and type the server address of the ChirpStack with port 8080.

2. In this case, the ChirpStack is installed on the AWS cloud with the public IP address 18.156.176.220.

Figure 66: ChirpStack login page

3. Login using the following credentials:

Username/email: admin
Password: admin

<IP address of ChirpStack>:8080

Documentation Center

Figure 67: ChirpStack dashboard

4. On the left pane, head to Gateways.

Figure 68: Gateway list

5. By default, no gateways are registered. To register one, click + Create.

6. In the General menu, you need to set the gateway parameters.

Documentation Center

Figure 69: Register the gateway

Gateway name – unique name for the gateway on the Network server. The name may only contain words,

numbers, and dashes.

Gateway description – a brief description of the gateway.

Gateway ID – the Extended Unique Identifier (EUI) of the gateway. The EUI is in the Overview menu of the

Dashboard page of the web UI of the gateway.

Network server - the network server to which the gateway will connect. When no network servers are available

in the dropdown, make sure a service profile exists for this organization.

Service-profile - the service profile under which the gateway must be added. The available service profiles

depend on the selected network server, which must be selected first.

Gateway profile – this field is optional. When assigning a gateway profile to the gateway, ChirpStack Network

Server will attempt to update the gateway according to the gateway profile. Note that this does require a

gateway with ChirpStack Concentrator.

Gateway discovery enabled - When enabled (and ChirpStack Network Server is configured with the gateway

discover feature enabled), the gateway will send out periodical pings to test its coverage by other gateways in

the same network.

Gateway attitude - When the gateway has an onboard, this value will be set automatically when the network

has received statistics from the gateway.

Gateway location – you can drag the marker to the location of the gateway. When the gateway has an onboard

GPS, this value will be set automatically when the network receives statistics from the gateway.

7. Once everything is set, click Create gateway to register the gateway. You will see the registered gateway in the

Gateway list.

If everything is set correctly, the Last seen status in the ChirpStack will state a few seconds ago.

Documentation Center

Figure 70: Registered gateway

8. You can click the gateway name to inspect the gateway traffic.

Figure 71: Gateway details

Now your gateway is connected to the ChirpStack Network server.

Connecting the Gateway via MQTT Bridge
In this method, you will configure the gateway’s built-in bridge to publish the data to the ChirpStack MQTT broker.

📝 NOTE

When connecting the gateway to the ChirpStack, you will need to open ports 1883 and 8080 to enable the

communication between the gateway and the server and be able to access the ChirpStack.

Figure 72: Login page

Documentation Center

1. Start by accessing the gateway.

Figure 73: Login page

2. Login using the set credentials you have set in the Access the gateway.

3. On the left side, head to LoRa. By default, the gateway is configured to work as Built-in network server.

Figure 74: Network server settings

Documentation Center

4. From Work Mode, select Packet forwarder. Click Choose from the available protocols to expand the Packet

forwarder settings.

Figure 75: Setting packet forwarder mode

5. By default, when Packet Forwarder mode is chosen, the Semtech UDP GWMP Protocol is selected. To use

the built-in gateway bridge, from the Protocol select LoRa Gateway MQTT Bridge.

Documentation Center

Figure 76: LoRa Gateway MQTT bridge

The latest ChirpStack version supports both MQTT for ChirpStack 3.x (JSON) and MQTT for ChirpStack 3.x
(PROTOBUF).

📝 NOTE

If you want to use JSON protocol, you need to change the payload marshaler in the gateway bridge

.toml file to json. By default, the marshaler is protobuf.

6. To configure the payload marshaler, you need to access the configuration file of the gateway bridge. You can

access it with an SSH connection. In this case, you will use the SSH client PuTTY to access the configuration

files. How to do this is explained in the Knowledge Hub section.

https://docs.rakwireless.com/Knowledge-Hub/Learn/Amazon-Web-Services/#accessing-instance-via-ssh

Documentation Center

Figure 77: PuTTY client

7. In the /etc/chirpstack-gateway-bridge/chirpstack-gateway-bridge.toml , find the Integration section and

change the marshaler to json .

Figure 78: Payload Masher

8. Save and exit the file.

However, if you are using an earlier version of ChirpStack (V2), you will need to select MQTT for ChirpStack 2.x.
The option MQTT for Embedded RAK Network Server is for a mesh network, where one gateway plays the role

of a network server. For this example, you will choose MQTT for ChirpStack 3.x (PROTOBUF).

Documentation Center

Figure 79: MQTT for ChirpStack protocol

By default, the built-in gateway bridge is pointed to the local Broker (127.0.0.1). To point the gateway to the

ChirpStack network, you need to set the ChirpStack Broker address in the MQTT Broker Address field.

In this case, the ChirpStack is installed on an AWS cloud instance with public IP 18.156.176.220 (yours will be

different). The default port that the MQTT Broker uses is 1883.

Figure 80: Configuring packet forwarder to ChirpStack

9. Click Save changes to save the changes.

If everything is set correctly, the Last seen status will state a few seconds ago. You can click the gateway name

to inspect the gateway traffic.

Documentation Center

Figure 81: Registered gateway

Figure 82: Gateway details

Now your gateway is connected to the ChirpStack Network server.

Connecting the Gateway via Basics Station
In this method, you will connect the gateway to the ChirpStack via Basics Station. The LoRa Basics™ Station is an

implementation of a LoRa packet forwarder.

📝 NOTE

When connecting the gateway to the ChirpStack, you will need to open TCP ports3001 and 8080 to enable

the communication between the gateway and the server and be able to access the ChirpStack.

Figure 83: Enable 8080 and 3001 port

1. Start by accessing the gateway.

Documentation Center

Figure 84: Login page

2. Login using the set credentials you have set in the Access the gateway.

3. On the left side, head to LoRa. By default, the gateway is configured to work as a Built-in network server.

Documentation Center

Figure 85: Network server settings

4. For Work Mode, select Basics station and click Configure Basics Station server setup to expand the Basics

Station settings.

Documentation Center

Figure 86: Setting Basics Station mode

Server – For server, choose LNS Server.

URI – the address of the ChirpStack server. In this case, the ChirpStack is installed on an AWS cloud instance

with public IP 18.156.176.220 (yours will be different). The URI will be: ws://18.156.176.220 .

📝 NOTE

The URL starts with ws:// in case a plain text connection is used. Using the wss:// scheme will

trigger a TLS connection based on the ``tc.{cert,key,trust} `credentials set.

Port – the port to which the Websocket listens. The port is 3001.

Authentication Mode – Authentication for the ChirpStack server. For this case, you will use no authentication.

Documentation Center

Figure 87: Configuring Basics Station to ChirpStack

5. Click Save changes to save the changes.

Now your gateway is configured to work as Basics Station and it is pointed to the ChirpStack gateway bridge. The

default installation of the ChirpStack setups backend of the ChirpStack gateway bridge as semtech_udp .

To configure the backend of the ChirpStack gateway bridge, you need to access the configuration file of the bridge.

To access it, you will need an SSH terminal. In this case, you will use the PuTTy client.

To access the ChirpStack configuration files, you need to access the instance. How to do this is explained in the

Knowledge Hub section.

https://docs.rakwireless.com/Knowledge-Hub/Learn/Amazon-Web-Services/#accessing-instance-via-ssh

Documentation Center

Figure 88: PuTTY client

6. In the ChirpStack Gateway bridge webpage, copy the configuration file text and place it in /etc/chirpstack-

gateway-bridge/chirpstack-gateway-bridge.toml .

7. In the file, find the gateway backend configuration paragraph and replace the type with basic_station .

Figure 89: Configure gateway bridge type

8. Now scroll down until you find the Concentrator configuration paragraph and uncomment the following text as

shown below.

Documentation Center

Figure 90: Configuring gateway bridge backend

9. Save and exit the .toml file and restart the gateway bridge service to apply the changes by restarting the

gateway bridge service with the following command:

Now the ChirpStack backend configuration is set to Basics station.

If everything is set correctly, the Last seen status will state a few seconds ago. You can click the gateway name to

inspect the gateway traffic.

Figure 91: Registered gateway

sudo systemctl restart chirpstack-gateway-bridge.service

Documentation Center

Figure 92: Gateway details

Now your gateway is connected to the ChirpStack Network server.

ThingPark by Actility
In this section, you will learn how to add RAK7289V2/RAK7289CV2 WisGate Edge Pro in ThingPark.

ThingPark is Actility’s platform, in which you can register your LoRaWAN gateway and end devices. ThingPark

offers a user-friendly dashboard, in which you can monitor different information about the gateway/end device like

status, radio traffic, statistics, and more. Together with HTTPS integration, you can send the data received from

the end nodes to an Application server for post-processing and visualizing.

For the complete step-by-step tutorial, refer to the How to Add RAK WisGate Edge Gateway V2 in ThingPark -

Actility ThingPark Guide .

Last Updated: 9/19/2023, 2:53:54 AM

https://docs.rakwireless.com/Knowledge-Hub/Learn/How-to-Add-RAK-WisGate-Edge-Gateway-V2-in-ThingPark-Actility-ThingPark-Guide/

