

SMG HEARTH AND HOME, LLC TEST REPORT

SCOPE OF WORK

EPA EMISSIONS TESTING FOR MODEL HP22

REPORT NUMBER

104780922MID-001R2

TEST DATE(S)

10/21/21

ISSUE DATE

[REVISED DATE]

10/26/21

9/28/22

PAGES

23

DOCUMENT CONTROL NUMBER

GFT-OP-10c (05/10/17) © 2017 INTERTEK

Telephone: 608-836-4400 Facsimile: 608-831-9279 www.intertek.com/building

TEST REPORT FOR SMG HEARTH AND HOME, LLC

Report No.: 104780922MID-001R2

Date: 9/28/22

REPORT ISSUED TO

SMG HEARTH AND HOME, LLC 9241 Globe Center Dr. Suite 120 Morrisonville, NC 27560

SECTION 1

SCOPE

Intertek Building & Construction (B&C) was contracted by SMG Hearth and Home, LLC, to perform testing in accordance with EPA 40 CFR Part 60 "Standards of Performance for New Residential Wood Heaters, New Residential Hydronic Heaters and Forced-Air Furnaces", ASTM E2515-17 - Standard Test Method for Determination of Particulate Matter Emissions Collected by a Dilution Tunnel, ASTM E2779-17 - Standard Test Method for Determining Particulate Matter Emissions from Pellet Heaters, CSA B415.1-2010 (R2020) - Performance Testing of Solid-Fuel-Burning Heating Appliances on their Model HP22, Pellet Fuel Room Heater. Results obtained are tested values and were secured by using the designated test method(s). Testing was conducted at Intertek test facility in Middleton, WI.

This report does not constitute certification of this product nor an opinion or endorsement by this laboratory.

SECTION 2

SUMMARY OF TEST RESULTS

The appliance tests resulted in the following performance for test # 1:

Particulate Emissions: 1.01 g/hr

Carbon Monoxide Emissions: 0.00024 g/min

Heating Efficiency: 80.5 % (Higher Heating Value Basis)

For INTERTEK B&C:

COMPLETED BY: Ken Slater

Associate Engineer -

TITLE: Hearth

SIGNATURE:

DATE: 10/28/21

aaa:bbb

REVIEWED BY: Brian Ziegler

Technical Team Leader -

Hearth

SIGNATURE:

TITLE:

DATE: 10/28/2

Version: 05/10/17 Page 2 of 23 GFT-OP-10c

Telephone: 608-836-4400 Facsimile: 608-831-9279 www.intertek.com/building

TEST REPORT FOR SMG HEARTH AND HOME, LLC

Report No.: 104780922MID-001R2

Date: 9/28/22

SECTION 3

TEST METHOD(S)

The specimen was evaluated in accordance with the following:

EPA 40 CFR Part 60-2015 - Standards of Performance for New Residential Wood Heaters, New Residential Hydronic Heaters and Forced-Air Furnaces

ASTM E2515-2017 - Standard Test Method for Determination of Particulate Matter Emissions Collected by a Dilution Tunnel

ASTM E2779-2017 - Standard Test Method for Determining Particulate Matter Emissions from Pellet Heaters

CSA B415.1-2010 (R2020) - Performance Testing of Solid-Fuel-Burning Heating Appliances

SECTION 4

MATERIAL SOURCE

A sample was submitted to Intertek directly from the client. The sample was not independently selected for testing. The test unit was received at Intertek in Middleton, WI on 10/14/21 and was shipped via the client. The unit was assigned sample ID # MID2110141337-001. The unit was inspected upon receipt and found to be in good condition. The unit was set up following the manufacturer's instructions without difficulty.

Following assembly, the unit was placed on the test stand. Prior to beginning the emissions tests, the unit was operated for a minimum of 48 hours at high-to-medium burn rates to break in the stove. This break-in period was conducted by SMG Hearth and Home staff and a copy of the data is included in the final report. The unit was found to be operating satisfactory during this break-in. The 48 plus hours of pre-burning were conducted from 10/05/21 through 10/11/21. The fuel used for the break-in process was wood pellets.

Following the pre-burn break-in process the unit was allowed to cool and ash and residue was removed from the firebox. The unit's chimney system and laboratory dilution tunnels were cleaned using standard wire brush chimney cleaning equipment. On 10/21/21 the unit was set-up for testing.

Version: 05/10/17 Page 3 of 23 GFT-OP-10c

Telephone: 608-836-4400 Facsimile: 608-831-9279 www.intertek.com/building

TEST REPORT FOR SMG HEARTH AND HOME, LLC

Report No.: 104780922MID-001R2

Date: 9/28/22

SECTION 5

EQUIPMENT

Equipment	INV Number	Calibration Due	MU
Timer	1212	4/5/22	0.7 sec
Timer	646	4/5/22	0.7 sec
Pressure Transducer	1406	1/13/22	0.00007"H ² O
Data Acquisition	986	4/12/22	0.06°F
Platform Scale	1134	4/6/22	.118 lbs
Hygrometer	1450	11/23/21	0.35 RH
Flow Meter	1413	2/20/22	0.020 slpm
Flow Meter	1414	2/20/22	0.020 slpm
Flow Meter	1519	2/20/22	0.020 slpm
Balance	713	4/11/22	0.00006g

SECTION 6

LIST OF OFFICIAL OBSERVERS

NAME	COMPANY
Ken Slater	Intertek B&C
Justin Buck	Intertek B&C
Glenn Turley	SMG Hearth and Home
Patrick Flannagan	SMG Hearth and Home

SECTION 7

TEST PROCEDURE

On 10/21/21 the unit was tested for EPA emissions. For pellet stoves, the test was conducted in accordance with ASTM E2779-17. The fuel used for the test run was premium-Grade Pellets (Marthwood).

The applicable EPA regulatory limits are:

Step 1 – 2015 – 4.5 grams per hour.

Step 2 – 2020 – 2.0 grams per hour.

Telephone: 608-836-4400 Facsimile: 608-831-9279 www.intertek.com/building

TEST REPORT FOR SMG HEARTH AND HOME, LLC

Report No.: 104780922MID-001R2

Date: 9/28/22

TEST SET-UP DESCRIPTON

A 3" horizontal flue is connected by a 90° elbow and adapters to a standard 6" diameter vertical single wall pipe and insulated chimney system was installed to 15' above floor level. The singe wall pipe extended to 8 feet above the floor and insulated chimney extended the remaining height.

AIR SUPPLY SYSTEM

Combustion air enters a 2" inlet pipe located on the back of the heater, which is directed to the pellet burn pot. All gases exit through the 3" flue also located at the back of the heater. The exhaust gases are assisted by a combustion blower.

TEST FUEL PROPERTIES

Wood pellets used for the testing were Marth premium grade hardwood pellets, with a majority of the wood species consisting of oak and maple. The pellets have PFI a measured heating value of 8160 Btu/hr (18967 kJ/kg) and a moisture content of 3.36% on a dry basis and 3.25% on a wet basis.

SAMPLING LOCATIONS

Particulate samples are collected from the dilution tunnel at a point 20 feet from the tunnel entrance. The tunnel has two elbows and two mixing baffles in the system ahead of the sampling section. (See Figure 3.) The sampling section is a continuous 13 foot section of 6 inch diameter pipe straight over its entire length. Tunnel velocity pressure is determined by a standard Pitot tube located 60 inches from the beginning of the sampling section. The dry bulb thermocouple is located six inches downstream from the Pitot tube. Tunnel samplers are located 60 inches downstream of the Pitot tube and 36 inches upstream from the end of this section. (See Figure 1.)

Stack gas samples are collected from the steel chimney section 8 feet \pm 6 inches above the scale platform. (See Figure 2.)

Version: 05/10/17 Page 5 of 23 GFT-OP-10c

Telephone: 608-836-4400 Facsimile: 608-831-9279 www.intertek.com/building

TEST REPORT FOR SMG HEARTH AND HOME, LLC

Report No.: 104780922MID-001R2

Date: 9/28/22

FIGURE 1 – DILUTION TUNNEL

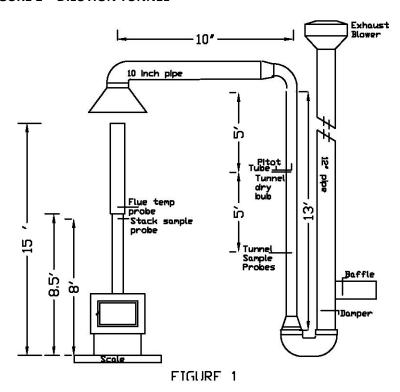
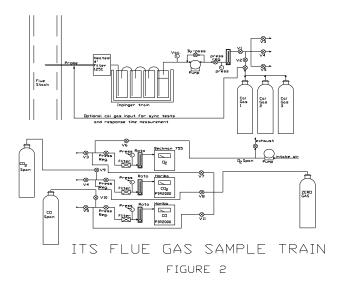
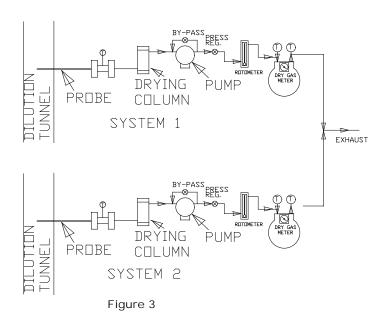



FIGURE 2 – STACK GAS SAMPLE TRAIN


Telephone: 608-836-4400 Facsimile: 608-831-9279 www.intertek.com/building

TEST REPORT FOR SMG HEARTH AND HOME, LLC

Report No.: 104780922MID-001R2

Date: 9/28/22

FIGURE 3 – DILUTION TUNNEL SAMPLE SYSTEMS

SAMPLING METHODS

PARTICULATE SAMPLING

Particulates were sampled in strict accordance with ASTM E2515. This method uses two identical sampling systems with Gelman A/E 61631 binder free, 47-mm diameter filters. The dryers used in the sample systems are filled with "Drierite" before each test run. In order to measure first-hour emissions rates a third filter set is prepared at one hour into the test run, the filter sets are changed in one of the two sample trains. The two filter sets used for this train are analyzed individually to determine the first hour and total emissions rate.

Version: 05/10/17 Page 7 of 23 GFT-OP-10c

Telephone: 608-836-4400 Facsimile: 608-831-9279 www.intertek.com/building

TEST REPORT FOR SMG HEARTH AND HOME, LLC

Report No.: 104780922MID-001R2

Date: 9/28/22

INSTRUMENT CALIBRATION

DRY GAS METERS

At the conclusion of each test program the dry gas meters are checked against our standard dry gas meter. Three runs are made on each dry gas meter used during the test program. The average calibration factors obtained are then compared with the six-month calibration factor and, if within 5%, the six-month factor is used to calculate standard volumes. Results of this calibration are contained in Appendix D.

An integral part of the post-test calibration procedure is a leak check of the pressure side by plugging the system exhaust and pressurizing the system to 10" W.C. The system is judged to be leak free if it retains the pressure for at least 10 minutes.

The standard dry gas meter is calibrated every 6 months using a Spirometer designed by the EPA Emissions Measurement Branch. The process involves sampling the train operation for 1 cubic foot of volume. With readings made to $.001 \, \mathrm{ft}^3$, the resolution is .1%, giving an accuracy higher than the $\pm 2\%$ required by the standard.

STACK SAMPLE ROTAMETER

The stack sample rotometer is checked by running three tests at each flow rate used during the test program. The flow rate is checked by running the rotometer in series with one of the dry gas meters for 10 minutes with the rotometer at a constant setting. The dry gas meter volume measured is then corrected to standard temperature and pressure conditions. The flow rate determined is then used to calculate actual sampled volumes.

GAS ANALYZERS

The continuous analyzers are zeroed and spanned before each test with appropriate gases. A mid-scale multi-component calibration gas is then analyzed (values are recorded). At the conclusion of a test, the instruments are checked again with zero, span and calibration gases (values are recorded only). The drift in each meter is then calculated and must not exceed 5% of the scale used for the test.

At the conclusion of each unit test program, a three-point calibration check is made. This calibration check must meet accuracy requirements of the applicable standards. Consistent deviations between analyzer readings and calibration gas concentrations are used to correct data before computer processing. Data is also corrected for interferences as prescribed by the instrument manufacturer's instructions.

Version: 05/10/17 Page 8 of 23 GFT-OP-10c

Telephone: 608-836-4400 Facsimile: 608-831-9279 www.intertek.com/building

TEST REPORT FOR SMG HEARTH AND HOME, LLC

Report No.: 104780922MID-001R2

Date: 9/28/22

TEST METHOD PROCEDURES

LEAK CHECK PROCEDURES

Before and after each test, each sample train is tested for leaks. Leakage rates are measured and must not exceed 0.02 CFM or 4% of the sampling rate. Leak checks are performed checking the entire sampling train, not just the dry gas meters. Pre-test and post-test leak checks are conducted with a vacuum of 10 inches of mercury. Vacuum is monitored during each test and the highest vacuum reached is then used for the post test vacuum value. If leakage limits are not met, the test run is rejected. During, these tests the vacuum was typically less than 2 inches of mercury. Thus, leakage rates reported are expected to be much higher than actual leakage during the tests.

TUNNEL VELOCITY/FLOW MEASUREMENT

The tunnel velocity is calculated from a center point Pitot tube signal multiplied by an adjustment factor. This factor is determined by a traverse of the tunnel as prescribed in ASTM E2515. Final tunnel velocities and flow rates are calculated from ASTM E2515, Equations 3 and 9. (Tunnel cross sectional area is the average from both lines of traverse.)

Pitot tubes are cleaned before each test and leak checks are conducted after each test.

PM SAMPLING PROPORTIONALITY

Proportionality was calculated in accordance with ASTM E2515. The data and results are included in Appendix C.

DEVIATIONS FROM STANDARD METHOD:

None

SECTION 8

TEST CALCULATIONS

WEIGHT OF TEST FUEL BURNED (DRY) - ASTM E2779

 $M_{Bdb} = (M_{Swb} - M_{Ewb})(100/(100 + FM))$

where:

FM = average fuel moisture of test fuel, % dry basis,

M_{Swb} = weight of test fuel in hopper at start of test run, wet basis, kg (lb), M_{Ewb} = weight of test fuel in hopper at end of test run, wet basis, kg (lb), and

Version: 05/10/17 Page 9 of 23 GFT-OP-10c

Telephone: 608-836-4400 Facsimile: 608-831-9279 www.intertek.com/building

TEST REPORT FOR SMG HEARTH AND HOME, LLC

Report No.: 104780922MID-001R2

Date: 9/28/22

M_{Bdb} = weight of test fuel burned during test run, dry basis, kg (lb).

WEIGHT OF TEST FUEL BURNED PER TEST SEGMENT (DRY) - ASTM E2779

 $M_{BSidb} = (M_{SSiwb} - M_{ESiwb}) (100/(100 + FM))$

where:

 M_{SSiwb} = weight of test fuel in hopper at start of test run segment *i*, wet basis, kg (lb), M_{ESiwb} = weight of test fuel in hopper at end of test run segment *i*, wet basis, kg (lb), M_{BSidb} = weight of test fuel burned during test run segment *i*, dry basis, kg (lb), and

i = test run segments in accordance with 9.4, Table 1.

AVERAGE BURN RATE FOR FULL TEST (DRY) - ASTM E2779

 $BR = 60 M_{Bdb}/\theta$

where:

BR = average dry burn rate over the full integrated test run, kg/h (lb/h), and

 θ = total length of full integrated test run, min.

AVERAGE BURN RATE PER TEST SEGMENT (DRY) – ASTM E2779

 $BR_{Si} = 60 M_{BSidb} / \theta_{Si}$

where:

BR_{Si} = average dry burn rate over test run segment i, kg/h (lb/h), and

 θ_{si} = total length of test run segment *i*, min.

AVERAGE EMISSION RATE FOR FULL TEST (g/hr) - ASTM E2779

 $PM_R = 60(E_T/\theta)$

where:

E_T = total particulate emissions for full integrated test run measured using Test Method

E2515, g (lb),

 θ = total length of test run, min, and

PM_R = average particulate emission rate over the full integrated test run, g/h.

AVERAGE EMISSION FACTOR FOR FULL TEST (g/kg dry) - ASTM E2779

 $PM_F = E_T/M_{Bdb}$

where:

PM_F = average particulate emission factor over the full integrated test run, g/dry kg of fuel

burned.

AVERAGE EMISSIONS FOR FULL TEST (g/MJ or lb/MMBtu) – ASTM E2779

Version: 05/10/17 Page 10 of 23 GFT-OP-10c

Telephone: 608-836-4400 Facsimile: 608-831-9279 www.intertek.com/building

TEST REPORT FOR SMG HEARTH AND HOME, LLC

Report No.: 104780922MID-001R2

Date: 9/28/22

 $PM_H = E_T/E_O$

where:

E₀ = average measured overall heat output over the full integrated test run from Annex A1,MJ (MMBTU), and

PM_H = average particulate emissions in accordance with unit of average heat output over the full integrated test run, g/MJ (lb/MMBtu).

NOMENCLATURE FOR ASTM E2515:

A = Cross-sectional area of tunnel m2 (ft2).

 B_{ws} = Water vapor in the gas stream, proportion by volume (assumed to be 0.02 (2.0 %)).

C_p = Pitot tube coefficient, dimensionless (assigned a value of 0.99).

cr = Concentration of particulate matter room air, dry basis, corrected to standard conditions, g/dscm (gr/ dscf) (mg/dscf).

c_s = Concentration of particulate matter in tunnel gas, dry basis, corrected to standard conditions, g/dscm (gr/dscf) (mg/dscf).

 E_T = Total particulate emissions, g.

F_p = Adjustment factor for center of tunnel pitot tube placement.

 $F_p = V_{strav}/V_{scent}$

 K_P = Pitot Tube Constant, 34.97 $\frac{m}{\text{sec}} \left[\frac{\left(\frac{g}{g} \mod e\right) (mm \, Hg)}{(K)(mm \, water)} \right]^{\frac{1}{2}}$

or

= Pitot Tube Constant, 85.49 $\frac{ft}{\text{sec}} \left[\frac{\left(\frac{lb}{lb} - mole\right)(in Hg)}{(R)(in water)} \right]_{2}^{\frac{1}{2}}$

L_a = Maximum acceptable leakage rate for either a pretest or post-test leak- check, equal to 0.0003 m3/min (0.010 cfm) or 4 % of the average sampling rate, whichever is less.

L_p = Leakage rate observed during the post-test leak-check, m3/min (cfm).

 m_p = mass of particulate from probe, mg.

m_f = mass of particulate from filters, mg.

m_g = mass of particulate from filter gaskets, mg.

m_r = mass of particulate from the filter, filter gasket, and probe assembly from the room air blank filter holder assembly, mg.

m_n = Total amount of particulate matter collected, mg.

M_s = the dilution tunnel dry gas molecular weight (may be assumed to be 29 g/g mole (lb/lb mole).

P_{bar} = Barometric pressure at the sampling site, mm Hg (in. Hg).

P_g = Static Pressure in the tunnel (in. water).

P_R = Percent of proportional sampling rate.

P_s = Absolute average gas static pressure in dilution tunnel, mm Hg (in. Hg).

P_{std} = Standard absolute pressure, 760 mm Hg (29.92 in. Hg).

Q_{std} = Average gas flow rate in dilution tunnel.

 $Q_{std} = 60 (1 - B_{ws}) V_s A [T_{std} P_s/T_s P_{std}]$

Telephone: 608-836-4400 Facsimile: 608-831-9279 www.intertek.com/building

TEST REPORT FOR SMG HEARTH AND HOME, LLC

Report No.: 104780922MID-001R2

Date: 9/28/22

dscm/min (dscf/min).

= Absolute average dry gas meter temperature, K (R). T_{m}

= Absolute average dry gas meter temperature during each 10-min interval, i, of the test T_{mi} run.

 $T_{mi} = (T_{mi(b)} + T_{mi(e)})/2$

where:

= Absolute dry gas meter temperature at the beginning of each 10-min test interval, i, of T_{mi(b)} the test run, K (R), and

= Absolute dry gas meter temperature at the end of each 10-min test interval, i, of the T_{mi(e)} test run, K (R).

Ts = Absolute average gas temperature in the dilution tunnel, K (R).

= Absolute average gas temperature in the dilution tunnel during each 10-min interval, i, Tsi of the test run, K (R).

 $T_{si} = (T_{si(b)} + T_{m=si(e)})/2$

where:

 $T_{si(b)}$ = Absolute gas temperature in the dilution tunnel at the beginning of each 10-min test interval, i, of the test run, K (R), and

= Absolute gas temperature in the dilution tunnel at the end of each 10-min test $T_{si(e)}$ interval, i, of the test run, K (R).

 V_{m} = Volume of gas sample as measured by dry gas meter, dcm (dcf).

= Volume of gas sampled corrected for the post test leak rate, dcm (dcf).

= Volume of gas sample as measured by dry gas meter during each 10-min interval, i, of V_{mi} the test run, dcm.

= Volume of gas sample measured by the dry gas meter, corrected to standard $V_{m(std)}$ conditions.

 $V_{m(std)} = K_1 V_m Y [(P_{bar} + (\Delta H/13.6))/T_m]$

where:

= 0.3855 K/mm Hg for SI units and = 17.64 R/in. Hg for inch-pound units. K_1

 $V_{m(std)} = K_1 V_{mc} Y [(P_{bar} + (\Delta H/13.6))/T_m]$

where:

 V_{mc} = Vm - (Lp - La)u

= Volume of room air sample as measured by dry gas meter, dcm (dcf), and

V_{mr(std)} = Volume of room air sample measured by the dry gas meter, corrected to standard

conditions.

 $V_{m(std)} = K_1 V_{mr} Y [(P_{bar} + (\Delta H/13.6))/T_m]$

Where:

= 0.3855 K/mm Hg for SI units and = 17.64 R/in. Hg for inch-pound units, and K_1

 V_s = Average gas velocity in the dilution tunnel.

 $V_s = F_p K_p C_p (V\Delta P_{avg})(V(T_s/P_s M_s))$

 V_{si} = Average gas velocity in dilution tunnel during each 10-min interval, i, of the test run.

Version: 05/10/17 Page 12 of 23 GFT-OP-10c

Telephone: 608-836-4400 Facsimile: 608-831-9279 www.intertek.com/building

TEST REPORT FOR SMG HEARTH AND HOME, LLC

Report No.: 104780922MID-001R2

Date: 9/28/22

 $V_{si} = F_p K_p C_p (V\Delta P_i)(V(T_{si}/P_s M_s))$

 V_{scent} = Average gas velocity at the center of the dilution tunnel calculated after the Pitot tube

traverse.

V_{strav} = Average gas velocity calculated after the multipoint Pitot traverse.

Y = Dry gas meter calibration factor.

 ΔH = Average pressure at the outlet of the dry gas meter or the average differential

pressure across the orifice meter, if used, mm water (in. water).

 ΔP_{avg} = Average velocity pressure in the dilution tunnel, mm water (in. water).

 ΔP_i = Velocity pressure in the dilution tunnel as measured with the Pitot tube during each

10-min interval, i, of the test run.

 $\Delta P_i = (\Delta P_{i(b)} + \Delta P_{i(e)})/2$

where:

 $\Delta P_{i(b)}$ = Velocity pressure in the dilution tunnel as measured with the Pitot tube at the beginning of each 10-min interval, i, of the test run, mm water (in. water), and

 $\Delta P_{i(e)}$ = Velocity pressure in the dilution tunnel as measured with the Pitot tube at the end of

each 10-min interval, i, of the test run, mm water (in. water).

 θ = Total sampling time, min.

= ten min, length of first sampling period.

13.6 = Specific gravity of mercury.

100 = Conversion to percent.

TOTAL PARTICULATE WEIGHT – ASTM E2515

 $M_n = m_p + m_f + m_g$

PARTICULATE CONCENTRATION – ASTM E2515

 $C_s = K_2(m_n/V_{m(std)})$ g/dscm (g/dscf)

where:

 $K_2 = 0.001 \text{ g/mg}$

TOTAL PARTICULATE EMISSIONS (g) – ASTM E2515

 $E_T = (C_s - C_r)Q_{std}\theta$

PROPORTIONAL RATE VARIATION (%) - ASTM E2515

 $PR = [\theta(V_{mi} \ V_s \ T_m \ T_{si})/(10(V_m \ V_{si} \ T_s \ T_{mi})] \ x \ 100$

MEASUREMENT OF UNCERTAINTY – ASTM E2515

 $MU_{weighing} = \sqrt{0.1^2} \cdot X$

GENERAL FORMULA – ASTM E2515

Version: 05/10/17 Page 13 of 23 GFT-OP-10c

Telephone: 608-836-4400 Facsimile: 608-831-9279 www.intertek.com/building

TEST REPORT FOR SMG HEARTH AND HOME, LLC

Report No.: 104780922MID-001R2

Date: 9/28/22

 $uY = V((\delta Y/\delta x_1) \times u_1)^2 + ... + ((\delta Y/\delta x_n) \times u_n)^2$

Where:

 $\delta Y/\delta x_i$ = Partial derivative of the combining formula with respect to individual measurement xi,

u_i = is the uncertainty associated with that measurement.

TOTAL PARTICULATE EMISSIONS – ASTM E2515

$$E_T = (c_s - c_r) Q_{std} \theta$$

where:

c_s = sample filter catch/(sample flow rate x test duration), g/dscf,

c_r = room background filter catch/(sample flow x sampling time), g/dscf,

Q_{std} = average dilution tunnel flow rate, dscf/min, and

 θ = sampling time, minutes.

MU OF cs

$$\begin{split} c_s &= F_c/(Q_{sample} \times \theta) = 0.025/(0.25 \times 180) = 0.0005555 \\ \delta c_s/\delta F_c &= 1/Q_{sample} \bullet \Theta = 1/0.25 \bullet 180 = 0.0222 \\ \delta c_s/\delta Q_{sample} &= -F_c/Q^2_{sample} \bullet \Theta = -0.025/0.25^2 \bullet 180 = -0.00222 \\ \delta c_s/\delta \Theta &= -F_c/Q_{sample} \bullet \Theta^2 = -0.025/0.25 \bullet 180^2 = -0.000003 \\ MUc_s &= v(0.00027 \bullet 0.0222)^2 + (0.0025 \bullet -0.00222)^2 \\ &\qquad v + (0.1 \bullet -0.000003)^2 = 0.0000091g \end{split}$$

Thus, c_s would be 0.555 mg/dscf \pm 0.0081 mg/dscf at 95% confidence level.

MU OF cr

$$\begin{split} c_r &= BG_c/(QBG \times \theta) = 0.002/(0.15 \times 180) = 0.000074 \\ \delta c_r/\delta BG_c &= 1/Q_{BG} \bullet \Theta = 1/0.15 \bullet 180 = 0.03704 \\ \delta c_r/\delta Q_{BG} &= -BG_c/Q_{BG}^2 \bullet \Theta = -0.002/0.15^2 \bullet 180 = -0.0004938 \\ \delta c_r/\delta \Theta &= -BG_c/Q_{BG} \bullet \Theta^2 = -0.002/0.15 \bullet 180^2 = -0.0000004 \\ MUc_r &= \nu(0.00027 \bullet 0.03704)^2 + (0.0015 \bullet -0.0004938)^2 \\ &\qquad \nu + (0.1 \bullet -0.0000004)^2 = 0.00001g \end{split}$$

Thus, c_r would be 0.074 mg/dscf \pm 0.01 mg/dscf at 95% confidence level.

E_T AND MU_{ET}

$$\begin{split} E_T &= (c_s - c_r) \ Q_{sd} \ \theta = (0.000555 - 0.000074) \ x \ 150 \ x \ 180 = 13.00g \\ \delta E_T / \delta c_s &= Q_{std} \bullet \Theta = 150 \bullet 180 = 27,000 \\ \delta E_T / \delta c_r &= Q_{std} \bullet \Theta = 150 \bullet 180 = 27,000 \\ \delta E_T / \delta Q_{std} &= c_s \bullet \Theta - c_r \bullet \Theta = 0.000555 \bullet 180 - 0.000074 \bullet 180 = 0.08667 \\ \delta E_T / \delta \Theta &= c_s \bullet Q_{std} - c_r \bullet Q_{std} = 0.000555 \bullet 180 - 0.000074 \bullet 180 = 0.07222 \\ MU_{ET} &= V(27,000 \bullet 0.0000081)^2 + (27,000 \bullet 0.00001)^2 \ (0.08667 \bullet 3)^2 \\ V &+ (0.07222 \bullet 0.1)^2 = 0.436 \end{split}$$

Thus the result in this example would be:

Telephone: 608-836-4400 Facsimile: 608-831-9279 www.intertek.com/building

TEST REPORT FOR SMG HEARTH AND HOME, LLC

Report No.: 104780922MID-001R2

Date: 9/28/22

ET = $13.00g \pm 0.44 g$ at a 95% confidence level.

EFFICIENCY - CSA B415.1

The change in enthalpy of the circulating air shall be calculated using the moisture content and temperature rise of the circulating air, as follows:

 $\Delta h = \Delta t (1.006 + 1.84x)$

Where:

Δh = change in enthalpy, kJ/kg
 Δt = temperature rise, °C
 1.006 = specific heat of air, kJ/kg °C

1.84 = specific heat of water vapor, kJ/kg °C

x = humidity ratio, kg/kg

The equivalent duct diameter shall be calculated as follows:

ED = 2HW/H+W

Where:

ED = equivalent duct diameter

H = duct height, m W = duct width, m

The air flow velocity shall be calculated as follows:

 $V = F_p \times C_p \times 34.97 \times \sqrt{T/28.56}(P_{baro} + P_s)$

where

V = velocity, m/s

F_P = Pitot tube calibration factor determined from vane anemometer measurements

 C_P = Pitot factor

= 0.99 for a standard Pitot tube or as determined by calibration for a Type S Pitot tube

34.97 = Pitot tube constant

Note: The Pitot tube constant is determined on the basis of the following units:

m/s[g/g mole (mm Hg)/(K)(mm H₂O)]^{0.5}

 ΔP = velocity pressure, mm H2O

T = temperature, K

28.56 = molecular weight of air

P_{Baro} = barometric pressure, mm Hg P_s = duct static pressure, mm Hg

The mass flow rate shall be calculated as follows:

Version: 05/10/17 Page 15 of 23 GFT-OP-10c

Telephone: 608-836-4400 Facsimile: 608-831-9279 www.intertek.com/building

TEST REPORT FOR SMG HEARTH AND HOME, LLC

Report No.: 104780922MID-001R2

Date: 9/28/22

m = 3600VAp

where:

m = mass flow rate, kg/h V = air flow velocity, m/s

3600 = number of seconds per hour A = duct cross-sectional area, m2

p = density of air at standard temperature and pressure (use 1.204 kg/m3)

The rate of heat release into the circulating air shall be calculated using the air flow and change in enthalpy, as follows:

 $\Delta e = \Delta h \times m$

Where:

 Δe = rate of heat release into the circulating air, kJ/h Δh = change in enthalpy of the circulating air, kJ/kg

m = mass air flow rate, kg/h

The heat output over any time interval shall be calculated as the sum of the heat released over each measurement time interval, as follows:

 $E_t = \sum (\Delta e \times i)$ for $i = t_1$ to t_2

Where:

Et = delivered heat output over any time interval t_2 – t_1 , kJ

= time interval for each measurement, h

The average heat output rate over any time interval shall be calculated as follows:

 $e_t = E_t/t$

where

e_t = average heat output, kJ/h

t = time interval over which the average output is desired, h

The total heat output during the burn shall be calculated as the sum of all the heat outputs over each time interval, as follows:

 $E_d = \sum (E_t)$ for $t = t_0$ to t_{final}

Where:

E_d = heat output over a burn, kJ/h (Btu/h)

E_t = heat output during each time interval, kJ/h (Btu/h)

Version: 05/10/17 Page 16 of 23 GFT-OP-10c

Telephone: 608-836-4400 Facsimile: 608-831-9279 www.intertek.com/building

TEST REPORT FOR SMG HEARTH AND HOME, LLC

Report No.: 104780922MID-001R2

Date: 9/28/22

The efficiency shall be calculated as the total heat output divided by the total energy input, expressed as a percentage as follows:

Efficiency, $\% = 100 \times E_d/I$

Where:

E_d = total heat output of the appliance over the test period, kJ/kg

= input energy (fuel calorific value as-fired times weight of fuel charge), kJ/kg (Btu/lb)

SECTION 9

TEST SPECIMEN DESCRIPTION

The model HP22 Pellet Fuel Room Heater is constructed of sheet steel. The outer dimensions are 28.5-inches deep, 33-inches high, and 23.5-inches wide. The unit has a door located on the front with a viewing glass.

SECTION 10

TEST RESULTS

DESCRIPTION OF TEST RUNS:

RUN #1 (10/21/21): The test for pellet heaters is a continuous test with three separate burn rates. At 8:05 am the unit was started and operated for a minimum of 1 hour for the pretest operation. At 9:06 am the unit was set to the maximum feed rate (level 5) with a burn rate of 2.95 kg/hr (wet), the scale was tared and a 25-lb weight was added to the scale to determine feed rate of the fuel, and the sampling system was started. At 10:06 am, the system #3 sampling filter was turned off and the unit was set to \leq 50% feed rate (level 2) with a burn rate of 1.16 kg/hr (wet). At 12:06 pm, the heater was changed to the minimum feed rate (level 1) with a burn rate of 0.92 kg/hr (wet). At 3:06 pm, testing was completed. The total burn time was 360 minutes.

The test run has been found to be appropriate, with no anomalies, and the test run has been validated and is deemed compliant. No negative weight was found on the filters, as the filters and gaskets are weighed together to eliminate filter material transfer to gaskets. All weightings were handled property, with no negative weight on gaskets or probes.

Version: 05/10/17 Page 17 of 23 GFT-OP-10c

Telephone: 608-836-4400 Facsimile: 608-831-9279 www.intertek.com/building

TEST REPORT FOR SMG HEARTH AND HOME, LLC

Report No.: 104780922MID-001R2

Date: 9/28/22

TABLE 1 – EMISSIONS

RUN#	TEST DATE	BU RA ⁻ (kg/hr		PARTICULATE EMISSION RATE (g/hr)	1 st HOUR EMISSIONS (g)	CO EMISSIONS (g/min)	HEATING EFFICIENCY (%HHV)
		Н*	2.86				
1	10/21/21	М*	0.96	1.01	4.54	0.00024	00.5
1	10/21/21	L*	0.69	1.01	1.54		80.5
		OA*	1.30				

^{*}Notes: H= High burn rate, M= Medium burn rate, L= low burn rate, OA= overall burn rate.

TABLE 2 – TEST FACILITY CONDITIONS

RUN	ROOM	ROOM	BARO	BARO	R. H.	R. H.	AIR VEL	AIR VEL
#	TEMP	TEMP	PRES	PRES	BEFORE	AFTER	BEFORE	AFTER
	BEFORE	AFTER	BEFORE	AFTER	(%)	(%)	(ft/min)	(ft/min)
	(°F)	(°F)	(in/Hg)	(in/Hg)				
1	74	72	28.84	29	45.1	29.2	0	0

TABLE 3 – DILUTION TUNNEL FLOW RATE MEASUREMENTS AND SAMPLING DATA

RUN #	BURN TIME	VELOCITY (ft/sec)	VOLUMETRIC FLOW RATE	AVG TEMP (°R)	SAMPLE VOLUME (dscf)		PARTICULATE CATCH (mg)	
	(min)		(dscf/min)		1	2	1	2
1	360	21.78	233.23	549.82	48.79	48.23	3.40	3.60

TABLE 4 – DILUTION TUNNEL DUAL TRAIN PRECISION

RUN	SAMPLE RATIOS		TOTAL EMISSIONS (g)		DEVIATION (%)	DEVIATION (g/kg)
#	TRAIN 1	TRAIN 2	TRAIN 1	TRAIN 2		
1	1720.78	1740.97	5.85	6.27	3.44%	0.052

TABLE 5 – GENERAL SUMMARY OF RESULTS

RUN#	BURN RATE (kg/hr)(dry) (OVERALL)	INITIAL DRAFT (in/H₂O)	RUN TIME (min)	AVERAGE DRAFT (in/H₂O)
1	1.34	0.030	360	0.024

Telephone: 608-836-4400 Facsimile: 608-831-9279 www.intertek.com/building

TEST REPORT FOR SMG HEARTH AND HOME, LLC

Report No.: 104780922MID-001R2

Date: 9/28/22

TABLE 6 - CSA B415.1 RESULTS

RUN#1

BURN RATE (kg/hr)(dry)	CO EMISSIONS (g/min)	HEATING EFFICIENCY (% HHV)	HEAT OUTPUT (Btu/hr)
HIGH – 2.86	0.00081	79.1	40,689
MEDIUM – 1.12	0.00012	80.6	16,274
LOW - 0.89	0.00015	79.8	12,820
OVERALL – 1.30	0.00024	80.5	18,780

SECTION 11

CONCLUSION

This test demonstrates that the model HP22 is an affected facility under the definition given in the regulation. The emission rate of 1.01 g/hr meets the EPA requirements for the Step 2 limits.

Model HP22 was tested as a representative model for similar models HP22i, which is a fireplace insert version of HP22, and HP22N, which includes an extended hopper for additional pellet capacity. All models use the same internal components and firebox. The models HP22i and HP22N incorporate only external cosmetic differences.

Version: 05/10/17 Page 19 of 23 GFT-OP-10c

Telephone: 608-836-4400 Facsimile: 608-831-9279 www.intertek.com/building

TEST REPORT FOR SMG HEARTH AND HOME, LLC

Report No.: 104780922MID-001R2

Date: 9/28/22

SECTION 11

PHOTOGRAPHS

Telephone: 608-836-4400 Facsimile: 608-831-9279 www.intertek.com/building

TEST REPORT FOR SMG HEARTH AND HOME, LLC

Report No.: 104780922MID-001R2

Date: 9/28/22

Photo No. 2

Telephone: 608-836-4400 Facsimile: 608-831-9279 www.intertek.com/building

TEST REPORT FOR SMG HEARTH AND HOME, LLC

Report No.: 104780922MID-001R2

Date: 9/28/22

Photo No. 3

Telephone: 608-836-4400 Facsimile: 608-831-9279 www.intertek.com/building

TEST REPORT FOR SMG HEARTH AND HOME, LLC

Report No.: 104780922MID-001R2

Date: 9/28/22

SECTION 12

REVISION LOG

REVISION #	DATE	PAGES	REVISION
0	10/26/21	N/A	Original Report Issue
		5	Corrected heating value for the pellets.
			Changed heat output in Table 6 from kJ/hr
_1	10/28/21	19	to Btu/hr.
2	9/28/22	2, 18,	Updated CO emissions g/min results to two
۷	3/20/22	19	significant figures.

CERTIFICATE OF CONFORMITY

Emissions – Pellet Heater

EPA 40 CFR Part 60, Subpart AAA, ASTM E2515-2017, ASTM E2779-2017, CSA B415.1-2010

WHI15 - 25702303

Organization

SMG Hearth & Home, LLC

9241 Globe Center Drive, Suite 120 Morrisville, NC 27560 USA

Product: HP22, HP22i, HP22N

Catalytic: No

Maximum Output: 40,689 Btu/hr Weighted Average Emissions: 1.01 g/hr

Weighted Average Annual Delivered Efficiency (HHV): 80.5%

Test Fuel Type: Premium wood pellets

Weighted Average CO Emissions Rate (g/min): 0.00024

Conformance: Complies with 2020 particulate emissions standard

Test Report No.: 104780922MID-001R2

Certification Body: Intertek Testing Services NA, Inc.

Registered Address: 545 E. Algonquin Rd., Arlington Heights, IL 60005, USA

Initial Issue Date: 22-Dec-16

Date of Expiry: 06-May-27

Issue Status: 7

This is a certificate of conformity to confirm that the bearer has successfully completed the requirements of the Intertek certification scheme which include the testing of products and the initial assessment. The bearer is subject to continuing assessments of their compliance through surveillance and testing of products samples taken from production (as applicable to the scheme) and has been registered within the scheme for the products detailed. The validity of this certificate is contingent to the listing's status on the Intertek Directory of Building Products: bpdirectory.intertek.com.

Jean-Philippe Kayl Vice President – Global Certification

29-Sep-22

Name Signature Date

The certificate and schedule are held in force by regular annual surveillance visits by Intertek Testing Services NA, Inc. and the reader or user should contact Intertek to validate its status. This certificate remains the property of Intertek Testing Services NA, Inc. and must be returned to them on demand. This Certificate is for the exclusive use of Intertek's Client and is provided pursuant to the Certification agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this certificate. Only the Client is authorized to permit copying or distribution of this certificate and then only in its entirety. Use of Intertek's Certification mark is restricted to the conditions laid out in the agreement. Any further use of the Intertek name for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. Initial Factory Assessments and Follow up Services are for the purpose of assuring appropriate usage of the Certification mark in accordance with the agreement, they are not for the purposes of production quality control and do not relieve the Client of their obligations in this respect.

Version: 11 November 2021 SFT-BCH-OP-19c

Certificate of Conformity WHI15-25702303 Appendix A

Certificate of Conformity #:		Certificate of Conformity Issue Date:		
WHI15-2570	WHI15-25702303		j	
REVISION #	REVISION DATE	REPORT PAGES	REVISION	
0	December 22, 2016	N/A	Original Report Issue	
1	September 25, 2018	N/A	Added model HP22i	
2	July 31, 2019	N/A	Added model HP22N	
3	May 28, 2020	N/A	Additional emissions test with higher input	
4	December 29, 2021	N/A	New CoC format for retesting of unit	
5	May 6, 2022	N/A	Updated CBI and Non-CBI report.	
6	September 28, 2022	N/A	Updated CO emissions to two significant figures	

Revised Report #:		Report Issue Date:	
102542233MID-003		December 19, 2016	
REVISION #	REVISION DATE	REPORT PAGES REVISION	
0	December 19, 2016	N/A	Original Report Issue
			Added data to new branding format and added similar model HP22I
1	July 16, 2018	All	insert.
2	June 27, 2019	1, 19	Added similar model HP22N.
3	February 7, 2020	2, 17, 18	Corrected CO emissions from g/hr to g/min.

Revised Report #:		Report Issue Date:		
104271806MID-002		April 14, 2020		
REVISION #	REVISION DATE	REPORT PAGES REVISION		
0	April 14, 2020	N/A	Original Report Issue – Replaces report 102542233MID-003 in its entirety with all new testing.	
			Added revision date to report, added similar models and model	
1	September 16, 2020	1, 19	descriptions to conclusion	

The certificate and schedule are held in force by regular annual surveillance visits by Intertek Testing Services NA, Inc. and the reader or user should contact Intertek to validate its status. This certificate remains the property of Intertek Testing Services NA, Inc. and must be returned to them on demand. This Certificate is for the exclusive use of Intertek's Client and is provided pursuant to the Certification agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this certificate. Only the Client is authorized to permit copying or distribution of this certificate and then only in its entirety. Use of Intertek's Certification mark is restricted to the conditions laid out in the agreement. Any further use of the Intertek name for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. Initial Factory Assessments and Follow up Services are for the purpose of assuring appropriate usage of the Certification mark in accordance with the agreement, they are not for the purposes of production quality control and do not relieve the Client of their obligations in this respect.

Version: 11 November 2021 SFT-BCH-OP-19c

Certificate of Conformity WHI15-25702303 Appendix A

Revised Rep	ort #:	Report Issue Date:	
104780922N	1ID-001	October 26, 2021	
REVISION #	REVISION DATE	REPORT PAGES	REVISION
0	October 26, 2021	N/A	Original Report Issue – Replaces report 102542233MID-003 in its entirety with all new testing.
1	October 28, 2021	5, 19	Corrected heating value for the pellets. Changed heat output in Table 6 from kJ/hr to Btu/hr.
2	May 6, 2022	Appendix D	Added revised instruction manual with replacement part information to Appendix D.
3	September 28, 2022	2, 18, 19	Updated CO emissions g/min results to two significant figures.

The certificate and schedule are held in force by regular annual surveillance visits by Intertek Testing Services NA, Inc. and the reader or user should contact Intertek to validate its status. This certificate remains the property of Intertek Testing Services NA, Inc. and must be returned to them on demand. This Certificate is for the exclusive use of Intertek's Client and is provided pursuant to the Certification agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this certificate. Only the Client is authorized to permit copying or distribution of this certificate and then only in its entirety. Use of Intertek's Certification mark is restricted to the conditions laid out in the agreement. Any further use of the Intertek name for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. Initial Factory Assessments and Follow up Services are for the purpose of assuring appropriate usage of the Certification mark in accordance with the agreement, they are not for the purposes of production quality control and do not relieve the Client of their obligations in this respect.

Version: 11 November 2021

SFT-BCH-OP-19c

130 Derry Court York, PA 17406 Phone: 717-764-7700 www.intertek.com/building

LIMITED

CERTIFICATE OF CALIBRATION

Certificate Number: 43897

CALIBRATION LABORATORY

INTERTEK B&C 130 DERRY COURT YORK, PA 17406

EQUIPMENT INFORMATION

Asset Number: 001450 Serial Number: 16962472 Manufacturer: COMET Model Number: T7510

Description: TEMPERATURE AND HUMIDITY SENSOR

Size/Range: -30 to 80°C, 0 to 100% RH

Resolution:

OWNER

INTERTEK - 625 8431 MURPHY DRIVE MIDDLETON, WI 53562

CALIBRATION INFORMATION

Procedure: 31-33 RH - TEMP Temp./RH: 76.1 °F / 36.8 % Cal Date: 11/23/20 Due Date: 11/23/21 Initial Calibration Result:

Calibration Result: PASS Performed By: ED SULLIVAN

CALIBRATION NOTES

No Visual Defects.

Uncertainties 15% RH: 1.65, 50% RH: 0.35, 80% RH: 1.16, 59 F: 0.22, 73.4 F: 0.21

Architectural Testing, Inc., an Intertek company ("Intertek B&C"), certifies that the above listed instrument meets or exceeds all specifications as stated in the referenced procedure (unless otherwise noted). It has been calibrated using measurement standards traceable to the SI through the National Institute of Standards and Technology (NIST). Intertek B&C's Calibration Laboratory is accredited by the International Accreditation Service, Inc. (IAS) to ISO/IEC 17025:2005 (Certificate CL-118). The measurement uncertainties for this calibration are based upon 95% (k=2) confidence limits. This report may not be Calibration Laboratory reproduced, except in full, without the written approval of Intertek B&C.

Servicing Technician:

ED SULLIVAN METROLOGY TECHNICIAN

luin W. Mellem

Intertek B&C

Approved By:

MATT ROSARIO **CALIBRATIONS MANAGER** Intertek B&C

This certificate is complete only when all data pages are included.

130 Derry Court York, PA 17406 Phone: 717-764-7700 www.intertek.com/building

CERTIFICATE OF CALIBRATION

Certificate Number: 43897

TEST	POINTS									
Seq.	Description		Standa	rd	Tolerance -	Tolerance +	As Found	d As Left	Units	Uncertainty
1	59.0 Degr F		59.0		58.0	60.0	59.1	59.1	Degr F	0
2	59.0 Degr F		59.0		58.0	60.0	59.0	59.0	Degr F	0
3	59.0 Degr F		59.0		58.0	60.0	58.8	58.8	Degr F	0
4	15% RH (15 C)		15.0		12.5	17.5	16.0	16.0	%	0
5	15% RH (15 C)		15.0		12.5	17.5	16.0	16.0	%	0
6	15% RH (15 C)		15.0		12.5	17.5	15.8	15.8	%	0
7	50% RH (15 C)		50.0		47.5	52.5	49.7	49.7	%	0
8	50% RH (15 C)		50.0		47.5	52.5	49.7	49.7	%	0
9	50% RH (15 C)		50.0		47.5	52.5	49.5	49.5	%	0
10	80% RH (15 C)		0.08		77.5	82.5	78.4	78.4	%	0
11	80% RH (15 C)		0.08		77.5	82.5	78.5	78.5	%	0
12	80% RH (15 C)		0.08		77.5	82.5	78.5	78.5	%	0
13	73.4 Degr F		73.4		72.4	74.4	73.9	73.9	Degr F	0
14	73.4 Degr F		73.4		72.4	74.4	73.7	73.7	Degr F	0
15	73.4 Degr F		73.4		72.4	74.4	73.7	73.7	Degr F	0
16	15% RH (23 C)		15.0		12.5	17.5	17.3	17.3	%	0
17	15% RH (23 C)		15.0		12.5	17.5	17.0	17.0	%	0
18	15% RH (23 C)		15.0		12.5	17.5	16.9	16.9	%	0
19	50% RH (23 C)		50.0		47.5	52.5	49.6	49.6	%	0
20	50% RH (23 C)		50.0		47.5	52.5	49.6	49.6	%	0
21	50% RH (23 C)		50.0		47.5	52.5	49.8	49.8	%	0
22	80% RH (23 C)		80.0		77.5	82.5	78.2	78.2	%	0
23	80% RH (23 C)		80.0		77.5	82.5	78.2	78.2	%	0
24	80% RH (23 C)		0.08		77.5	82.5	78.3	78.3	%	0
STAI	NDARDS USED TO	O CALIBRATE	EQUIPN	/IENT						
Com	ipany l	I.D.		Descrip	otion			_ast Cal.	Cal	. Due Date
		005581 INT01927				RATURE GENERA HUMIDITY SENS		7/10/2020 5/22/2020		0/2021 2/2021

END OF DATA

iaka		CLIENT:	SMG Hearth & Hom	ie	PERFORMED BY:	Ken Slater
Nce	rtek	PROJECT #:	G104780922		REVIEWED BY:	
Total Quality.	Assured.	PRODUCT:	Pellet Fueled room	heater	MODEL:	HP22
S	SAMPLE ID #:	MID2110141337-001			DATE:	10/21/2021
	STANDARD: ASTM E2779		VERSION YEAR:	2017	LOCATION:	Middleton
STAN	DARD TITLE:	d for Determining Pa	rticulate M	atter Emissions from	Pellet Heaters	
RESULTS						
PASS	Х	FAIL	na	NO	O PASS/FAIL	na

Emissions Testing Initial Stove Check Out

Date Received	10/14/2021	Snipping Carrier	Fed EX
	-		

Shipping Damage?	No	Yes					
	Χ	na	Describe Damage		N <i>A</i>	4	
			Is Damage Repa	irable?	Yes	No	
					na	na	

Repairs Affected by	na		Date	na
Client Notified about Ir	rreparable Damage?	na	Date	na

Overall Unit Dimensions (in)					
Height Width Depth					
33	23.5	28.5			

Unit Weight					
(lbs)	(Kg)				
279	126.55				

	Unit Description (check appropriate box)						
St	tove	na	Top Vent	na	Manual Draft	na	
In	sert	na	Rear Vent	X	Bimetal Spring	na	
Cat	Catalytic		Grate	na	Remote T-Stat	X	
Non-0	Catalytic	na	Ashpan	na	Blower	X	
Other	Pellet Stove						

48-hr Conditioning Burn Dates	see client folder
-------------------------------	-------------------

Pre/Post Checks

Facility Conditions	Pre-Test	Post-Test
Air Velocity (fpm)	0	0
Smoke Capture Check	X	X
Heater Conditions		
Date Stack Cleaned	10/13/2021	na
Date Dilution Tunnel Cleaned	10/13/2021	na
Induced Draft Check	X	Х
Tunnel Velocity	0.105	0.111
Pitot Leak Check		
Side A	X	Х
Side B	Х	Х

Temperature System						
Ambient (between 65°F -90°F)	74	72				
Prop	ortional Checks					
CO Analyzer Drift Check		Х	х			
CO2 Analyzer Drift Check	CO2 Analyzer Drift Check					
O2 Analyzer Drift Check	O2 Analyzer Drift Check					
Thermocouple Check		Х	х			
Sampling Train ID Numbers	Train 1	Train 2	Train 3			
Probe	10	А	В			
Filter - Front	Filter - Front 31					
Filter - Back	34	36				
Filter <90°F	X	X	X			

Pre-Test Scale Audit							
Scale Type	Audit Weight	Class	Measured Weight				
Analytical (mg)	100.0000	S	100.0000				
Platform (lbs)	10.00	F	10.00				
Wood (lbs)	25.0	F	25.0				

Limits of Weight Ranges					
Analytical Scale	50%-150% of dry filter weight, ± 0.1 mg				
Platform Scale	20%-80% of ideal test load weight, ± 0.1 lbs. or 1%				
Wood Scale	20%-80% of ideal test load weight, ± 0.1 lbs. or 1%				

Sampling Equipment Check out

Leakage Checks Tunnel Samplers							
Sample	-	1	2		3		
Test	Pre	Post	Pre	Post	Pre	Post	
Vacuum (in Hg)	10	10	10	10	10	10	
Final 1 min DGM (ft ³)	0	0	0	0	0	0	
Initial 1 min DGM (ft ³)	0	0	0	0	0	0	
Change (C) (ft ³)	0	0	0	0	0	0	
Allowable leakage (cfm)	0.04	0.04	0.04	0.04	0.04	0.04	
Check Okay	Х	Χ	Χ	X	Χ	Х	

Leakage Checks Flue Gas Sampler							
Plugged Probe	Pre Test	Post Test					
Vacuum (in Hg)	10	10					
Rotameter Reading	0	0					
Flow Rate (cfm)	0	0					
Allowable (cfm)	0.04	0.04					
Check Okay	X	X					

Unplugged Flow Rate = .25cfm

Allowable Leakage = .04 x

Sample Rate or .02 cfm

Continuous Analyzers

Pre-Test (Adjust and Record)									
Typo	Zero Span			Cal. (Record Only)					
Type	Actual	Should Be	Actual	Should Be	Actual	Should Be			
CO ₂	0	0	24.91	24.92	12.06	11.99			
СО	0	0	7.56	7.748	4	4.00			
02	0	0	20.81	20.89	9.77	10.01			

85.809 74.22036

79.02147675

	Post Test (Record Only)									
Type	Zero	Span	Cal.	Zero	Span	Cal.	OK?	Not		
Турс	ZCIO	Spari	Cai.	Drift	Drift	Drift	OK:	OK*		
CO ₂	0	24.81	12.01	0	0.1	0.05	X	na		
СО	0	7.5	3.73	0	0.06	0.27	X	na		
02	0	20.81	9.74	0	0	0.03	X	na		

Test Data Log

Raw Dry Gas Meter Readings							
System	1	2	3				
Final (ft ³)	51.148	51.160	8.52				
Initial (ft ³)	0	0	0				

Ambient Conditions	Start	End
Barometer (in Hg)	28.84	29
Dry Bulb (°F)	71.7	75.2
Humidity (%)	45.1	39.2

, , ,	
	Comments
Unit levels, (5)High, (2)Medium, and (1)Low.	
8:05am-Pretest started,	

9:06am- Test started - setting 5

10:06am changed to medium burn setting -2

12:06pm changed to low burning setting -1

3:06pm end of test

iata	-L		CLIENT:	SMG Hearth & Home		PERFORMED BY:	Ken Slater				
nce	PROJECT #: G104780922		PROJECT #: G104780922		G104780922		G104780922		G104780922		0
Total Quality. Assured.		PRODUCT:		Pellet Fueled room heater		MODEL:	HP22				
SA	MPLE ID #:	MID2110141337-001				DATE:	10/21/2021				
STA	ANDARD(S):	ASTM E2779		VERSION YEAR: 2017		LOCATION:	Middleton				
STAND	STANDARD TITLE: Standard Test Method for Determining Particulate M			culate Ma	tter Emissions from Pe	ellet Heaters					
RESULTS											
PASS	>	(FAIL	na	1	NO PASS/FAIL	na				

	Room Conditions								
	Velocity (ft/sec)	Air	umidity	Relative Hu (%)	ic Pressure Hg)		emp (°F)	Room Te	
	0	0	29.2	45.1	29	28.84	72	74	
	Sample Data			S	Ave Dilution Tunnel Measurements				
<mark>ılate Catch</mark>	Particulate (Sample	Total S	Temp (R)	Flow Rate (dscf/min)		Velocity	Burn Time	
2	1	2	1	(°F)	(usci/iiiii)	110W Nate	(ft/sec)	(min)	
3.60	3.40	48.23	48.79	549.82	233.23		21.78	360	
			Precision	el Dual Train f	ution Tunne	Dil			
				issions (g)	Total Em	Ratios	Sample		
	(g/kg)			(%)	Train 2	Train 1	Train 2	Train 1	
	0.052		%	3.449	6.27	5.85	1740.97	1720.78	
				Results					
				Ave Draft (in/wc)	Run Time (min)	ft (in/wc)	Initial Dra	Burn Rate (kg/hr)	
				0.024	360	30	0.0	1.34	

Emissions				
(g/hr)	(g/kg)			
1.010	0.754			

	Burn Rate	es (kg/hr)
High	Medium	Low
2.95	1.16	0.92

Fuel	Consumed ((lbs)
High	Medium	Low
6.51	5.11	6.10

Fuel Moisture (% wet)	
3.3%	

		-	-	-	-	-	-	-	-	-	-	-	-,
													- 11
Ì													- 11
	-	-	-	-	-	-	-	-	-	-	-	-	÷
													- îi
í													į
													-8
	-	-	-	-	_	_	-	-	-	-	-	-	-0
													-8
													- 5
ı													- 1
ı	-	-	-	-	-	-	-	-	-	-	-	-	J.
					_								
	_	_	_	_	_	_	_	_	_	_	_	_	70
													- 11
Ì													- 11
í													- îi
	=	-	-	-	-	-	-	-	_	=	-	-	-8
													-8
													-8

inharbala	CLIENT:	SMG Hearth & Home		PERFORMED BY:	Ken Slater
Intertek	PROJECT #:	G104780922		REVIEWED BY:	0
Total Quality. Assured.	PRODUCT:	Pellet Fueled room he	ater	MODEL:	HP22
SAMPLE ID #:	MID2110141337-001			DATE:	10/21/2021
STANDARD(S):	ASTM E2779	VERSION YEAR:	2017	LOCATION:	Middleton

	Table of Test Equipment Used														
Description	Asset #	Calibration Due	MU	Used in Test(s)											
Timer	1212	4/5/2022	0.7 sec	ASTM E2779											
Timer	646	4/5/2022	0.7 sec	ASTM E2779											
Pressure Transducer	1406	1/13/2022	0.00007 in H2O	ASTM E2779											
Data Acquisition	986	10/16/2021	0.06 Degrees F	ASTM E2779											
Scale	1134	4/1/2022	.118 lbs	ASTM E2779											
Hygrometer	1450	11/23/2021	0.35 RH	ASTM E2779											
Flow Meter	1413	2/20/2022	0.020 lpm	ASTM E2779											
Flow Meter	1414	2/20/2022	0.020 lpm	ASTM E2779											
Flow Meter	1519	2/20/2022	0.020 lpm	ASTM E2779											
Balance	713	10/11/2021	0.00044 g	ASTM E2779											
Anamometer	1457	5/14/2022	4 fpm	ASTM E2779											

iotoctole	CLIENT:	SMG Hearth & Home		PERFORMED BY:	Ken Slater
intertek	PROJECT #:	G104780922		REVIEWED BY:	0
Total Quality. Assured.	PRODUCT:	Pellet Fueled room hea	ter	MODEL:	HP22
SAMPLE ID #:	MID2110141337-001			DATE:	10/21/2021
STANDARD(S):	ASTM E2779		VERSION YEAR: 2017	LOCATION:	Middleton

	Pre-Burn Data																									
Time	Flue	Room	Tunnel	Meter #3	DGM 3	DGM 1	DGM 1	Filter 1	DGM 2	DGM 2	Filter 2	DGM 3	Filter 3	Motor #1	Meter #2	Draft	Tunnel	СО	CO2	02	Scale	304.2521	Meter	Meter		Calculated
Time	Tiue	ROOM	Turrier	MELEI #3	DOIVI 3	DOIVI 1	DGIVI 1	Tiller 1	DOIVI Z	DOIVI 2	Tiller 2	DOIVI 3	Tiller 3	METEL #1	MELEI #2	Diait	Turiner	%	%	%	lbs	Corrected	#1	#2	Draft	Calculated
10.0	Temp 1	Temp 2	Dry Bulb 3	11	Out 12	In 13	Out 14	15	In 16	Out 17	18	In 19	20	21	22	23	24	25	25	27	28	Scale	Cu Ft	Cu Ft		Tunnel
0.0	237.78	72.11	88.10	0.02	74.38	73.59	74.94	73.93	73.75	73.92	73.34	73.27	75.02	0.02	0.02	0.00	1.44	3.99	11.78	11.71	309.23	4.98	0.00	0.00	-0.24981	0.1090018
10.0	301.35	72.69	96.13	0.02	74.45	73.51	74.73	74.62	73.66	74.20	73.85	73.20	75.18	0.02	0.02	0.00	1.44	0.01	2.91	16.70	311.34	7.09	0.00	0.00	-0.24984	0.1098766
20.0	307.88	73.09	99.29	0.02	74.49	73.31	74.83	74.28	73.70	74.13	73.89	73.33	75.04	0.02	0.02	0.00	1.42	0.01	7.20	13.19	307.25	2.99	0.00	0.00	-0.24984	0.1055332
30.0	313.57	73.58	100.95	0.02	74.66	73.84	75.24	74.18	73.90	74.12	73.55	73.46	74.87	0.02	0.02	0.00	1.44	0.01	7.39	12.76	306.25	2.00	0.00	0.00	-0.24984	0.1093402
40.0	314.52	73.85	101.47	0.02	74.67	73.78	75.07	74.31	74.09	74.21	73.78	73.44	74.55	0.02	0.02	0.00	1.39	0.00	8.11	12.45	305.25	1.00	0.00	0.00	-0.24984	0.097968
50.0	315.01	74.16	102.63	0.02	74.73	73.96	75.18	74.47	74.33	74.41	74.22	73.34	74.87	0.02	0.02	0.00	1.42	0.00	8.19	12.30	304.25	0.00	0.00	0.00	-0.24984	0.1048992
60.0	321.18	74.06	102.74	0.02	75.07	73.97	75.04	74.40	74.35	74.37	73.97	73.21	74.30	0.02	0.02	0.00	1.42	0.00	8.17	12.08	312.05	7.80	0.00	0.00	-0.24984	0.1038629

Page 7 of 21

Version 07/01/20

ا د اد د اد	CLIENT:	SMG Hearth & Home		PERFORMED BY:	Ken Slater
intertek	PROJECT #:	G104780922		REVIEWED BY:	0
Total Quality. Assured.	PRODUCT:	Pellet Fueled room heater		MODEL:	HP22
SAMPLE ID #:	MID2110141337-001			DATE:	10/21/2021
STANDARD(S):	ASTM E2779		VERSION YEAR: 2017	LOCATION:	Middleton

														Raw D	ata																
																		СО	CO2	02	Scale	7.2983	Meter	Meter	Meter		Calculat	18.52	13.40	7.30	0.00
Time	Flue	Room	Tunnel	Meter #3	DGM 3	DGM 1	DGM 1	Filter 1	DGM 2	DGM 2	Filter 2	DGM 3	Filter 3	Meter #1	Meter #2	Draft	Tunnel	%	%	%	lbs	Corrected	#1	#2	#3	Draft	ed			7.00	
10.0	Temp 1	Temp 2	Dry Bulb 3	11	Out 12	In 13	Out 14	15	In 16	Out 17	18	In 19	20	21	22	23	24	25	25	27	28	Scale	Cu Ft	Cu Ft	Cu ft		Tunnel		NA		İ
0.0	321.45	73.89	103.01	0.02	75.07	74.64	75.43	74.68	74.29	74.89	74.69	74.13	74.75	5 0.02	0.02	0.00	1.42	0.00	8.34	12.27	25.03	17.73	0.00	0.00	0.00	-0.25	0.105	6.51			İ
10.0	326.41	74.08	103.65	4.03	76.63	75.85	78.01	78.02	75.31	77.10	79.70	75.75	79.02	2 4.03	4.02	0.00	1.41	0.00	8.66	11.79	23.93	16.63	1.42	1.42	1.42	-0.25	0.1024	5.41			İ
20.0	321.60	74.00	103.96	4.01	76.86	75.93	78.50	79.19	75.71	77.66	80.76	75.94	79.99	4.01	4.03	0.00	1.43	0.00	8.79	12.02	22.82	15.52	1.42	1.42	1.42	-0.25	0.1063	4.30] ,	,	İ
30.0	321.68	74.43	103.74	4.04	77.28	76.45	79.06	80.25	76.09	77.77	81.64	76.23	80.99	4.04	4.04	0.00	1.42	0.00	8.40	12.07	21.84	14.54	1.42	1.43	1.43	-0.25	0.1047	3.32	N	^	İ
40.0	324.83	73.64	104.50	4.03	77.25	76.32	79.01	80.92	75.96	78.04	82.17	76.36	81.75	5 4.02	4.01	0.00	1.40	0.00	8.36	11.79	20.73	13.43	1.42	1.42	1.42	-0.25	0.0999	2.21			İ
50.0	320.80	73.86	104.99	4.02	77.53	76.73	79.33	81.72	76.30	78.21	82.78	76.75	82.30	4.01	4.02	0.00	1.50	0.00	8.76	11.65	19.62	12.33	1.42	1.42	1.42	-0.25	0.1252	1.11			İ
60.0	323.85	73.51	105.34	4.01	77.87	76.74	79.37	82.14	76.48	78.44	83.19	76.89	82.96	4.03	4.03	0.00	1.39	0.00	8.35	11.39	18.52	11.22	1.42	1.42	1.42	-0.25	0.0984	0.00	5.11		İ
70.0	235.48	73.24	94.80	0.02	76.79	76.85	79.89	81.74	76.54	78.57	82.29	76.81	79.73	3 4.02	4.02	0.00	1.47	0.00	6.85	15.18	18.01	10.71	1.42	1.42		-0.25	0.1173		4.61		İ
80.0	223.13	72.87	92.40		76.33	76.74	79.62	81.29	76.35	78.71	81.35	76.27	78.86	4.02	4.01	0.00	1.39	0.00	5.85	15.37	17.51	10.21	1.42	1.42		-0.25	0.0965		4.11		İ
90.0	215.81	72.74	90.74	0.02	76.27	76.73	79.57	80.95	76.42	78.58	81.11	76.41	78.54	4.01	4.00	0.00	1.43	0.00	4.79	15.54	17.00	9.71	1.42	1.41		-0.25	0.1073		3.60		İ
100.0	209.00	72.80	89.92		76.48	76.71	79.44	80.82	76.04	78.57	80.53	76.55	78.06		4.02	0.00	1.43	0.00	4.53	16.26	16.61	9.31	1.42	1.42		-0.25	0.1065		3.21		İ
110.0	207.12	72.50	88.99		76.40			80.47	76.21	78.75		76.54	77.54		4.02	0.00	1.42	0.00	4.08	16.82	16.11	8.81	1.42	1.42		-0.25	0.104		2.71	NA	İ
120.0	202.91	72.30	88.06		76.49		_1 _1 _1	80.15		78.91	80.33	76.63			4.02	0.00	1.42	0.00	4.27	16.40	15.71	8.41	1.42	1.42		-0.25	0.1048		2.31		İ
130.0	201.83	72.04	87.78		76.59			79.99	76.29	78.70	_1 _1	76.24	77.08		4.02	0.00	1.42	0.00	4.37	16.50	15.32	8.03	1.42	1.42		-0.25	0.1055		1.92		İ
140.0	194.70	72.36	87.12		76.44			80.02	76.36	78.67	79.49	76.27	76.96		4.02	0.00	1.42	0.00	4.00	16.91	14.91		1.42	1.42		-0.25	0.106		1.51		İ
150.0	195.64	72.25	87.27		76.25			79.73	76.05	78.48	_1 _1	76.01	76.63		4.02	0.00	1.43	0.00	3.95	16.69	14.50		1.42	1.42		-0.25	0.1086		1.10		İ
160.0	197.50	72.16	86.86		76.29			79.67	76.00	78.45		75.96	76.55		4.02	0.00	1.46	0.00	3.86	16.52	14.11	6.81	1.42	1.42		-0.25	0.1149		0.71		İ
170.0	195.27	72.02	86.51		76.28			79.48	76.18	78.46		75.99	76.35		4.02	0.00	1.44	0.00	3.97	17.31	13.71	6.41	1.42	1.42		-0.25	0.1089		0.31	C 10	İ
180.0	192.32	71.78	86.00		76.46			79.61	76.31	78.60		76.20			4.03	0.00	1.46	0.00		16.62	13.40	6.10	1.42	1.42			0.1152		0.00	6.10	İ
190.0	188.47	72.01 71.97	85.69		76.60			79.45	76.17	78.46		75.86			4.03	0.00	1.45	0.00	4.06 3.73	16.91 17.63	13.00	5.71 5.40	1.42	1.42 1.42			0.1133			5.71 5.40	İ
200.0	184.65	72.20	85.32 85.16		76.43		79.54 79.75	79.08	76.02 76.16	78.28		75.71 76.24			4.03	0.00	1.44	0.00	3.47		12.70 12.29	4.99	1.42	1.42		-0.25	0.1094			4.99	İ
210.0 220.0	183.35 182.37	72.22	84.84		76.62 76.72			79.12 79.20	76.16 76.19	78.45 78.56		76.24 76.10	-0.4-		4.03	0.00	1.41 1.44	0.00	3.52	17.57 18.01	12.28	4.99	1.42	1.42		-0.25 -0.25	0.1037 0.1096	NA		4.99	İ
230.0	183.22	71.88	85.20		76.72			78.88	76.19	78.36		75.88	76.47		4.03	0.00	1.44	0.00	3.61	17.22	11.70	4.71	1.42	1.42			0.1096			4.71	İ
240.0	182.70	71.65	84.96		76.40			79.06	76.05	78.60	78.33	76.07	76.12		4.03	0.00	1.45	0.00	3.35	17.22	11.31	4.40	1.42	1.42		-	0.1104			4.01	İ
250.0	182.37	72.17	84.94		76.52			78.69	75.89	78.17	78.29	75.85			4.03	0.00	1.45	0.00		16.73	10.99	3.69	1.42	1.42			0.1123			3.69	İ
260.0	185.46	71.82	85.29		76.50			78.82		78.24		75.98			4.02	0.00	1.40	0.00	3.90	16.80	10.60	3.31	1.42	1.42			0.1026			3.31	İ
270.0	183.71		84.97		76.32		79.79	79.00	76.28	78.46	70.00	75.74	== 0.0		4.03	0.00	1.39	0.00	3.29	17.28	10.29		1.42	1.42			0.0984			2.99	İ
280.0	182.14		84.98		76.57			79.02							4.02	0.00	1.47	0.00		17.41	9.89		1.42	1.42			0.1166		NA	2.59	İ
290.0	182.92		84.83		76.76			78.83	76.36						4.03	0.00	1.40	0.00		17.31	9.60	2.30	1.42	1.42			0.1012			2.30	İ
300.0	176.42		84.16		76.68			78.91	76.15			76.06	76.18		4.03	0.00	1.41	0.00		18.15	9.29		1.42	1.42			0.1023			1.99	İ
310.0		71.59	84.28		76.24			78.92	76.16			76.25			4.03	0.00	1.47	0.00	3.33	17.46	9.00		1.42	1.42			0.1169			1.70	I
320.0	179.72		84.45		76.44			78.74	76.09			75.96			4.03	0.00	1.39	0.00		17.38	8.59		1.42	1.42			0.0982			1.29	I
330.0	181.23		84.48		76.29			78.83	76.05	78.63		76.23			4.03	0.00	1.42	0.00		16.97	8.30		1.42	1.42			0.1055			1.00	I
340.0	178.25		84.25		76.40			78.71				75.97			4.03	0.00	1.43	0.00		17.69	7.99	0.69	1.42	1.42		-	0.1086			0.69	I
350.0	182.81		85.27					79.15								0.00	1.41	0.00		16.82	7.70		1.42	1.42			0.1032			0.40	I
360.0		71.82					79.79											0.00		17.43	7.30	0.00	1.42				0.1112			0.00	İ

Version 07/01/20 Page 8 of 21

into de ata		CLIENT:	SMG Hearth & F	Home		PERFORMED BY	Y: Ken Slater		٦																																			
intertek Total Quality. Assured.		PROJECT #:	G104780922 Pellet Fueled ro			REVIEWED BY			=																									6" Tunnel 12" Tunnel	0.1963 0.7854									
SAMPLE ID #: MID						DATI	E: 10/21/2021																														-							
STANDARD(S): AST	IM E2779			ERSION YEAR: ESULTS	:[2017 [LOCATION	N: Middleton															[inel area (ft2) sture (% wet)				i		i i			1
PASS X		FAIL	na	1	NO	PASS/FAIL	<u> </u>	na 																											ight (lbs wet) te (Dry kg/hr)	: 17.7274718 : 1.340								.!
Test Duration (min)	360.0																							Tatal Ca	- \/- /D	>CN4.4\-	40.766					Fig. 1 Tax												-;
	Start	End																						Total Gas	s Volume (D s Volume (D	OGM 2):						Final Ter	mperature (I	DGM #2) De	egrees Rankin egrees Rankin	: 537.217								
Barometer (in Hg) Dry Bulb (F)	28.84 71.7	29 75.2																						Average Ba	rometric Pr Molecular V		28.92 29								egrees Rankin t per second)	: 549.824 : 21.777505	4							
Humidity (%)	45.1	29.2																						j	Pitot Corr n Factor (DG	rection: 0										: 233.226878	† 1 1 1							
																		:"		-		ļ			n Factor (DC	GM #2):	0.9923	· · · ·							Average	Average								-
Moisture content of woo Average	od (Wet) (%)	17.73 0.00	4.78	15.97	216.57	72.44	89.82		76.59	79.47	79.52		76.11	78.32	79.40		76.01		80.25	0.11	0.02					(1) VS: 0 (2) VS: 0				F	Filter	Filter			Inlet + Outlet	Inlet + Outlet	Average	Avei	rage	#1	#2	А	verage	1
ACTUAL	Weight	*	*	*	*1	*2	*3 Tunnel	* DGM 1	* DGM 1	* DGM 1	* Filter 1	* DGM 2	* DGM 2	* DGM 2	* Filter 2	* DCM 2	* DGM 3	* DGM 3	* Filter 3	*	*		-1				DOM 2	5014.3	DOM 2		Face	Face	Delta-P	Tunnel	Temp.	Temp.	99.9	99		dDGM	dDGM		0.3	-
Time Minutes	Remaining Ibs	CO	CO ₂	O ₂	Flue Gas	Room Temp	Dry Bulb	Reading	Inlet T	Outlet T	Temp	Reading	Inlet T	Outlet T	Temp	Reading	Inlet T	Outlet T	Temp	Tunnel Velocity	Draft		Elapsed C Time R	Reading I	DGM 1 D		DGM 2 Reading	Inlet T	Outlet T Di	y Bulb D	GM 1	DGM 2	(in. H2O) Tunnel	Ft/Sec	Deg. R	Meter 2 Deg. R	Propo PR1	ortional Rates PF		ol. Std. (ft3)	Vol. Std. (ft3)	Time	SQRT Delta-P	1
9:06 AM 0.0 9:16 AM 10.00	17.73 16.63	0.00 0.00	8.34 8.66	12.27 11.79	321.45 326.41	73.89 74.08	103.01 103.65	0.00 1.42	74.64 75.85	75.43 78.01	74.68 78.02	0.00	74.29 75.31	74.89 77.10	74.69 79.70	0.00 1.42	74.13 75.75	75.07 76.63	74.75 79.02	0.105 0.102	0.030 0.030		0.00 10.00	0.00	74.64 7 75.85 7	75.43 78.01		.2908249 7		3.0133 3.6509 1	1.70	11.55	0.105 0.102	21.802 21.540	535.0 536.9	534.6 536.2	103.99	103	.85 1	1.357	1.340		0.32402069 0.31995488	
9:26 AM 20.00	15.52	0.00	8.79	12.02	321.60	74.00	103.96	2.84	75.93	78.50	79.19	2.84	75.71	77.66	80.76	2.84	75.94	76.86	79.99	0.106	0.030		20.00	2.84	75.93 <i>7</i>	78.50	2.84 75	.7074127		3.9565 1	1.67	11.57	0.106	21.956	537.2	536.7	101.74	102	.02 1	1.353	1.342	20	0.3260416	
9:36 AM 30.00 9:46 AM 40.00	14.54 13.43	0.00 0.00	8.40 8.36	12.07 11.79	321.68 324.83	74.43 73.64	103.74 104.50	4.26 5.68	76.45 76.32	79.06 79.01	80.25 80.92	4.27 5.68	76.09 75.96	78.04	81.64 82.17	4.27 5.69	76.23 76.36	77.28 77.25	80.99 81.75	0.105 0.100	0.030 0.030		30.00 40.00	5.68	76.45 7 76.32 7	79.06 79.01		6.085701 7 6.9567337 7	77.77236 10 78.04499 10	3.7396 1 4.4989 1	1.72	11.58	0.105	21.782	537.8	536.9 537.0	102.86 104.87	102 104		1.359 1.353	1.344 1.335).32352175).31614057	1
9:56 AM 50.00 10:06 AM 60.00	12.33 11.22	0.00 0.00	8.76 8.35	11.65 11.39	320.80 323.85	73.86 73.51	104.99 105.34	7.10 8.52	76.73 76.74	79.33 79.37	81.72 82.14	7.10 8.52	76.30 76.48	78.21 78.44	82.78 83.19	7.11 8.52	76.75 76.89	77.53 77.87	82.30 82.96	0.125 0.098	0.030 0.029		50.00 60.00	7.10 7.8.52	76.73 7 76.74 7	79.33 79.37	7.10 76 8.52 76		78.20615 10 78.4379 10	4.9941 1 5.3412 1	1.64 1.68	11.53 11.55	0.125 0.098	23.851 21.151	538.0 538.1	537.3 537.5	93.49 105.83	93. 105		1.350 1.355	1.337 1.340		0.35385491 0.31370641	-
10:16 AM 70.00	10.71	0.00	6.85	15.18	235.48	73.24	94.80	9.94	76.85	79.89	81.74	9.94	76.54	78.57	82.29					0.117	0.029		70.00	9.94	76.85 7	79.89	9.94 76	5.5371933 7	78.56522 94	.80408 1	1.66	11.52	0.117	22.873	538.4	537.6	95.80	95.	77 1	1.352	1.336	70 ().34244271	-
10:26 AM 80.00 10:36 AM 90.00	10.21 9.71	0.00	5.85 4.79	15.37 15.54	223.13 215.81	72.87 72.74	92.40	11.36 12.77	76.74 76.73	79.62 79.57	81.29 80.95	11.36 12.77	76.35 76.42	78.71 78.58	81.35 81.11					0.097 0.107	0.027 0.025		<u>-</u>						78.71495 92 78.58292 90		1.65 1.64	11.50 11.47	0.097 0.107	20.708 21.803	538.2 538.2	537.5 537.5	105.36 99.64	105 99.		1.352 1.350	1.335 1.330		0.31069938 0.32763167	1
10:46 AM 100.00 10:56 AM 110.00	9.31 8.81	0.00 0.00	4.53 4.08	16.26 16.82	209.00 207.12	72.80 72.50	89.92 88.99	14.19 15.62	76.71 76.70	79.44 79.65	80.82 80.47	14.19 15.61	76.04 76.21	78.57 78.75	80.53 80.28					0.107 0.104	0.025 0.025								78.56593 89 78.75108 88		1.69 1.69	11.54 11.53	0.107 0.104	21.703 21.425	538.1 538.2	537.3 537.5	100.39 101.55	100 101		1.356 1.357	1.339 1.337		0.32636863 0.32246481	
11:06 AM 120.00	8.41	0.00	4.27	16.40	202.91	72.30	88.06	17.04	76.93	79.76	80.15	17.03	76.35	78.91	80.33					0.105	0.024		120.00	17.04	76.93 7	79.76	17.03 76	3.3485413	78.90533 88	3.0559 1	1.67	11.53	0.105	21.491	538.3	537.6	100.86	100	.73 1	1.354	1.337	120 (0.32372425	-
11:16 AM 130.00 11:26 AM 140.00	8.03 7.61	0.00 0.00	4.37 4.00	16.50 16.91	201.83 194.70	72.04 72.36	87.78 87.12	18.46 19.88	76.66 76.88	79.78	79.99 80.02	18.45 19.87	76.29 76.36	78.70 78.67	79.73 79.49					0.105 0.106	0.024 0.024		140.00	j					78.70362 87 78.66939 87		1.69 1.67	11.53	0.105 0.106	21.556 21.596	538.2 538.3	537.5 537.5	100.62 100.21	100 100	.11 1	1.355 1.354	1.337 1.337	140 (0.32479586 0.32559258	1
11:36 AM 150.00 11:46 AM 160.00	7.20 6.81	0.00	3.95 3.86	16.69 16.52	195.64 197.50	72.25 72.16	87.27 86.86	21.30 22.72	76.38 76.45	79.67 79.51	79.73 79.67	21.29 22.71	76.05 76.00	78.48 78.45	79.19 79.10					0.109 0.115	0.024 0.024	i	150.00 160.00						78.47638 87 78.44622 86		1.68 1.68	11.54 11.53	0.109 0.115	21.857 22.479	538.0 538.0	537.3 537.2	99.15 96.35	99. 96.		1.355 1.355	1.338 1.338).32948245).33898053	i
11:56 AM 170.00 12:06 PM 180.00	6.41 6.10	0.00 0.00	3.97 4.03	17.31 16.62	195.27 192.32	72.02 71.78	86.51	24.14 25.57	76.73 76.83	79.86 79.86	79.48 79.61	24.13 25.56	76.18	78.46 78.60	79.04 79.10					0.109	0.024							5.1787262	78.4611 86 78.59969 86		1.68 1.68	11.54 11.55	0.109 0.115	21.878 22.493	538.3 538.3	537.3 537.5	98.88 96.07	98. 96.	81 1	1.355 1.355	1.338 1.340).33002783).33945675	-
12:16 PM 190.00	5.71	0.00	4.06	16.91	188.47	72.01	86.00 85.69	26.99	76.88	79.65	79.45	26.98	76.31 76.17	78.46	78.81					0.115 0.113	0.024 0.023		190.00	26.99	76.88 7	79.65	26.98 76	5.1713181 7	78.46039 85	.68687 1	1.69	11.55	0.113	22.493	538.3	537.3	96.93	96.	92 1	1.356	1.340	190 (0.33656665	1
12:26 PM 200.00 12:36 PM 210.00	5.40 4.99	0.00 0.00	3.73 3.47	17.63 17.57	184.65 183.35	71.97 72.20	85.32 85.16	28.41 29.83	76.64 76.78	79.54 79.75	79.08 79.12	28.40 29.82	76.02 76.16	78.28 78.45	78.73 78.73					0.109 0.104	0.023	i							78.27804 85 78.44521 85		1.69 1.68	11.56 11.55	0.109 0.104	21.899 21.322	538.1 538.3	537.1 537.3	98.65 101.16	98.		1.356 1.354	1.341 1.340		0.33071058 0.32202972	-
12:46 PM 220.00 12:56 PM 230.00	4.71 4.40	0.00 0.00	3.52 3.61	18.01 17.22	182.37 183.22	72.22 71.88	84.84 85.20	31.25 32.67	76.75 76.70	79.71 79.58	79.20 78.88	31.25 32.67	76.19 76.17	78.56 78.36	78.65 78.51					0.110 0.110	0.023 0.020				-				78.55831 84 78.35988 85		1.68 1.67	11.54 11.55	0.110 0.110	21.912 22.004	538.2 538.1	537.4 537.3	98.39 98.01	98. 98.		1.355 1.354	1.339 1.340).33104222).33232418	-
1:06 PM 240.00	4.01	0.00	3.35	17.01	182.70	71.65	84.96	34.09	76.73	79.67	79.06	34.09	76.05	78.60	78.33					0.112	0.020		240.00	34.09	76.73 7	79.67	34.09 76	6.046524 7	78.60332 84	.96037 1	1.67	11.55	0.112	22.181	538.2	537.3	97.13	97.	32 1	1.353	1.340	240 (0.33506444	_
1:16 PM 250.00 1:26 PM 260.00	3.69 3.31	0.00	3.63 3.90	16.73 16.80	182.37 185.46	72.17 71.82	84.94 85.29	35.51 36.93	76.58 76.46	79.54 79.63	78.69 78.82	35.51 36.93	75.89 76.03	78.17 78.24	78.29 78.53					0.112 0.103	0.020 0.020							.8919449 7 .0341492 7	78.16763 84 78.23621 85		1.66 1.66	11.55 11.54	0.112 0.103	22.135 21.210	538.1 538.0	537.0 537.1	97.34 101.59	97. 101		1.353 1.352	1.340 1.338		0.33439058 0.3203072	
1:36 PM 270.00 1:46 PM 280.00	2.99 2.59	0.00	3.29 3.49	17.28 17.41	183.71 182.14	71.79 71.88	84.97 84.98	38.35 39.76	76.61 76.79	79.79 80.00	79.00 79.02	38.35 39.77	76.28 76.33	78.46 78.59	78.23 78.32					0.098 0.117	0.020 0.020	<u> </u>							78.45972 84 78.5894 84		1.65	11.54 11.53	0.098 0.117	20.768 22.602	538.2 538.4	537.4 537.5	103.63 95.09	103 95.		1.352 1.350	1.338 1.338		0.31372094 0.3414265	
1:56 PM 290.00	2.30	0.00	3.06	17.31	182.92	72.15	84.83	41.18	76.62	79.87	78.83	41.19	76.36	78.34	78.22					0.101	0.020		290.00	41.18	76.62 7	79.87	41.19 76	5.3648376	78.33933 84	.83305 1	1.64	11.54	0.101	21.060	538.2	537.4	102.09	102	.36 1	1.351	1.339	290 ().31816844	
2:06 PM 300.00 2:16 PM 310.00	1.99 1.70	0.00 0.00	3.47 3.33	18.15 17.46	176.42 178.72	71.86 71.59	84.16 84.28	42.61 44.03	76.86 76.63	79.87 79.83	78.91 78.92	42.62 44.04	76.15 76.16	78.52 78.69	78.40 78.39					0.102 0.117	0.020 0.020								78.52154 84 78.69215 84		1.70 1.71	11.56 11.56	0.102 0.117	21.154 22.616	538.4 538.2	537.3 537.4	101.94 95.48	95.	39 1	1.357 1.358	1.341 1.341	310 (0.31979766 0.34185921	
2:26 PM 320.00 2:36 PM 330.00	1.29 1.00	0.00 0.00	3.57 3.39	17.38 16.97	179.72 181.23	71.47 71.59	84.45 84.48	45.45 46.88	76.60 76.68	79.65 79.63	78.74 78.83	45.47 46.89	76.09 76.05	78.41 78.63	78.21 78.15					0.098 0.105	0.020 0.020								78.41055 84 78.6302 84		1.70 1.71	11.57 11.56	0.098 0.105	20.730 21.490	538.1 538.2	537.2 537.3	104.17 100.54	104 100		1.357 1.358	1.342 1.341).31329317).32478178	
2:46 PM 340.00 2:56 PM 350.00	0.69 0.40	0.00	3.14	17.69	178.25	71.74	84.25	48.30	76.83	79.88	78.71	48.31	76.03	78.38	78.01					0.109	0.020		340.00	48.30					78.3821 84		1.69	11.57	0.109	21.799	538.4	537.2	98.88	99.	04 1	1.356	1.342	340 (0.32951483	
3:06 PM 360.00	0.00	0.00	3.51	17.43	182.81 183.14	72.00 71.82	85.27 84.75	49.73 51.15	76.84 76.63	79.82 79.79	79.15 78.90	49.74 51.16	76.34 76.44	78.69 78.50	78.43 78.30					0.103 0.111	0.020 0.020								78.69229 85 78.50385 84		1.70 1.69	11.56 11.56	0.103 0.111	22.071	538.3 538.2	537.5 537.5	101.58 97.81	101 97.		1.357 1.356	1.341 1.341		0.32130478 0.3334687	
																																					<u> </u>				<u> </u>			
0 00 00 00 00 00 00 00 00 00 00 00 00 0																																												
																																					<u></u>							
							i 	<u> </u>	i 	i 	i 																			i						i 	i 	<u> </u>						
																																				-								
																																					<u> </u>							
10 to 10 t																																												
										-																							1											
																												i																
								-		-																											1							
0 m m m m																																					1							
2 m m m m m m m m m m m m m m m m m m m																																												
		L			-Lİ								<u> </u>				L	Iİ-		L			<u>-</u>		-			<u>į</u>			<u>-</u>		į							<u>-</u>				

Version 07/01/20

Page 9 of 21

			 	RESUL	· S			l	<u> </u>				Ť				
				INLOOL				! !									
		Average	e emission rat	or(gr/hr) 1	010												
		Average	E Cilission rac	e.(gi/iii) 1.	710		i	i 	- 								
								L	J				ļ				
			Dura Data (D	r, ka/br 1 1	40		Ctack Ctatic (nog)	0.22	T				<u> </u>	ļ			
			Burn Kate (D	ry kg/hr): 1.3	40		Stack Static (neg):	-0.32						ļ			
							Barometer:	j					 				
							Average Room Temp:	72.44					<u> </u>				
DDECCI	IDE EACTOR	0.06650			DA DON 45	TDIC DDECCUDE		İ					. 	ļ			
PRESSU	JRE FACTOR:	0.96658	.ii			TRIC PRESSURE	i		<u> </u>					-			
					Average:	28.92							<u> </u>				
TEM	1PERATURE FAC		ļ		Start:	28.84		 	ļ				<u> </u>	ļ	ļ		
	DGM #1:	0.98136			End:	29			ļ			.					
	DGM #2:	0.98284						 					<u> </u>				
					DRY GAS	METER VALUES											
VOLU	IMES SAMPLED			DGM #	1 Final:	51.148											
	DGM #1:	48.79282			Initial:	0.001										0	
	DGM #2:	48.22685														0	
				DGM #	2 Final:	51.160										0	
TOTAL TUNNEL \	OLUME (scf):	83962			Initial:	0.001										0	
			I					 					Ī			0	
SAI	MPLE RATIOS				TEMPERA	ATURES (DEG. RANKIN)										0	
Sa	mple Train 1:	1720.779	1		DGM #1:	538.029	İ						Ť			0	
Sa	mple Train 2:	1740.974	!		DGM #2:	537.217		! !					<u> </u>			0	
			1					! !								0	
TOT	AL EMISSIONS		1		CALIBRA	TION FACTORS			1							0	
Samp	ole Train 1 (g):	5.85			DGM #1:	1.0057	Room Temp		Bar Pressure		Relative Humi	idity	Air Velo	city		0	
	ole Train 2 (g):	6.27	1		DGM #2:	0.9923	Before	After	Before	After	Before	After		After		0	
							74	72	28.84	29.00	45.1	29.2	0	0		0	
EM	ISSION RATES		1	TUNN	L FLOW RATE:	233.227		 				1				0	
	Train 1 (g/hr):	0.98	†				Average Dilution	Tunnel Meas	surements			Sample Da	.↓ ata			0	
	Train 2 (g/hr):	1.04		<u> </u>	PARTICU	LATE CATCH (mg)	Burn	Velocity	Flow Rate	Temp		Sample		ate Catch	<u>i</u>	0	
Sample				Total	ample Train 1:		Time	(Ft/sec)	(dscf/min)	(R)	1	2	1	2		0	
					ample Train 2:	3.6	360	21.78	233.23	549.82	48.79	48.23	3.4	3.6		0	
				Filter and seal S	-	3.4				2.3.02		10.20	J.,	3.0	<u> </u>	n	
N/	IAX Allowed	7.50%		Filter and seal S		3.6	Dilution Tunnel	Dual Train Pr	ecision				·			0	
		7.5576	 		ample Train 1:		Sample			issions (g)	Devia	tion	.i	-i	<u> </u>	0	
	DEVIATION:	3.44%			ample Train 2:	0	Train 1	Train 2	Train 1	Train 2	(%)	g/kg				0	
	DEVIATION.	J.++/0	1	i lobe .	ampic Halli Z.	<u> </u>	1720.779	1740.974	5.85	6.2		6 0.051859	a a		<u> </u>	O	
	Train 1 T	rain 2	D	oom Particulate	Correction		1/20.779	1740.374	5.05	0.2	, J.44/0	0.031033	,	[
Cs	6.96824E-05	7.46472E-05		ooni Particulate		:atch (mg)	Burn	Initial	Average					L	L		
Cr	0.90624E-05	7.404726-03				ne Sampled (dscf)	Rate	Draft	Draft								
Et	5.85	6.27		1111 40.5			1.340	0.030	0.024								
El	5.85	0.27				(glass) at 100 s 0.12924 cfm	1.340	0.030	0.024								

Deviation (g/kg)

Train #1 0.7278 #DIV/0!
Train #2 0.7797 #DIV/0!
Deviation 0.0519

Version 07/01/20

iata	chale		CLIENT:	SMG Hearth & Home		PERFORMED BY:	Ken Slater
NICG	rtek	P	ROJECT #:	G104780922		REVIEWED BY:	0
Total Quality. A			PRODUCT:	Pellet Fueled room heater	•	MODEL:	HP22
SA	MPLE ID #:	MID211014	41337-001			DATE:	10/21/2021
STA	NDARD(S):	ASTM E277	' 9	VERSION YEAR:	2017	LOCATION:	Middleton
				EQUIPMENT			
AS	SSET # - DES	SCRIPTION:	See Equip	ment Tab		CALIBRATION DUE:	See Equipment Tab
				CONDITIONING	ì		
SAMPLE	CONDITION	IING (IF APF	PLICABLE):	48 hr conditioning burn			
	AMBIEN	T TEMPERA	TURE (°F):	73.89			
				RESULTS			
PASS)	Χ	FAIL	na	N	O PASS/FAIL	na

E&E Tunnel Traverse Worksheet

Static Pressure (in Hg)	0.321
Barometer (in Hg)	28.84

Desition	Tunnel \	/elocity
Position	(ft/sec)	(ft/sec ²)
A CENTER	0.101	0.3178
B CENTER	0.1	0.3162
A1	0.086	0.2933
A2	0.101	0.3178
A3	0.106	0.3256
A4	0.084	0.2898
B1	0.101	0.3178
B2	0.101	0.3178
В3	0.089	0.2983
B4	0.08	0.2828
Ave	rage	0.3077

	Pitot
Constant =	0.9707

inha shala	CLIENT:	SMG Hearth & Home	PERFORMED BY:	Ken Slater
Intertek	PROJECT #:	G104780922	REVIEWED BY:	0
Total Quality. Assured.	PRODUCT:	Pellet Fueled room heater	MODEL:	HP22
SAMPLE ID #:	MID2110141337-001		DATE:	10/21/2021
STANDARD(S):	ASTM E2779	VERSION YEAR: 2017	LOCATION:	Middleton

E&E Pellet Fuel Data

Brand of Pellets Used Marthwood

	Wet	Dry
Moisture Content (%)	3.25%	3.36%

Weight Used	During Test
Wet (lbs)	Dry (kg)
17.73	8.04

Burn Rate (kg/hr) 1.339752

Moisture Calculation	
Before Weight of Pellets - Wet (lbs)	1.23
After weight of pellets - Dry (lbs)	1.19
Weight of moisture removed from oven (lbs)	0.04

i a L a	- L - L -		CLIENT:	SMG Hea	rth & Hom	e	PERFORMED BY:	Ken Slater			
NCG	rtek		PROJECT #:	G1047809	922		REVIEWED BY:	0		1	
Total Quality.			PRODUCT:	Pellet Fue	eled room l	neater	MODEL:	HP22			
SA	MPLE ID #:	MID2110141337-	001	•			DATE:	10/21/2021			
STA	NDARD(S):	ASTM E2779		VERS	ION YEAR:	2017	LOCATION:	Middleton			
Test Dur	ation (min)	60.0									
					i !					i !	
		Start	End								
	ter (in Hg)	28.84	29								
	Bulb (F)	71.7	75.2								J
Humid	dity (%)	45.1	29.2		! ! !						
				<u> </u>	i ! !					<u> </u>	
Moisture	e content of	wood (Wet) (%)	17.73								
	Averag	ge	0.00	8.52	11.85	322.95	73.92	104.17		76.09	76.93
Actual	Elapsed	Weight	*	*	*	*1	*2	*3	*	*	*
Actual	Time	Remaining	СО	CO ₂	O_2	Flue	Room	Tunnel	DGM 3	DGM 3	DGM 3
Time	Minutes	lbs			O ₂	Gas	Temp	Dry Bulb	Reading	Inlet T	Outlet '
0:00:00	0.0	17.73	0.00	8.34	12.27	321.45	73.89	103.01	0.00	74.64	75.07
0:00:00	10.00	16.63	0.00	8.66	11.79	326.41	74.08	103.65	1.42	75.85	76.63
0:00:00	20.00	15.52	0.00	8.79	12.02	321.60	74.00	103.96	2.84	75.93	76.86
0:00:00	30.00	14.54	0.00	8.40	12.07	321.68	74.43	103.74	4.27	76.45	77.28
0:00:00	40.00	13.43	0.00	8.36	11.79	324.83	73.64	104.50	5.69	76.32	77.25
0:00:00	50.00	12.33	0.00	8.76	11.65	320.80	73.86	104.99	7.11	76.73	77.53
0:00:00	60.00	11.22	0.00	8.35	11.39	323.85	73.51	105.34	8.52	76.74	77.87
								L			
				<u> </u>	! ! ! !	! ! !	<u> </u>			! ! !	<u> </u>
	ļ				 						
	I I I				 						

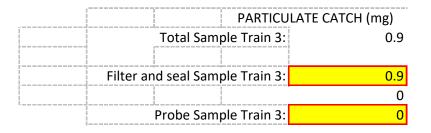
Version 07/01/20 Page 13 of 21

	i	i			i	i	i i	i
	i	i			i	i	i i	i
	i	i		i	 i	i		i
		,				,		
	I	1			1	1	1 1	1
	I .	I			1	I .	1 1	
			L		 			
	I	l .			I .	I .	1 1	I .
	I .	I		l .	1	1	1 1	
	I	I		l .	I	1	1 1	
	 	,			 			
	I	ļ.		l			1	
	I	1			1	1	1	
	I	1			 1	1		

	īi	
	ļ	
	<u> </u>	
	ļ	
	ļ	
68.40	0.11	-0.25
*	*	*
ilter 3	Tunnel	Draft
Гетр	Velocity	Brait
74.75	0.105	-0.250
79.02	0.102	-0.250
79.99	0.106	-0.250
80.99	0.105	-0.250
81.75	0.100	-0.250
82.30	0.125	-0.250
0.00	0.098	-0.250
	!	
	!	
	<u> </u>	
	1	

Version 07/01/20 Page 15 of 21

1				1							1
		1		1		1	1				
		L					1				
	i i	i i	i i	i	ì	i i	i i	i i		i	i
i	i	i i	i	i	i	i	i i		i i	i	i
İ		Li_				i	4				i
i	i	i i	i	i	i	i	i i		i	i	i
i	i	i i	i	i	i	i	i i		i	i	i
i		Li-									i
i	i	i i	i	i	i	i	i i		i	i	i
i	i	i i	i	i	i	i	i i		i	i	i
i		:			i i	i					


		T		0.4002					
		Tun	nel area (ft2):	0.1963					
Final T	emperature (DGM #1) De	grees Rankin:	536.510					
			t per second):						
			grees Rankin:						
			Flow (dscfm):			<u> </u>			
			Average						
			Inlet +						
Filter			Outlet			#3		Average	
Face	Delta-P	Tunnel	Temp.			dDGM		0.3	
Velocity	(in. H2O)	Velocity	Meter 3			Vol. Std.		SQRT	
DGM 2	Tunnel	Ft/Sec	Deg. R			(ft3)	Time	Delta-P	
	0.105	21.802	534.9				0	0.32402069	
#VALUE!	0.102	21.540	536.2		#REF!	1.343	10	0.31995488	
#VALUE!	0.106	21.956	536.4		#REF!	1.338	20	0.3260416	
#VALUE!	0.105	21.782	536.9		#REF!	1.345	30	0.32352175	
#VALUE!	0.100	21.300	536.8		#REF!	1.342	40	0.31614057	
#VALUE!	0.125	23.851	537.1		#REF!	1.336	50	0.35385491	
#VALUE!	0.098	21.151	537.3		#REF!	1.334	60	0.31370641	
	ļ							.	
	ļ								
								.	
	i				i	i i	i	i i	

Version 07/01/20 Page 17 of 21

			!					
- 1								
- 1		 		 	 			
- 1	· · · · · · · · · · · · · · · · · · ·							
- 1								
- 1			i					
- 1		 						
i	i	i	i			i		i i
i	i		i					i i
- i		 		 	 			
i	i	i	i			i		i i
i	i	1	ì			1	1	i i
- 1	1		I			l .		I I

	1.535	ate:(gr/hr)	hour emission r			
Stack Static (neg):						
Fuel Moisture (Dry):						
Barometer:						
Average Room Temp						
<u> </u>	PRESSURF	BAROMETRIC		0.96658	PRESSURE FACTOR:	
	28.92	Average:				
	28.84	Start:		ORS	TEMPERATURE FACTO	
	29	End:		0.98414	DGM #1:	
	FR VALUES	DRY GAS MET				
	8.523	Final:	DGM #3		VOLUMES SAMPLED	
	0.001	Initial:		8.04545	DGM #3:	
				13722	L TUNNEL VOLUME (scf):	TOT
	ES (DEG. RANKIN)	TEMPERATUR			SAMPLE RATIOS	
	536.510	DGM #1:		1705.547	Sample Train 3:	
	FACTORS	CALIBRATION			TOTAL EMISSIONS	
	0.9924	DGM #1:		1.53	Sample Train 3 (g):	
	228.698	OW RATE:	TUNNEL FL			

Version 07/01/20 Page 19 of 21

Version 07/01/20 Page 20 of 21

							,			,
					<u> </u>	ļ	<u> </u>	<u> </u>		ļ
0.321						! !				
0.03		i			†	i	i			Í
28.92										
73.92		i			i	i				
3.32					ļ	!				
		i				<u>i</u>				
					ļ	<u> </u>				
					ļ	ļ				ļ
					ļ	! !	 			
		i			 	i 	 	i 		ļ
						†	 			
						 !	! ! !			
					ļ	ļ		#REF!		1
					ļ		!	0		
					 	ļ	 !	0		
					<u> </u>	<u> </u>	 	0		
					<u> </u>	! !	! !	1	L	
					ļ	<u>i</u>		0		
					ļ	! !	! !	73.50575		ļ
						i 		0		ļ
						 	 	0		ļ
							i !	0		ļ
								0		
								0		
								0		[
								0		
į	į	į	į	į	į			#REF!		<u> </u>
					‡	<u> </u>	!			<u> </u>

Timber Products Inspection, Inc.

CERTIFICATE OF QUALIFICATION

This is to signify that

MARTH WOOD SHAVING SUPPLY, INC.

6752 State Highway 107 North

Marathon, WI 54448

Is hereby qualified as registration #16006

May 30, 2014

Murch Wood Shaving Signify. Inc. is complaint with left Plaushlark Program as and led by Timber Produces inspection and accredited by the American Limber Standards Committee. In order to maintain compliance, the producer agrees to:

Marth Wood Shaving Signify, Inc. is complaint with the Fil standards Program as and led by Timber Produces inspection and accredited by the American Limber Standards Committee. In order to maintain compliance, the producer agrees to:

May 30, 2014

Much Wood Shaving Signify, Inc. is complaint with the Fil standards Program documents

May 30, 2014

Marth Wood Shaving Signify, Inc. is complaint with the Fil standards Program documents

May 30, 2014

Marth Wood Shaving Signify, Inc. is complaint with the Fil standards Program documents

May 30, 2014

Marth Wood Shaving Signify, Inc. is complaint with the Pistandards Program documents

May 30, 2014

Marth Wood Shaving Signify, Inc. is complaint with the Pistandard Program documents

May 30, 2014

Marth Wood Shaving Signify that

American Limber Standards Committee, In producer agrees to:

Apply the quality mark only to products which challenges are applicable monitoring applicable moni

Chris Wiberg, Densified Fuel Program Manager

Timber Products Inspection, Inc 1641 Sigman Road, Conyers GA 30012 770.922.8000

Date: 10/10/2021 **Memo**

To: Intertek

8431 Murphy Drive

Middleton, WI 53562

From: SMG Hearth and Home

Re: Startup Procedure for the ComfortBilt HP22 and HP50 Pellet Stoves

To Whom It May Concern,

The following page is the startup procedure for operating the ComfortBilt HP22 and HP50 Pellet stoves. If you need any other information please let me know. Sincerely,

Bryan Warner

COO

SMG Hearth and Home, LLC

- 1. Check Hopper Make sure the hopper is clean and free of foreign matter.
- **2. Fill Hopper** Fill the hopper with wood pellets. (Make sure that NO parts of the bag or any foreign objects enter the hopper, as this may cause harm to the auger feed system).
- **3.** Close Hopper Lid Take care to ensure there is no pellet material on the hopper lid seating surfaces. (This stove has a safety switch that will not allow pellets to feed with the hopper door open or ajar).
- **4.** Check Igniter Ensure that the igniter rod is in a good position, and did not shift during transit. (Centered in the tube and 1/4" 1/2" back from flush)
- **5.** Check Burn Pot Seat the burn pot flush on the air intake/igniter cradle. Ensure that the igniter port hole is toward the back, and that the lip of the burn pot is not resting atop the front square catch.
- **6.** Check Glass Air-wash Adjust the glass air-wash damper to the open position. *(to the right)*
- 7. Close Front Door Ensure the main glass door is closed. (This stove has a safety switch that will not allow pellets to feed unless there is a negative pressure detected inside the stove).
- **8**. **Check Ash Pan Latches -** Check the adjustable side latches for the ash pan. Both should be snug and have close to even pressure.
- **9.** Adjust Heat Tube Scraper Push the heat tube scraper all the way in and out of the way. (Knob and rod may get extremely hot during operation)
- **10.Check Air Damper -** Make sure the air damper gate is at least 1/2 way open. (End of handle should be flush with stove body)
- **11.Check Fans** Ensure that combustion and convection fans freely spin when flicked and that no damage or seizing occurred during transport. (There should be little resistance and the fan blades will spin like a skate wheel)
- **12.Plug Unit In -** Plug the power cable into the main power switch assembly block at the back of the stove and switch the power switch to the On position. (- is on, 0 is off)
- **13.Boot Up** The panel will boot up, displaying the logo screen and the current program being used..
- **14.Prime Auger -** Now test and prime the auger system. Press the Combination Function button on the control panel. (*red indicator light will come on*). Then the Enter button. "Feeding On" message will display on the screen, and the auger will engage to slowly draw pellets into the drop chute. After about a minute, pellets should start dropping into the burn pot. Once pellets start to feed, press the Exit button to stop the feeding. "Feeding Off" message will display. Now press the Combination Function button again (*red indicator light will go out*).
- 15.Ready to start The stove is now ready to start.

For Testing Purposes Only

16. Start stove on level 5 burn rate for 1 hour, then change to level 2 for 2 hours and then level 1 for 3 hours

CERTIFICATE OF NIST TRACEABLE CALIBRATION

Calibration Certificate No: 92433

Customer Information

Customer: Intertek

Address: 8431 Murphy Drive

Middleton WI 53562

Customer PO #: Verbal - Brian Brunson

Calibration Procedure Information

Procedure ID: GTP TMASS-LAM Revision #: 11 Revision Date: 6/18/2019

Calibration Standards Information

Graftel ID	<u>Manufacturer</u>	Model #	Description	CAL Due
10062	Graftel	9202	5-Channel Temperature Sensor	8/6/2024
10074	Meriam	50MJ10-14	Laminar Flowmeter	11/21/2021
10075	Meriam	50MJ10-9	Laminar Flowmeter	11/26/2021
10128	Furness	FCO352	Diff Pressure	5/7/2022
60030	Paroscientific	760-100A	Pressure, 100 psia	5/20/2022
T1830482	Vaisala	HMW95D	RH/Temp. Logger	12/22/2021
1A01JMGKP36	Graftel	N/A	Digital Barometer	12/22/2021
50789	Paroscientific	760-100A	Pressure Gauge	8/17/2022

Sensor Information

Manufacturer: Sierra Description: Mass Flow Meter Method Used: Laminar

Model #: M50L-AL-DD-2-PV2-V1-5PC Rated Accuracy: ± 1 % of Full Scale Accuracy Specified By: Sierra

Instrument ID#: 001519 0 to 10 Range: slpm Condition: Functional

Serial #: 231326

Approved By:

Comments: Calibration Date: 08/20/2021

Calibration Due: 02/20/2022

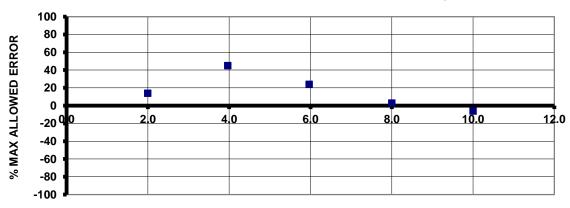
The calibrations within the certificate/report are traceable through NIST or another National Metrology Institute to the International System of Units (SI). The reported calibration uncertainty has a confidence level of 95% (k=2). A calibration uncertainty ratio of 4:1 was maintained unless required uncertainty is supported by analysis. Graftel Quality Assurance System complies with applicable requirements of ISO/IEC-17025-2017, ANSI/NCSL Z540-I-1994 and ISO 9001, All results contained within this certificate relate only to item(s) calibrated. This certificate shall not be reproduced except in full and with the written consent of Graftel. Acceptance Criteria per Simple Acceptance Rule: Measurement Uncertainty is not applied to the measured value when in/out of tolerance statement is made.

Performed By: Date: 8/20/2021

> Lap Chan Calibration Technician

Scott Pickett

Date: 8/20/2021


Vice President, Lab Services

ATTACHMENT TO CALIBRATION CERTIFICATE 92433 AS FOUND / AS LEFT DATA

Page 2 of 2

Reading From Standard, slpm	Lower Limit of Meter Reading, slpm	Measured Reading From Meter, slpm	Upper Limit of Meter Reading, slpm	Error,	Measurement Uncertainty (k=2) slpm	CMC (k=2) slpm	STATUS
1.998	1.898	2.012	2.098	0.014	0.010	0.010	Pass
3.966	3.866	4.011	4.066	0.045	0.020	0.020	Pass
5.967	5.867	5.991	6.067	0.024	0.030	0.030	Pass
8.002	7.902	8.005	8.102	0.003	0.040	0.040	Pass
9.999	9.899	9.993	10.099	-0.006	0.050	0.050	Pass

ERROR CHART (Inlet Pressure = 10 psig)

FLOW RATE (Standard Reading)

Inst	trument Specif	ications
Meter's Calibrated Fluid:	Air	
Test Fluid:	Air	
Meter's Standard Pressure:	14.7	psia
Meter's Standard Temperature:	70	°F
Lower Range:	0	slpm
Upper Range	10	slpm
Resolution:	0.001	
Rated Accuracy:	1.0	% of Full Scale
Labora	atory Ambient	Conditions
Pressure:	14.37	psia
Humidity:	54.67	%RH
Temperature:	70.04	°F

FLOW - TEMPERATURE - HUMIDITY - PRESSURE - DESIGN - CONSULTING - ENGINEERING

■slpm

NIST Traceable Calibration Data Sheet

WWW.GRAFTEL.COM

95 Chancellor Dr., Roselle, IL 60172

Phone: 847-364-2600

Fax: 847-364-3899

CERTIFICATE OF NIST TRACEABLE CALIBRATION

Calibration Certificate No: 92434

Customer Information

Customer: Intertek

Address: 8431 Murphy Drive

Middleton WI 53562

Customer PO #: Verbal - Brian Brunson

Calibration Procedure Information

Procedure ID: GTP TMASS-LAM Revision #: 11 Revision Date: 6/18/2019

Calibration Standards Information

<u>Graftel ID</u>	<u>Manufacturer</u>	Model #	Description	CAL Due
10062	Graftel	9202	5-Channel Temperature Sensor	8/6/2024
10074	Meriam	50MJ10-14	Laminar Flowmeter	11/21/2021
10075	Meriam	50MJ10-9	Laminar Flowmeter	11/26/2021
10128	Furness	FCO352	Diff Pressure	5/7/2022
60030	Paroscientific	760-100A	Pressure, 100 psia	5/20/2022
T1830482	Vaisala	HMW95D	RH/Temp. Logger	12/22/2021
1A01JMGKP36	Graftel	N/A	Digital Barometer	12/22/2021
50789	Paroscientific	760-100A	Pressure Gauge	8/17/2022

Sensor Information

Manufacturer: Sierra Description: Mass Flow Meter Method Used: Laminar

Model #: M50L-AL-DD-2-PV2-V1-5PC Rated Accuracy: ± 1 % of Full Scale Accuracy Specified By: Sierra

Instrument ID#: 1414 Range: 0 to 10 slpm Condition: Functional

Serial #: 189157

Comments: Calibration Date: 08/20/2021

Calibration Due: 02/20/2022

The calibrations within the certificate/report are traceable through NIST or another National Metrology Institute to the International System of Units (SI). The reported calibration uncertainty has a confidence level of 95% (k=2). A calibration uncertainty ratio of 4:1 was maintained unless required uncertainty is supported by analysis. Graftel Quality Assurance System complies with applicable requirements of ISO/IEC-17025-2017, ANSI/NCSL Z540-I-1994 and ISO 9001. All results contained within this certificate relate only to item(s) calibrated. This certificate shall not be reproduced except in full and with the written consent of Graftel. Acceptance Criteria per Simple Acceptance Rule: Measurement Uncertainty is not applied to the measured value when in/out of tolerance statement is made.

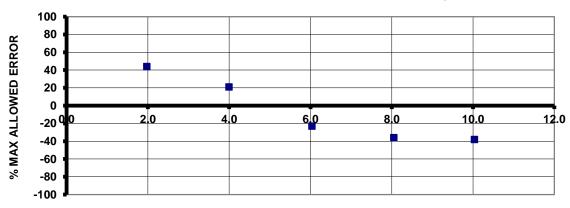
Performed By: 4. Chan_____ Date: <u>8/20/2021</u>

Lap Chan
Calibration Technician

Approved By:

Scott Pickett

Date: 8/20/2021


Vice President, Lab Services

ATTACHMENT TO CALIBRATION CERTIFICATE 92434 AS FOUND / AS LEFT DATA

Page 2 of 2

Reading From Standard, slpm	Lower Limit of Meter Reading, slpm	Measured Reading From Meter, slpm	Upper Limit of Meter Reading, slpm	Error,	Measurement Uncertainty (k=2) slpm	CMC (k=2) slpm	STATUS
1.975	1.875	2.019	2.075	0.044	0.010	0.010	Pass
3.996	3.896	4.017	4.096	0.021	0.020	0.020	Pass
6.034	5.934	6.011	6.134	-0.023	0.030	0.030	Pass
8.049	7.949	8.013	8.149	-0.036	0.040	0.040	Pass
10.032	9.932	9.994	10.132	-0.038	0.050	0.050	Pass

ERROR CHART (Inlet Pressure = 10 psig)

FLOW RATE (Standard Reading)

Inst	Instrument Specifications					
Meter's Calibrated Fluid:	Air					
Test Fluid:	Air					
Meter's Standard Pressure:	14.7	psia				
Meter's Standard Temperature:	70	°F				
Lower Range:	0	slpm				
Upper Range	10	slpm				
Resolution:	0.001					
Rated Accuracy:	1.0	% of Full Scale				
Laboratory Ambient Conditions						
Pressure:	14.37	psia				
Humidity:	53.48	%RH				
Temperature:	70.02	°F				

FLOW - TEMPERATURE - HUMIDITY - PRESSURE - DESIGN - CONSULTING - ENGINEERING

■slpm

NIST Traceable Calibration Data Sheet

WWW.GRAFTEL.COM

95 Chancellor Dr., Roselle, IL 60172

Phone: 847-364-2600

Fax: 847-364-3899

CERTIFICATE OF NIST TRACEABLE CALIBRATION

Calibration Certificate No: 92435

Customer Information

Customer: Intertek

Address: 8431 Murphy Drive

Middleton WI 53562

Customer PO #: Verbal - Brian Brunson

Calibration Procedure Information

Procedure ID: GTP TMASS-LAM Revision #: 11 Revision Date: 6/18/2019

Calibration Standards Information

<u>Graftel ID</u>	<u>Manufacturer</u>	Model #	Description	CAL Due
10062	Graftel	9202	5-Channel Temperature Sensor	8/6/2024
10074	Meriam	50MJ10-14	Laminar Flowmeter	11/21/2021
10075	Meriam	50MJ10-9	Laminar Flowmeter	11/26/2021
10128	Furness	FCO352	Diff Pressure	5/7/2022
60030	Paroscientific	760-100A	Pressure, 100 psia	5/20/2022
T1830482	Vaisala	HMW95D	RH/Temp. Logger	12/22/2021
1A01JMGKP36	Graftel	N/A	Digital Barometer	12/22/2021
50789	Paroscientific	760-100A	Pressure Gauge	8/17/2022

Sensor Information

Manufacturer: Sierra Description: Mass Flow Meter Method Used: Laminar

Model #: M50L-AL-DD-2-PV2-V1-5PC Rated Accuracy: ± 1 % of Full Scale Accuracy Specified By: Sierra

Instrument ID#: 1413 Range: 0 to 10 slpm Condition: Functional

Serial #: 189158

Comments: Calibration Date: 08/20/2021

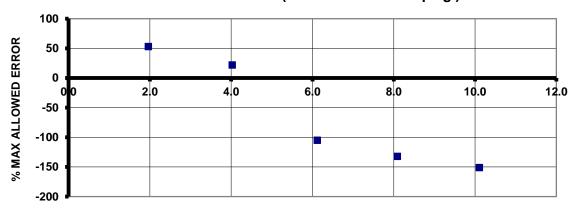
Calibration Due: 02/20/2022

The calibrations within the certificate/report are traceable through NIST or another National Metrology Institute to the International System of Units (SI). The reported calibration uncertainty has a confidence level of 95% (k=2). A calibration uncertainty ratio of 4:1 was maintained unless required uncertainty is supported by analysis. Graftel Quality Assurance System complies with applicable requirements of ISO/IEC-17025-2017, ANSI/NCSL Z540-I-1994 and ISO 9001. All results contained within this certificate relate only to item(s) calibrated. This certificate shall not be reproduced except in full and with the written consent of Graftel. Acceptance Criteria per Simple Acceptance Rule: Measurement Uncertainty is not applied to the measured value when in/out of tolerance statement is made.

Performed By: 4. Chan_____ Date: <u>8/20/2021</u>

Lap Chan
Calibration Technician

Approved By: Date: 8/20/2021


Scott Pickett
Vice President, Lab Services

ATTACHMENT TO CALIBRATION CERTIFICATE 92435 AS FOUND DATA

Page 2 of 3

Reading From Standard, slpm	Lower Limit of Meter Reading, slpm	Measured Reading From Meter, slpm	Upper Limit of Meter Reading, slpm	Error,	Measurement Uncertainty (k=2) slpm	CMC (k=2) slpm	STATUS
1.964	1.864	2.017	2.064	0.053	0.010	0.010	Pass
4.026	3.926	4.048	4.126	0.022	0.020	0.020	Pass
6.118	6.018	6.013	6.218	-0.105	0.031	0.031	Fail
8.089	7.989	7.957	8.189	-0.132	0.040	0.040	Fail
10.104	10.004	9.953	10.204	-0.151	0.051	0.051	Fail

ERROR CHART (Inlet Pressure = 10 psig)

FLOW RATE (Standard Reading)

Instrument Specifications					
Meter's Calibrated Fluid:	Air				
Test Fluid:	Air				
Meter's Standard Pressure:	14.7	psia			
Meter's Standard Temperature:	70	°F			
Lower Range:	0	sipm			
Upper Range	10	sipm			
Resolution:	0.001				
Rated Accuracy:	1.0	% of Full Scale			
Laboratory Ambient Conditions					
Pressure:	14.36	psia			
Humidity:	53.47	%RH			
Temperature:	70.05	°F			

FLOW - TEMPERATURE - HUMIDITY - PRESSURE - DESIGN - CONSULTING - ENGINEERING

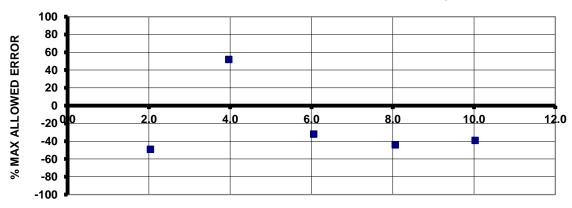
■slpm

NIST Traceable Calibration Data Sheet

WWW.GRAFTEL.COM

95 Chancellor Dr., Roselle, IL 60172

Phone: 847-364-2600


Fax: 847-364-3899

ATTACHMENT TO CALIBRATION CERTIFICATE 92435 AS LEFT DATA

Page 3 of 3

Reading From Standard, slpm	Lower Limit of Meter Reading, slpm	Measured Reading From Meter, slpm	Upper Limit of Meter Reading, slpm	Error,	Measurement Uncertainty (k=2) slpm	CMC (k=2) slpm	STATUS
2.037	1.937	1.988	2.137	-0.049	0.010	0.010	Pass
3.964	3.864	4.016	4.064	0.052	0.020	0.020	Pass
6.053	5.953	6.021	6.153	-0.032	0.030	0.030	Pass
8.061	7.961	8.017	8.161	-0.044	0.040	0.040	Pass
10.026	9.926	9.987	10.126	-0.039	0.050	0.050	Pass

ERROR CHART (Inlet Pressure = 10 psig)

FLOW RATE (Standard Reading)

Instrument Specifications					
Meter's Calibrated Fluid:	Air				
Test Fluid:	Air				
Meter's Standard Pressure:	14.7	psia			
Meter's Standard Temperature:	70	°F			
Lower Range:	0	sipm			
Upper Range	10	sipm			
Resolution:	0.001				
Rated Accuracy:	1.0	% of Full Scale			
Laboratory Ambient Conditions					
Pressure:	14.36	psia			
Humidity:	53.61	%RH			
Temperature:	70.05	°F			

FLOW - TEMPERATURE - HUMIDITY - PRESSURE - DESIGN - CONSULTING - ENGINEERING

■slpm

NIST Traceable Calibration Data Sheet

WWW.GRAFTEL.COM

95 Chancellor Dr., Roselle, IL 60172

Phone: 847-364-2600

Fax: 847-364-3899

ATTENTION CAUTION

CAUSE SKIN BURNS. SEE MANUAL FOR COMPLETE INSTRUCTIONS. HOT-WHILE IN OPERATION. DO NOT TOUCH-KEEP CHILDREN, CLOTHING AND FURNISHINGS AWAY-CONTACT I

L'ÉCART-LE CONTACT PEUT PROVOQUER DES BRULURES CUTANEES.VOIR LES INSTRUCTIONS COMPLÈTES DANS LE MANUE CHAUD-DURANT LE FONCTIONNEMENT.NE PAS TOUCHER-TENIR LES ENFANTS.LES VETEMENTS ET LE MOBILIER À

ASTM E1509-2 ASTM E2515-2 MODEL,MODÈLE:HP221 MANUFACTURER,FABRICANT: Ningbo Hongsheng Fireplace Co.,Ltd Certified To.Certifi é s pour ASTM ULC S627-2

OPERATE THIS UNIT ONLY WITH THE FUEL HOPPER LID CLOSED -FAILURE TO DO SO MAY CERTAIN CONDITIONS-MAINTAIN HOPPER SEAL IN GOOD CONDITION-DO NOT OVERFILI RESULT IN EMISSION OF PRODUCTS OF COMBUSTIONFROM THE HOPPERUNDER THE HOPPER.DO NOT REMOVE OR COVER THIS LABEL

LISTED ROOM HEATERS

FOR USE ONLY WITH PELLE TIZED WOOD.

ROOM HEATER, PELLET FUEL-BURNING TYPE, ALSO FOR USE IN MO-BILE HOMES. WARNING: DO NOT INSTALL IN SLEEPING ROOM.

CAL RATING:115 VOLTS,60HERTZ. INSTALLED TO VENT MANUFACTURER'S INSTRUCTIONS AND LOCAL BUILDING CODES.ELECTRI-THE FRONT, 6" TO SIDES AND 3" TO REAR. EXHAUST TYPE:LISTED TYPE LOR PL VENT UNIT MUST BE PLACED ON A NON-COMBUSTIBLE FLOOR PROTECTOR EXT ENDING 6" TO

RESTRICTIONS AND INSTALLATION INSPECTION IN YOUR AREA. OPERATING INSTRUCTIONS.CONTACTLOCAL BUILDING OR FIRE OFFICIALS ABOUT INSTALL AND USE ONLY IN ACCORDANCE WITH SMG STOVES IN STALL ATION AND

PASSING THROUGH A COMBUST IBLE WALL OR CEILING. DO NOT CONNECT THIS UNIT TO A CHIMNEY FLUE SERVING ANOTHER APPLIANCE.REVIEW THE LOCAL BUILDING CODE AND MANUFACTURER'S INSTRUCTIONS FOR PRECAUTIONS REQUIRED FOR

KEEPVIEWING AND ASH REMOVAL DOORS TIGHTLE CLOSED DURING OPERATION.INSPECT AND CLEAN EXHAUST VENTING SYSTEM FREQUENTLY AND ACCORDING TO MANUF ACTURER'S

THIS WOOD HEATER NEEDS PERIODIC INSPECTION AND REPAIR FOR PROPER OPERATION, CONSULT THE OWNER'S MANUAL FOR FURTHER INFORMATION. IT IS AGAINST FEDERAL REGULATIONS TO OPERATE THIS WOOD HEATER IN A MANNER INCONSISTENT WITH THE OPERATING INSTRUCTIONS IN THE DANGER:RISK OF ELECTRICAL SHOCK-DISCONNECT POWER BEFORE SERVICING. CAUTION:MOVING PARTS MAY CAUSE INJURY-DO NOT OPERATEWITHLID OPEN. INPUT RATING 0 TO 4.9 LBS PER HR.ROUTE POWERSUPPLY CORD AWAY FROMUNIT.

FOR DETAILED INFORMATION. REFER TO THE INTERTEK DIRECTORY OF BUILDING PRODUCTS (HTTPS://BPDIRECTORY.INTERTEK.COM) STANDARDS USING PELLET FUEL. PARTICULATE EMISSIONS: 1.01 G/H U.S. ENVIRONMENTAL PROTECTION AGENCY CERTIFIED TO COMPLY WITH 2020 PARTICULATE EMISSION

> UTILISER CET APPAREIL UNIQUEMENT AVEC LECOUVERCLE DETREMIE, À COMBUSTIBLE FERMÉ SOUS PEINE D'ÉMISSION DE PRODUITS DE COMBUSTION PAR LA TRÉMIE SOUS CERTAINES CONDITIONS-MAINTENIR LE JOINT DE LA TRÉMIE EN BON ÉTAT-NE PAS TROP REMPLIR LA TRÉMIE.NE PAS ENLEVER NI COUVRIR CETTE ÉTIQUETTE.
>
> LA TRÉMIE.NE PAS ENLEVER NI COUVRIR CETTE ÉTIQUETTE.
>
> APPAREILS DE CHAUFFAGE AUTONOMES HOMOLOGUESUTITISER UNIQUEMENT AVEC DU BOIS APPAREIL DE CHAUFFAGE AUTONOME,POUR COMBUSTIBLE EN GRANULÉS ÉGALEMENT UTISILABLE EN MAISON MOBILE. AVERTISSEMENT:NE PAS INSTALLER DANS UNE CHAMBRE À COUCHER. L'APPAREIL DOIT ÊTRE PLACÉ SUR UN PROTECTEUR DE PLANCHER NON COMBUSTIBLE DÉPASSANT DE 15 CM SUR L'AVANT, DE 15CM SUR LES CÔTÉS ET DE7,5CM SER L'ARRIÈRE. TYPE D'ÉVACUATION:ÉVACUATION HOMOLOGUEE DE TYPE L'OU PLINSTALLÉE CONFORMÉMENT AUX INSTRUCTIONS DU FABRICANT ET AU CODE DU BATIMENT EN VIGUEUR ALIMENTATION ÉLE CTRQUE:115 VOLTS,60 HERTZ.

ATTENTION:LES PLÈCES EN MOUVEMENT PEUVENT PROVOQU DESBLESSURES-NEPAS UTILISERAVECLECOUVERCLEOUVERT.
DANGER:RISQUE DE CHOC ÉLECTRIQUE-DÉBRANCHE RL'ALIMENTATION ÉLECTRIQUE GARDERLESPORTESD'OBSERVATION ET D'ENLÈVEMENT DES CENDRES BIEN FERMEES DURANT LA MARCHE.CONTROLER ET NETTOYERLE SYSTÈME D'ÉVACUATION FREQUEMMENT ET CONFORMÉMENT AU MANUEL DU FABRICANT.CONSOMMATION NOMINALE DEOà2.3 AVANT TOUT ENTRETIEN. kg/h.FAIRE PASSERLE CORDON ÉLECTRIQUE À L'ÉCART DE L'APPAREIL. FABRICANT CONCERNANT LES MESURES DE PRECAUTION REQUISES POUR TRAVERSER UN MUROU UN PALFOND COMBUSTIBLE.

COMCERNANT LES RESTRICTIONS ET LES INSPECTIONS D'INSTLLATION EN VIGUEUR. NE PASRACCORDERCETAPPAREILÀ UN CONDUIT DE FUMÉE UTIUSE POUR UN AUTRE APPAREIL. CONSULTERLE CODE DU BÂTIMENT EN VIGUEUR ET LESINSTRUCTIONS DU

INSTRUCTIONSD'INSTALLATION ET D'UTILISATION DES POÈLES SMGCOMMUNIQUERAVECLES SERVICESDUBÂTIMENTOUD'INCENDIE LOCAUX

INSTALLERETETUTILISERUNIQEMENTENCONFORMITÉAVEC;LES

US ENVIRONMENTAL PROTECTION AGENCY CERTIFIÉ CONFORME AUX NORMES 2020 D'ÉMIS SION DE PARTICULES À L'AIDE DEPASTILLES DE COMBUSTIBLE. LES EMISSIONS DE PARTICUL ES: 1,01 G/H. CE POÈLE À BOIS DOIT INSPECTION PÉRIODIQUE ET LA RÉPARATION POUR UN FONCTIONNEMENT CORRECT. CONSULTEZ LE MANUEL DU PROPRIÉTAIRE POUR PLUS D'INFORMATIONS, IL EST CONTRE LES RÉGLEMENTS FÉDÉRAUX POUR FAIRE FONCTIONNER CE POÈLE À BOIS D'UNE MANIÈRE INCOMPATIBLE AVEC LES INSTRUCTIONS D'UTILISATION DANS LE MANUEL DU PROPRIÉTAIRE. RY.INTERTEK.COM)POUROBTENIR DES INFORMATIONS DÉTAILLÉES. REPORTEZ-VOUS AU REPERTOIRE DES PRODUITS DE CONSTRUCTION D'INTERTEK (HTTPS://BPDIRECTO

TESTED AND LISTED BY: TESTE ET HOMOLOGUE

ÆΥ

WN#22060 Intertek

DEGAGEMENTS MINIMUM JUSQU AUX MATERIAUX COMBUSTIBLES MINIMUM CLEARANCES TO COMBUSTIBLE MATERIALS

INTALLATION EN MAISON MOBILE OU RESIDENTIELLE MOBILE HOME OR RESIDENTIAL INSTALĮ

1 CO 101 Unit to back insert enclosure

HEARTH & EXTENSION minimumof 6-inches in front A Hearth Extension must be a and 6-inches beyond both sides for the ash removal

Œ

Minimun Clearance to Combustible Unit to sidewall = 10.5-in/266.7-mm(A) Materials

Unit to side insert enclosure = 6.5-in/165.1-mm from side of unit(D) Unit to back insert enclosure = 6-in/152.4-mm from back of unit(G) Unit to top insert enclosure = 6-in/152.4-mm from back of unit(C) Unit to Mantle = 7.25-in/184.15-mm(B)

9241 Globe Center Drive Suite SMG Hearth and Home LLC 120 Morrisville,NC27560

DATE OF MANUFACTURE DATE DE FABRICATION

PROTECTION DE PLANCHER MINIMALE REQUISE 15 CM, REQUISITOS 6"MINIMIM FLOOR PROTECTION REQUIREMENTS.

ATTENTION CAUTION

CAUSE SKIN BURNS. SEE MANUAL FOR COMPLETE INSTRUCTIONS. HOT-WHILE IN OPERATION. DO NOT TOUCH-KEEP CHILDREN, CLOTHING AND FURNISHINGS AWAY-CONTACT I ÆΥ

L'ÉCART-LE CONTACT PEUT PROVOQUER DES BRULURES CUTANEES.VOIR LES INSTRUCTIONS COMPLÈTES DANS LE MANUE CHAUD-DURANT LE FONCTIONNEMENT.NE PAS TOUCHER-TENIR LES ENFANTS.LES VETEMENTS ET LE MOBILIER À

ASTM E1509-MANUFACTURER, FABRICANT:
Ningbo Hongsheng Fireplace Co., Ltd
Certified To. Certifiés pour MODEL, MODÈLE: HP22N ULC S627-2

ASTM E2515-ASTM

OPERATE THIS UNIT ONLY WITH THE FUEL HOPPER LID CLOSED -FAILURE TO DO SO MAY CERTAIN CONDITIONS-MAINTAIN HOPPER SEAL IN GOOD CONDITION-DO NOT OVERFILI RESULT IN EMISSION OF PRODUCTS OF COMBUSTIONFROM THE HOPPERUNDER THE HOPPER.DO NOT REMOVE OR COVER THIS LABEL

FOR USE ONLY WITH PELLE TIZED WOOD. LISTED ROOM HEATERS

ROOM HEATER, PELLET FUEL-BURNING TYPE, ALSO FOR USE IN MO-BILE HOMES WARNING: DO NOT INSTALL IN SLEEPING ROOM.

CAL RATING:115 VOLTS,60 HERTZ. INSTALLED TO VENT MANUFACTURER'S INSTRUCTIONS AND LOCAL BUILDING CODES.ELECTRI-UNIT MUST BE PLACED ON A NON-COMBUSTIBLE FLOOR PROTECTOR EXT ENDING 6" TO THE FRONT,6" TO SIDES AND 3" TO REAR.EXHAUST TYPE:LISTEDTYPE L OR PL VENT

OPERATING INSTRUCTIONS.CONTACTLOCAL BUILDING OR FIRE OFFICIALS ABOUT RESTRICTIONS AND INSTALLATION INSPEC TION IN YOUR AREA. INSTALL AND USE ONLY IN ACCORDANCE WITH SMG STOVES IN STALL ATION AND

DO NOT CONNECT THIS UNIT TO A CHIMNEY FLUE SERVING, ANOTHER APPLIANCE. REVIEW THE LOCAL BUILDING CODE ANDMANUFACTURER'S INSTRUCTIONS FOR PRECAUTIONS REQUIRED FOR PASSING THROUGH A COMBUST IBLE WALL OR CEILING.

KEEPVIEWING AND ASH REMOVAL DOORS TIGHTLE CLOSED DURING OPERATION.INSPECT AND CLEAN EXHAUST VENTING SYSTEM FREQUENTLY AND ACCORDING TO MANUF ACTURER'S

THIS WOOD HEATER NEEDS PERIODIC INSPECTION AND REPAIR FOR PROPER OPERATION. CONSULT THE OWNER'S MANUAL FOR FURTHER INFORMATION. IT IS AGAINST FEDERAL REGULATIONS TO OPERATE THIS WOOD HEATER IN A MANNER INCONSISTENT WITH THE OPERATING INSTRUCTIONS IN THE INPUT RATINGO TO 4.9 LBS PER HR.ROUTE POWERSUPPLY CORD AWAY FROMUNIT. DANGER:RISK OF ELECTRICAL SHOCK- DISCONNECT POWER BEFORE SERVICING. CAUTION:MOVING PARTS MAY CAUSE INJURY-DO NOT OPERATEWITHLID OPEN.

FOR DETAILED INFORMATION. REFER TO THE INTERTEK DIRECTORY OF BUILDING PRODUCTS (HTTPS://BPDIRECTORY.INTERTEK.COM) STANDARDS USING PELLET FUEL. PARTICULATE EMISSIONS: 1.01 G/H U.S. ENVIRONMENTAL PROTECTION AGENCY CERTIFIED TO COMPLY WITH 2020 PARTICULATE EMISSION

> UTILISER CET APPAREIL UNIQUEMENTAVEC LECOUVERCLE DETREMIE, À COMBUSTIBLE FERMÉ SOUS PEINE D'ÉMISSION DE PRODUITS DE COMBUSTION PAR LA TRÉMIE SOUS CERTAINES CONDITIONS-MAINTENIR LE JOINT DE LA TRÉMIE EN BON ÉTAT-NE PAS TROP REMPLIR LA TRÉMIE. NE PAS ENLEVER NI COUVRIR CETTE ÉTIQUETTE.
>
> LA TRÉMIE. NE PAS ENLEVER NI COUVRIR CETTE ÉTIQUETTE.
>
> APPAREILS DE CHAUFFAGE AUTONOMES HOMOLOGUESUTITISER UNIQUEMENT AVEC DU BOIS DÉPASSANT DE 15 CM SUR L'AVANT, DE 15 CM SUR LES CÔTÉS ET DE7,5 CM SER L'ARRIÈRE. TYPE D'ÉVACUATION: ÉVACUATION HOMOLOGUEE DE TYPE L'OU PLINSTALLÉE CONFORMÉMENT AUX INSTRUCTIONS DU FABRICANT ET AU CODE DU BATIMENT EN VIGUEUR. APPAREIL DE CHAUFFAGE AUTONOME,POUR COMBUSTIBLE EN GRANULÉS ÉGALEMENT UTISILABLE EN MAISON MOBILE. AVERTISSEMENT:NE PAS INSTALLER DANS UNE CHAMBRE À COUCHER. L'APPAREIL DOIT ÊTRE PLACÉ SUR UN PROTECTEUR DE PLANCHER NON COMBUSTIBLE

COMCERNANT LES RESTRICTIONS ET LES INSPECTIONS D'INSTLLATION EN VIGUEUR. NE PASRACCORDERCETAPPAREILÀ UN CONDUIT DE FUMÉE UTIUSE POUR UN AUTRE APPAREIL. CONSULTERLE CODE DU BÂTIMENT EN VIGUEUR ET LESINSTRUCTIONS DU INSTRUCTIONSD'INSTALLATION ET D'UTILISATION DES POÈLES SMGCOMMUNIQUERAVECLES SERVICESDUBÂTIMENTOUD'INCENDIE LOCAUX FABRICANT CONCERNANT LES MESURES DE PRECAUTION REQUISES POUR TRAVERSER UN MUROU UN PALFOND COMBUSTIBLE. INSTALLERETETUTILISERUNIQEMENTENCONFORMITÉAVEC;LES ALIMENTATIONELECTRQUE:115 VOLTS,60 HERTZ.

ATTENTION:LES PLÈCES EN MOUVEMENT PEUVENT PROVOQU DESBLESSURES-NEPAS UTILISERAVECLECOUVERCLEOUVERT.

DANGER:RISQUE DE CHOC ÉLECTRIQUE-DÉBRANCHE RL'ALIMENTATION ÉLECTRIQUE GARDERLESPORTESD'OBSERVATION ET D'ENLÈVEMENT DES CENDRES BIEN FERMEES DURANT LA MARCHE.CONTROLER ET NETTOYERLE SYSTÈME D'ÉVACUATION FREQUEMMENT ET CONFORMÉMENT AU MANUEL DU FABRICANT.CONSOMMATION NOMINALE DEOà2.3 AVANT TOUT ENTRETIEN. kg/h.FAIRE PASSERLE CORDON ÉLECTRIQUE À L'ÉCART DE L'APPAREIL.

US ENVIRONMENTAL PROTECTION AGENCY CERTIFIÉ CONFORME AUX NORMES 2020 D'ÉMIS SION DE PARTICULES À L'AIDE DEPASTILLES DE COMBUSTIBLE, LES EMISSIONS DE PARTICUL ES: 101G/H. CE POÊLE À BOIS DOIT INSPECTION PÉRIODIQUE ET LA RÉPARATION POUR UN FONCTIONNIEMENT CORRECT. CONSULTEZ LE MANUEL DU PROPRIÉTAIRE POUR PLUS D'INFORMATIONS, IL EST CONTRE LES RÉGLEMENTS FÉDÉRAUX POUR FAIRE FONCTIONNIER CE POÊLE À BOIS D'UNE MANIÈRE INCOMPATIBLE AVEC LES INSTRUCTIONS D'UTILISATION DANS LE MANUEL DU PROPRIÉTAIRE.

RY.INTERTEK.COM)POUROBTENIR DES INFORMATIONS DÉTAILLÉES. REPORTEZ-VOUS AU REPERTOIRE DES PRODUITS DE CONSTRUCTION D'INTERTEK (HTTPS://BPDIRECTO

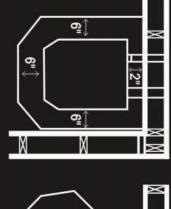
DEGAGEMENTS MINIMUM JUSQU AUX MATERIAUX COMBUSTIBLES MINIMUM CLEARANCES TO COMBUSTIBLE MATERIALS

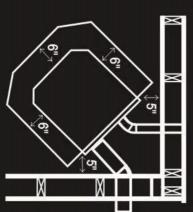
WN#22062

Intertek

INTALLATION EN MAISON MOBILE OU RÉSIDENTIELLE MOBILE HOME OR RESIDENTIAL INSTALĮ

BACKWALL TO STOVE MUR LATÉRAL À POÊLE MUR ARRIÈRE À POÊLE


SIDEWALLTO STOVE


Ŋ 7" STOVE CORNER TO DIAGONAL WAL

<u>ٿ</u>

12.7 CM

9241 Globe Center Drive Suite SMG Hearth and Home LLC 120 Morrisville,NC27560

DATE OF MANUFACTURE DATE DE FABRICATION

COMFORTS

PROTECTION DE PLANCHER MINIMALE REQUISE 15 CM, REQUISITOS 6"MINIMIM FLOOR PROTECTION REQUIREMENTS.

CAUTION ATTENTION

CHAUD-DURANT LE FONCTIONNEMENT.NE PAS TOUCHER-TENIR LES ENFANTS.LES VÊTEM CAUSE SKIN BURNS. SEE MANUAL FOR COMPLETE INSTRUCTIONS L'ÉCART-LE CONTACT PEUT PROVOQUER DES BRÜLURES CUTANÉES. VOIR LES INSTRUCTIONS CO OMPLETES DANS LE MANUEL ENTS ET LE MOBILIER À

HOT-WHILE IN OPERATION. DO NOT TOUCH-KEEP CHILDREN, CLOTHING AND FURNIS

HINGS AWAY-CONTACT MAY

MANUFACTURER, FABRICANT: MODEL, MODELE: HP22 Ningbo Hongsheng Fireplace Co.,Ltd

ASTM E1509-2012 (R2017), ULC 5627-2021, Certified To,Certifi é s pour

ASTM E2515-2017, ASTM E2779-2017, CSA B415.2010 (R2020)

THE HOPPER.DO NOT REMOVE OR COVER THIS LABEL CERTAIN CONDITIONS-MAINT AIN HOPPER SEAL IN GOOD CONDITION-DO NOT OVERFILL RESULT IN EMISSION OF PRODUCTS OF COMBUSTION FROM THE HOPPER UNDER OPERATE THIS UNIT ONLY WITH THE FUEL HOPPER LID CLOSED- FAILURE TO DO SO MAY

LISTED ROOM HEATERS

FOR USE ONLY WITH PELLE TIZED WOOD.

ROOM HEATER, PELLET FUEL-BURNING TYPE, ALSO FOR USE IN MO-BILE HOMES. WARNING:DO NOT INSTALL IN SLEEPING ROOM.

CAL RATING:115 VOLTS,60 HERTZ INSTALLED TO VENT MANUFACTURERS INSTRUCTIONS AND LOCAL BUILDING CODES ELECTRI-UNIT MUST BE PLACED ON A NON-COMBUSTIBLE FLOOR PROTECTOR EXTENDING 6" TO THE FRONT,6" TO SIDES AND 3" TO REAR, EXHAUST TYPE: LISTED TYPE L OR PL VENT

RESTRICTIONS AND INSTALLATION INSPECTION IN YOUR AREA. OPERATING INSTRUCTIONS.CONTACTLOCAL BUILDING OR FIRE OFFICIALS ABOUT INSTALL AND USE ONLY IN ACCORDANCE WITH SMG STOVES IN STALL ATION AND

PASSING THROUGH A COMBUST IBLE WALL OR CEILING DO NOT CONNECT THIS UNIT TO A CHIMNEY FLUE SERVING ANOTHER APPLIANCE. REVIEW THE LOCAL BUILDING CODE AND MANUFACTURER'S INSTRUCTIONS FOR PRECAUTIONS REQUIRED FOR

CLEAN EXHAUST VENTING SYSTEM FREQUENTLY AND ACCORDING TO MANUFACTURER'S KEEP VIEWING AND ASH REMOVAL DOORS TIGHTLE CLOSED DURING OPERATION, INSPECTAND

CAUTION: MOVING PARTS MAY CAUSE INJURY-DO NOT OPERATE WITHLIDOPEN INPUT RATING 0 TO 6.4 LBS PER HR.ROUTE POWERSUPPLY CORDAWAY FROMUNIT

DANGER: RISK OF ELECTRICAL SHOCK-DISCONNECT POWER BEFORE SERVICING.

THIS WOOD HEATER NEEDS PERIODIC INSPECTION AND REPAIR FOR PROPER OPERATION, CONSULT THE OWNERS MANUAL FOR FURTHER INFORMATION, IT IS AGAINST FEDERAL REGULATIONS TO OPERATE THIS WOOD HEATER IN A MANNER INCONSISTENT WITH THE OPERATING INSTRUCTIONS IN THE

STANDARDS USING PELLET FUEL PARTICULATE EMISSIONS:1.01G/HR U.S. ENVIRONMENTAL PROTECTION AGENCY CERTIFIED TO COMPLY WITH 2020 PARTICULATE EMISSION

REFER TO THE INTERTEK DIRECTORY OF BUILDING PRODUCTS (HTTPS://BPDIRECTORY.INTERTEK.COM) FOR DETAILED INFORMATION.

> CONDITIONS-MAINTENIR LE JOINT DE LA TRÉMIE EN BON ÉTAT-NE PAS TROP REMPLIR UTILISER CET APPAREIL UNIQUEMENTAVEC LE COUVERCLE DETREMIE, À COMBUSTIBLE FERME SOUS PEINE D'ÉMISSION DE PRODUITS DE COMBUSTION PAR LA TRÉMIE SOUS CERTAINES LA TRÉMIE NE PAS ENLEVER NI COUVRIR CETTE ÉTIQUETTE. APPAREILS DE CHAUFFAGE AUTONOMES HOMOLOGUESUTITISER UNIQUEMENT AVEC DU BOIS

APPAREIL DE CHAUFFAGE AUTONOME,POUR COMBUSTIBLE EN GRANULÉS ÉGALEMENT

DÉPASSANT DE 15 CM SUR L'AVANT, DE 15CM SUR LES CÔTÉS CONFORMEMENT AUX INSTRUCTIONS DU FABRICANT ET AU COI TYPE D'ÉVACUATION: ÉVACUATION HOMOLOGUEE DE L'APPAREIL DOIT ÊTRE PLACÉ SUR UN PROTECTEUR DE PL UTISILABLE EN MAISON MOBILE. AVERTISSEMENT:NE PAS INSTALLER DANS UNE CHAMBRE À COUCHER. ANCHER NON COMBUSTIBLE DE DU BATIMENT EN VIGUEUR TYPE L'OU PL INSTALLÉE ET DE7,5CM SER L'ARRIÈRE

INSTALLERETETUTILISERUNIQEMENTENCONFORMIT ALIMENTATIONELECTRQUE:115 VOLTS,60 HERTZ. EAVECLES

COMCERNANT LES RESTRICTIONS ET LES INSPECTIONS D'IL INSTRUCTIONS D'INSTALLATION ET D'UTILISATION DES POÈLES SMG COMMUNIQUER AVECLES SERVICES DU BÂTIMENT OU D'INC APPAREIL.CONSULTERLE CODE DU BÂTIMENT EN VIGUEU FABRICANT CONCERNANT LES MESURES DE PRECAUTION REC MUROU UN PALFOND COMBUSTIBLE. NE PAS RACCORDER CET APPAREIL A UN CONDUIT DE FUMI EE UTIUSE POUR UN AUTRE TOUD'INCENDIE LOCAUX R ET LESINSTRUCTIONS DU NSTLLATION EN VIGUEUR. UISES POUR TRAVERSER UN

kg/h.FAIRE PASSERLE CORDON ÉLECTRIQUE À L'ÉCAR CONFORMEMENT AU MANUEL DU FABRICANT, CONSOMM GARDERLES PORTES D'OBSERVATION ET D'ENLÉVEMENT DES CEN DANGER: RISQUE DE CHOC ÉLECTRIQUE-DÉBRANCHE RL'A ATTENTIONLES PLÈCES ENMOUVEMENT PEUVENT PROVOQUDES BLESSURES. NE PAS LA MARCHE.CONTROLER ET NETTOYERLE SYSTÈME D'ÉVAC AVANT TOUT ENTRETIEN. UTILISERAVECLECOUVERCLEOUVERT LIMENTATION ÉLECTRIQUE ATION NOMINALE DE 0à 2.86 UATION FREQUEMMENT ET DRES BIEN FERMEES DURANT DE L'APPAREIL

CE POÈLE À BOIS DOIT INSPECTION PÉRIODIQUE ET LA RÉPARATIO CORRECT. CONSULTEZ LE MANUEL DU PROPRIÉTAIRE POUR PLUS D' CORRECT. CONSULTEZ LE MANUEL DU PROPRIÉTAIRE POUR PLUS D'INFORMATIONS. IL EST CONTRE LES RÉGLEMENTS FÉDÉRAUX POUR FAIRE FONCTIONNER CE POÈLE À BOIS D'UNE MANIÈRE INCOMPATIBLE AVEC LES INSTRUCTIONS D'UTILISATION DANS LE MANUEL DU PROPRIÉTAIRE N POUR UN FONCTIONNEMENT

US ENVIRONMENTAL PROTECTION AGENCY CERTIFIÉ CONFORM SION DE PARTICULES À L'AIDE DEPASTILLES DE COMBUSTIBLE ! ES: **1.01** G / H. LES EMISSIONS DE PARTICUL

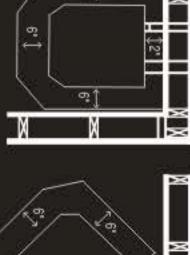
REPORTEZ-VOUS AU REPERTOIRE DES PRODUITS DE CONSTRUCTION RY.INTERTEK.COM) POUR OBTENIR DES INFORMATIONS DÉTAILLÉES. DINTERTEK (HTTPS://BPDIRECTO

PAR. TESTED AND LISTED BY: TESTE ET HOMOLOGUE

DEGAGEMENTS MINIMUM JUSQU AUX MATERIAUX COMBUSTIBLES MINIMUM CLEARANCES TO COMBUSTIBLE MATERIALS

MOBILE HOME OR RESIDENTIAL INSTALL INTALLATION EN MAISON MOBILE OU RÉSIDENTIELLE

MUR LATÉRAL À POÉLE MUR ARRIÈRE À POÉLE BACKWALL TO STOVE SIDEWALL TO STOVE


15.2 CM ರ್ ಎ STOVE CORNER TO DIAGONAL WALL

MUR DIAGONAL COIN DU POÈLE À

5.1 CM

12.7 CM

Ű

œ]

SMG Hearth and Home LLC 9241 Globe Center Drive Suite 120 Morrisville,NC 27560

DATE OF MANUFACTURE DATE DE FABRICATION

BUIL

DONFORTS

6" MINIMIM FLOOR PROTECTION REQUIREMENTS PROTECTION DE PLANCHER MINIMALE REQUISE 15 CM , REQUISITOS

3114 Medalist Drive Oshkosh, WI 54902

(920) 426-5894 • Fax (920) 426-8120 http://www.FoxValleyMetrology.com

CERTIFICATE OF CALIBRATION

Certificate No. ACT-1272

CERTIFICATION	NUMBER	CL106-36819-548
---------------	--------	-----------------

FOR Intertek

8431 Murphy Drive Middleton, WI 53562

PURCHASE ORDER #

TEST INSTRUMENT Data Acquisition

MAKE Omega

MODEL OMB-DAQ-56 (Intertek)

SERIAL NUMBER N/A
IDENTIFICATION 986

CUSTOMER LOCATION Hearth

CONDITION RECEIVED In Tolerance
CONDITION RETURNED In Tolerance
CALIBRATED BY Brandon Covington

CALIBRATION LOCATION FVM

ENVIRONMENT 67.0°F, 19.4°C, 30.0%RH

 CALIBRATION DATE
 04/16/2021

 RECALIBRATION DUE
 10/16/2021

PROCEDURES FOLLOWED

FVE-006 rev. 2 FVE-011 rev. 2 This certificate shall not be altered in any form or reproduced, except in full, without prior written approval from originating lab. These results relate only to the item(s) calibrated.

Form Revision 7: 07/14/2020

STANDARDS USED

INSTRUMENT	SERIAL NUMBER	TRACE NUMBER	NEXT CAL
FVS-687	4029719	CK139-45952-397	05/31/2021
FVS-707	N/A	CK301-35851-397	10/31/2021

Total expanded measurement uncertainties expressed are based on a confidence level of 95%; coverage factor of (k=2). The statement of compliance in this certificate was issued without taking the uncertainty of measurement into consideration. The customer shall assess the results and uncertainty when determining if the results meet their needs. (This is considered "shared responsibility.") Uncertainties expressed in nominal units.

The calibrations within the certificate/report are traceable through NIST or another National Metrology Institute to the International System of Units (SI). Calibration was completed in accordance with ISO/IEC 17025:2017, ANSI/NCSL Z540-1-1994 and ANSI/NCSL Z540.3-2006. Other standards listed upon request.

CALIBRATION RESULTS

* DENOTES "OUT OF TOLERANCE"

FEATURE	NOMINAL	LOWER LIMIT	UPPER LIMIT	AS FOUND	AS LEFT	UNCERTAINTY
TEMPERATURE INPUT	(°F)	(°F)	(°F)	(°F)	(°F)	(°F)
K -Type						
CH1	1000.0	998.2	1001.8	999.8	999.8	0.6
CH2	1000.0	998.2	1001.8	1000.3	1000.3	0.7
CH3	1000.0	998.2	1001.8	1000.3	1000.3	0.6
CH4	1000.0	998.2	1001.8	998.7	998.7	0.6
CH5	1000.0	998.2	1001.8	999.9	999.9	0.6
CH6	1000.0	998.2	1001.8	999.3	999.3	0.6
CH7	1000.0	998.2	1001.8	999.7	999.7	0.7
CH8	1000.0	998.2	1001.8	999.8	999.8	0.7
CH9	1000.0	998.2	1001.8	999.7	999.7	0.7
CH11(#1 on right side of box)	5.0000	4.9989	5.0012	5.0004	5.0004	0.0006

3114 Medalist Drive Oshkosh, WI 54902

(920) 426-5894 • Fax (920) 426-8120 http://www.FoxValleyMetrology.com

CERTIFICATE OF CALIBRATION

Certificate No. ACT-1272

						E NO. ACT-12/2
FEATURE	NOMINAL	LOWER LIMIT	UPPER LIMIT	AS FOUND	AS LEFT	UNCERTAINTY
	10.0000	9.9977	10.0023	10.0003	10.0003	0.0007
CH12	1000.0	998.2	1001.8	1000.1	1000.1	0.7
CH13	1000.0	998.2	1001.8	999.6	999.6	0.6
CH14	1000.0	998.2	1001.8	999.6	999.6	0.6
CH15	1000.0	998.2	1001.8	999.7	999.7	0.6
CH16	1000.0	998.2	1001.8	999.8	999.8	0.7
CH17	1000.0	998.2	1001.8	999.5	999.5	0.6
CH18	1000.0	998.2	1001.8	999.3	999.3	0.7
CH19	1000.0	998.2	1001.8	999.4	999.4	0.7
CH20	1000.0	998.2	1001.8	999.2	999.2	0.6
	(VDC)	(VDC)	(VDC)	(VDC)	(VDC)	(VDC)
CH21	5.0000	4.9989	5.0012	5.0006	5.0006	0.0007
	10.0000	9.9977	10.0023	10.0007	10.0007	0.0007
CH22	5.0000	4.9989	5.0012	5.0006	5.0006	0.0006
	10.0000	9.9977	10.0023	10.0007	10.0007	0.0007
CH23	5.0000	4.9989	5.0012	5.0006	5.0006	0.0007
	10.0000	9.9977	10.0023	10.0006	10.0006	0.0006
CH24	5.0000	4.9989	5.0012	5.0006	5.0006	0.0007
	10.0000	9.9977	10.0023	10.0006	10.0006	0.0006

COMMENTS

Channel 11 is actually number 1 on the right side of junction block. Channel 11 is also wired backwards.

3114 Medalist Drive
Oshkosh, WI 54902
(920) 426-5894 • Fax (9

(920) 426-5894 • Fax (920) 426-8120 http://www.FoxValleyMetrology.com

CERTIFICATE OF CALIBRATION

Certificate No. ACT-1272

蹴

CERTIFICATION NUMBER CL284-37923-679

FOR Intertek

8431 Murphy Drive Middleton, WI 53562

TEST INSTRUMENT Scales

Analytical Balance

MAKE Ohaus

MODEL Explorer E12140

CUSTOMER LOCATION

CONDITION RECEIVED Out Of Tolerance

CONDITION RETURNED In Tolerance
CALIBRATED BY Danny Scherr

CALIBRATION LOCATION On Site

ENVIRONMENT 70.0°F, 21.1°C, 53.0%RH

 CALIBRATION DATE
 10/11/2021

 RECALIBRATION DUE
 04/11/2022

IDENTIFICATION

SERIAL NUMBER B258010639

713

PURCHASE ORDER #

PROCEDURES FOLLOWED

FVE-020 rev. 2

STANDARDS USED

 INSTRUMENT
 SERIAL NUMBER
 TRACE NUMBER
 NEXT CAL

 FVS-019J
 4MMU
 CK119-54752-522
 04/30/2022

 FVS-469
 N/A
 CL084-50197-397
 03/31/2022

* DENOTES "OUT OF TOLERANCE"

CALIBRATION RESULTS

FEATURE	NOMINAL	LOWER LIMIT	UPPER LIMIT	AS FOUND	AS LEFT	UNCERTAINTY
Increasing Load	(g)	(g)	(g)	(g)	(g)	(g)
	0.0000	-0.0002	0.0002	0.0000	0.0000	0.00007
	5.0000	4.9998	5.0002	5.0000	5.0000	0.00007
	10.0000	9.9998	10.0002	10.0000	10.0000	0.00006
	20.0000	19.9996	20.0004	19.9996	20.0000	0.00006
	50.0000	49.9994	50.0006	49.9976*	50.0000	0.00007
	100.0000	99.9994	100.0006	99.9960*	99.9999	0.00007
	200.0000	199.9994	200.0006	199.9928*	200.0000	0.00006
	210.0000	209.9994	210.0006	209.9926*	210.0000	0.00006
Decreasing Load	(g)	(g)	(g)	(g)	(g)	(g)
	40.0000	39.9996	40.0004	39.9979*	40.0000	0.00006
	10.0000	9.9998	10.0002	9.9998	10.0000	0.00006
Shift Test	(g)	(g)	(g)	(g)	(g)	(g)
Front	70.0000	69.9994	70.0006	69.9973*	70.0000	0.00007
Left	70.0000	69.9994	70.0006	69.9975*	69.9999	0.00006
Right	70.0000	69.9994	70.0006	69.9974*	69.9999	0.00006
Back	70.0000	69.9994	70.0006	69.9972*	69.9999	0.00006

ADJUSTMENT NOTES

int cal done to bring in to tolernace

COMMENTS

Scale Capacity = 210 g; Precision = .0002 g; Class = I; Total Divisions = 1050000

Fox Valley Metrology
3114 Medalist Drive
Oshkosh, WI 54902
(920) 426-5894 • Fax (920) 426-8120
http://www.FoxValleyMetrology.com

CERTIFICATE OF CALIBRATION

[•] This certificate shall not be altered in any form or reproduced, except in full, without prior written approval from originating lab. These results relate only to the item(s) calibrated. Form Revision 8: 08/19/2021

[•] Total expanded measurement uncertainties expressed are based on a confidence level of 95%; coverage factor of (k=2). The statement of compliance in this certificate was issued without taking the uncertainty of measurement into consideration. The customer shall assess the results and uncertainty when determining if the results meet their needs. (This is considered "shared responsibility.") Uncertainties expressed in nominal units.

[•] The calibrations within the certificate/report are traceable through NIST or another National Metrology Institute to the International System of Units (SI). Calibration was completed in accordance with ISO/IEC 17025:2017, ANSI/NCSL Z540-1-1994 and ANSI/NCSL Z540.3-2006. Other standards listed upon request.

3114 Medalist Drive Oshkosh, WI 54902

(920) 426-5894 • Fax (920) 426-8120 http://www.FoxValleyMetrology.com

CERTIFICATE OF **CALIBRATION**

뛠

Certificate No. ACT-1272

CERTIFICATION	I NUMBER	CL095-41671-502
---------------	----------	-----------------

FOR Intertek

> 8431 Murphy Drive Middleton, WI 53562

PURCHASE ORDER #

TEST INSTRUMENT Timer

MAKE Cole-Parmer MODEL 94440-10 SERIAL NUMBER N/A

IDENTIFICATION 646

CUSTOMER LOCATION Hearth

CONDITION RECEIVED In Tolerance **CONDITION RETURNED** In Tolerance CALIBRATED BY Christopher Moore

CALIBRATION LOCATION On Site

ENVIRONMENT 72.0°F, 22.2°C, 21.0%RH

CALIBRATION DATE 04/05/2021 RECALIBRATION DUE 04/05/2022 PROCEDURES FOLLOWED

FVE-033 rev. 1

This certificate shall not be altered in any form or reproduced, except in full, without prior written approval from originating lab. These results relate only to the item(s) calibrated. Form Revision 7: 07/14/2020

STANDARDS USED

INSTRUMENT SERIAL NUMBER NEXT CAL TRACE NUMBER FVS-553 N/A CL022-19908-397 01/31/2022 FVS-811B N/A CK281-24359-397 10/31/2021

Total expanded measurement uncertainties expressed are based on a confidence level of 95%; coverage factor of (k=2). The statement of compliance in this certificate was issued without taking the uncertainty of measurement into consideration. The customer shall assess the results and uncertainty when determining if the results meet their needs. (This is considered "shared responsibility.") Uncertainties expressed in nominal units.

The calibrations within the certificate/report are traceable through NIST or another National Metrology Institute to the International System of Units (SI). Calibration was completed

in accordance with ISO/IEC 17025:2017, ANSI/NCSL Z540-1-1994 and ANSI/NCSL Z540.3-2006. Other standards listed upon

request.

CALIBRATION RESULTS

* DENOTES "OUT OF TOLERANCE"

FEATURE	NOMINAL	LOWER LIMIT	UPPER LIMIT	AS FOUND	AS LEFT	UNCERTAINTY
Timer	(sec)	(sec)	(sec)	(sec)	(sec)	(sec)
	60.0	59.5	60.5	60.0	60.0	0.06
	60.0	59.5	60.5	60.1	60.1	0.07
	(sec)	(sec)	(sec)	(sec)	(sec)	(sec)
	300.0	299.5	300.5	300.1	300.1	0.06
	300.0	299.5	300.5	300.0	300.0	0.07
	(sec)	(sec)	(sec)	(sec)	(sec)	(sec)
	1800.0	1799.5	1800.5	1800.2	1800.2	0.06
	1800.0	1799.5	1800.5	1800.1	1800.1	0.07

CERTIFICATE OF NIST TRACEABLE CALIBRATION

Calibration Certificate No: 90275

Customer Information

Customer: Intertek

Address: 8431 Murphy Drive

Middleton WI 53562

Customer PO #: Verbal - Christine Schultze

Calibration Procedure Information

Procedure ID: GTP AIRVEL Revision #: 7 Revision Date: 10/17/2018

Calibration Standards Information

Graftel ID	Manufacturer	Model #	Description	CAL Due
10086	Furness Controls	FC0332	DP Transmitter	5/7/2022
10100	Graftel	n/a	Temperature	10/18/2022
10171	Furness	FC0332-2W	04" H2O	5/7/2022
10187	Vaisala	PTB210	Barometric Pressure Gauge	12/1/2021
10157	HOBO	UX100-011	RH/Temp logger	10/15/2021
10017	Hart Scientific/Burns	1502A/3925	PRT, Temperature	8/3/2021

Sensor Information

Manufacturer: Lutron Description: Anemometer Method Used: Pitot Tube

Model #: LM-81AM Rated Accuracy: ± See Attachment Accuracy Specified By: Lutron

Instrument ID#: 001457 Range: 80 to 5910 fpm Condition: Functional

Serial #: AB.50584

Comments: Calibration Date: 05/14/2021

Calibration Due: 05/14/2022

Kevin Garcia Calibration Technician

The calibrations within the certificate/report are traceable through NIST or another National Metrology Institute to the International System of Units (SI). The reported calibration uncertainty has a confidence level of 95% (k=2). A calibration uncertainty ratio of 4:1 was maintained unless required uncertainty is supported by analysis. Graftel Quality Assurance System complies with applicable requirements of ISO/IEC-17025-2017, ANSI/NCSL Z540-I-1994 and ISO 9001. All results contained within this certificate relate only to item(s) calibrated. This certificate shall not be reproduced except in full and with the written consent of Graftel. Acceptance Criteria per Simple Acceptance Rule: Measurement Uncertainty is not applied to the measured value when in/out of tolerance statement is made.

Performed By:

Date: <u>5/14/2021</u>

ATTACHMENT TO CALIBRATION CERTIFICATE 90275 AS FOUND / AS LEFT DATA

Page 2 of 2

Reading From Standard,	Lower Limit of Meter Reading,	Measured Reading From Meter,	Upper Limit of Meter Reading,	Error,	Measurement Uncertainty (k=2)	CMC (k=2)	STATUS
Actual Air Velocity							
fpm	fpm	fpm	fpm	fpm	fpm	fpm	STATUS
171	-6	46	348	-125	4	4	Pass
473	296	472	650	-1	8	8	Pass
1025	848	1138	1202	113	15	15	Pass
2011	1834	2175	2188	164	28	28	Pass
3002	2825	3142	3179	140	41	41	Pass
4025	3789	4193	4261	168	54	54	Pass
5062 5894	4826 5658	5163 6095	5298 6130	101 201	68 79	68 79	Pass Pass
100 -			•	•			
% MAX ALLOWED ERROR % 09-100 -100 -100 -100 -100 -100 -100 -1	1000	2000	3000	4000	5000	6000	7000
•							
-150 ♣		AIR VELC	OCITY, ■fpm		<u> </u>		

Instrument Specifications						
Test Fluid:	Air					
Lower Velocity Range:		fpm				
Upper Velocity Range:	5910	fpm				
Velocity Resolution:						
Velocity Accuracy:	Velocity Accuracy: +/-(3%FS <=3937)(4%FS >3937)					
Labora	atory Ambient	Conditions				
Pressure:	14.46	psia				
Humidity:	22.60	%RH				
Temperature:	75.90	°F				
	·					

FLOW - TEMPERATURE - HUMIDITY - PRESSURE - DESIGN - CONSULTING - ENGINEERING

NIST Traceable Calibration Data Sheet

WWW.GRAFTEL.COM

95 Chancellor Dr., Roselle, IL 60172

Phone: 847-364-2600

Fax: 847-364-3899

3114 Medalist Drive Oshkosh, WI 54902

(920) 426-5894 • Fax (920) 426-8120 http://www.FoxValleyMetrology.com

CERTIFICATE OF CALIBRATION

Certificate No. ACT-1272

CERTIFICATION NUMBER CL194-30656-679

FOR Intertek

8431 Murphy Drive Middleton, WI 53562

PURCHASE ORDER #

TEST INSTRUMENT Pressure Transducer

Differential Pressure Transducer

MAKE Omega

MODEL PX263-01D5V (Intertek)

SERIAL NUMBER X15160229

IDENTIFICATION 1406

CUSTOMER LOCATION

CONDITION RECEIVED In Tolerance
CONDITION RETURNED In Tolerance
CALIBRATED BY Danny Scherr

CALIBRATION LOCATION On Site

ENVIRONMENT 70.0°F, 21.1°C, 48.0%RH

 CALIBRATION DATE
 07/13/2021

 RECALIBRATION DUE
 01/13/2022

PROCEDURES FOLLOWED

FVE-060 rev. 0

This certificate shall not be altered in any form or reproduced, except in full, without prior written approval from originating lab. These results relate only to the item(s) calibrated.

Form Revision 7: 07/14/2020

STANDARDS USED

INSTRUMENT	SERIAL NUMBER	TRACE NUMBER	NEXT CAL
FVS-469	N/A	CL084-50197-397	03/31/2022
FVS-789	7543203	CL138-51841-614	05/31/2022
FVS-789A	7461971	CL138-52996-466	05/31/2022

Total expanded measurement uncertainties expressed are based on a confidence level of 95%; coverage factor of (k=2). The statement of compliance in this certificate was issued without taking the uncertainty of measurement into consideration. The customer shall assess the results and uncertainty when determining if the results meet their needs. (This is considered "shared responsibility.") Uncertainties expressed in nominal units.

The calibrations within the certificate/report are traceable through NIST or another National Metrology Institute to the International System of Units (SI). Calibration was completed in accordance with ISO/IEC 17025:2017, ANSI/NCSL Z540-1-1994 and ANSI/NCSL Z540.3-2006. Other standards listed upon

CALIBRATION RESULTS

* DENOTES "OUT OF TOLERANCE"

FEATURE	NOMINAL	LOWER LIMIT	UPPER LIMIT	AS FOUND	AS LEFT	UNCERTAINTY
Pressure/Vacuum	(inH20)	(inH20)	(inH20)	(inH20)	(inH20)	(inH20)
Low	-0.0000	-0.0025	0.0025	0.0002	0.0002	0.7
Vacuum	-0.0500	-0.0525	-0.0475	-0.0501	-0.0501	0.7
	-0.1000	-0.1025	-0.0975	-0.1003	-0.1003	0.7
	-0.5000	-0.5025	-0.4975	-0.4998	-0.4998	0.6
	-1.0000	-1.0025	-0.9975	-0.9989	-0.9989	0.7
High	0.0000	-0.0025	0.0025	0.0002	0.0002	0.6
pressure	0.0500	0.0475	0.0525	0.0500	0.0500	0.7
	0.1000	0.0975	0.1025	0.0996	0.0996	0.6
	0.5000	0.4975	0.5025	0.4999	0.4999	0.6
	1.0000	0.9975	1.0025	0.9990	0.9990	0.7

www.creamcityscale.com

490 Enterprise Dr. Lake Mills, WI 53551

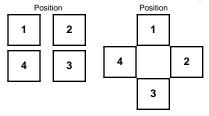
Certificate of Calibration

 Customer:
 Intertek Testing Services
 Certificate ID:
 1134210610_286292

 Address:
 8431 Murphy Drive
 ISO Number:
 ISO/IEC 17025 82374

City, State Zip: Middleton, WISCONSIN 53562 Date 10/6/2021

Base Mfg. **Cal Date** Scale ID **Scale Location** Indicator Mfg. Rice Lake Rice Lake 10/6/2021 1134 Hearth **Indicator Model** Scale Class **Base Model Due Date** Scale Range 4x4 HP-1K 4/6/2022 0 - 1000 lb x 0.1 lb


Indicator SerialBase SerialProcedureScale Status1494600044C42769QWI 6.4.2In Service

Test Interval 6 Months

EQUIPMENT CONDITIONS

[Working] Non-Working [Clean] Dirty Out Of Level

SHIFT TEST Shift Test Result: [Pass] Fail Adjust Not Applicable

All tolerances calculated in conformance with Handbook 44 Table 6.

LOAD TEST

Preliminary Load Test					
Test Wt.	Reading	Error			
0.0 lb	0.0 lb	0.0 lb			
100.0 lb	100.0 lb	0.0 lb			
250.0 lb	250.0 lb	0.0 lb			
500.0 lb	500.0 lb	0.0 lb			
1000.0 lb	1000.0 lb	0.0 lb			

Final Load Test					
Reading	Error				
0.0 lb	0.0 lb				
100.0 lb	0.0 lb				
250.0 lb	0.0 lb				
500.0 lb	0.0 lb				
1000.0 lb	0.0 lb				
	0.0 lb 100.0 lb 250.0 lb 500.0 lb 1000.0 lb	0.0 lb 0.0 lb 100.0 lb 0.0 lb 250.0 lb 0.0 lb 500.0 lb 0.0 lb			

In maintenance tolerance? [Yes] No N/A In acceptance tolerance? [Yes] No N/A

TEST INFORMATION

Test Weight Classification:

Traceability Certificate Number(s): W20-004A Cal Date: 1/6/2020 Recal Date: 1/6/2022, W20-004B Cal Date: 1/6/2020

Recal Date: 1/6/2022

Standards Used: 1000 lb #81; 50 lb #81, 82, 83, 84, 85, 86, 87, 88, 89, 90

 Expanded Uncertainty:
 See Comments

 Test Location:
 [Onsite] Offsite

 Overall Result:
 [Pass] Fail Adjust

 Was the scale within customers required accuracy?
 [Yes] No N/A

Environmental Conditions: [Acceptable] Unacceptable

Temperature: 71°F Humidity: 46%

Comments / Notes: Scale is accurate and correct. Measurement of Uncertainty: 100 lbs.= .0118 lb./ 250

lbs.= .0295 lb./ 500 lbs.= .059 lb./ 1000 lbs.= .118 lb.

Technician: Mark Baker

Scales were calibrated with certified test weights. Adjustments made to restore and/or maintain the accuracy of the scale conform to the tolerances established by the National Institute of Standards and Technology as specified in Handbook 44 Section 2.20, manufacturers specifications or other written agreement with customer. Best measurement of uncertainty calculated using a coverage factor of K=2. This provides confidence level of 95%. Acceptance rule w=0. Overall result of PASS or ADJUST indicates measurement below or equal to the acceptance limit: AL=TL. Overall result of FAIL indicates measurement result above acceptance limit AL=TL. This certificate shall not be reproduced, except in full, without the written approval of the laboratory. Measurement uncertainty available upon request. This calibration test is accredited and meets the requirements of ISO/IEC 17025:2017 & ANSI/NCSL Z540-1-1994 as verified by Perry Johnson Laboratory Accreditation. Refer to certificate and scope of accreditation 82374.

Form: 7.8-02/10/26/2019 Page 1 of 1

3114 Medalist Drive Oshkosh, WI 54902

(920) 426-5894 • Fax (920) 426-8120 http://www.FoxValleyMetrology.com

CERTIFICATE OF **CALIBRATION**

Certificate No. ACT-1272

CERTIFICATION NUMBER CL095-41794-502

FOR Intertek

> 8431 Murphy Drive Middleton, WI 53562

PURCHASE ORDER #

TEST INSTRUMENT Timer

MAKE Cole-Parmer MODEL 94440-10 SERIAL NUMBER 101587800

IDENTIFICATION 1212

CUSTOMER LOCATION Hearth

CONDITION RECEIVED In Tolerance **CONDITION RETURNED** In Tolerance CALIBRATED BY Christopher Moore

CALIBRATION LOCATION On Site

ENVIRONMENT 72.0°F, 22.2°C, 21.0%RH

CALIBRATION DATE 04/05/2021 RECALIBRATION DUE 04/05/2022 PROCEDURES FOLLOWED

FVE-033 rev. 1

This certificate shall not be altered in any form or reproduced, except in full, without prior written approval from originating lab. These results relate only to the item(s) calibrated.

Form Revision 7: 07/14/2020

STANDARDS USED

INSTRUMENT SERIAL NUMBER TRACE NUMBER NEXT CAL FVS-553 N/A CL022-19908-397 01/31/2022 FVS-811B N/A CK281-24359-397 10/31/2021

Total expanded measurement uncertainties expressed are based on a confidence level of 95%; coverage factor of (k=2). The statement of compliance in this certificate was issued without taking the uncertainty of measurement into consideration. The customer shall assess the results and uncertainty when determining if the results meet their needs. (This is considered "shared responsibility.") Uncertainties expressed in nominal units.

The calibrations within the certificate/report are traceable through NIST or another National Metrology Institute to the International System of Units (SI). Calibration was completed in accordance with ISO/IEC 17025:2017, ANSI/NCSL Z540-1-1994 and ANSI/NCSL Z540.3-2006. Other standards listed upon request.

CALIBRATION RESULTS

* DENOTES "OUT OF TOLERANCE"

FEATURE	NOMINAL	LOWER LIMIT	UPPER LIMIT	AS FOUND	AS LEFT	UNCERTAINTY
Timer	(sec)	(sec)	(sec)	(sec)	(sec)	(sec)
	60.0	59.5	60.5	60.0	60.0	0.06
	60.0	59.5	60.5	59.9	59.9	0.07
	(sec)	(sec)	(sec)	(sec)	(sec)	(sec)
	300.0	299.5	300.5	300.0	300.0	0.06
	300.0	299.5	300.5	300.0	300.0	0.06
	(sec)	(sec)	(sec)	(sec)	(sec)	(sec)
	1800.0	1799.5	1800.5	1800.0	1800.0	0.07
	1800.0	1799.5	1800.5	1799.9	1799.9	0.06

This Excel spreadsheet calculates solid fuel appliance efficiency and heat output in accordance with the procedure specified in CSA B415.1-09. In general the column headings correspond to the variables used in the Standard.

All data from a test run are entered on the "Data" sheet. The cells requiring data entry are highlighted. Please note that input data can be entered in either yard/pound or SI units. Select the units in cells F4 and F5 of the "Data" sheet.

Particulate emissions determined using the dilution tunnel method should be entered in cell C13 of the "Data" sheet as total grams of emissions.

Since oxygen concentrations are calculated for the efficiency determination, entry of measured oxygen data is optional. However, it might be useful to include the measured oxygen values for comparison to the calculated values for diagnostic purposes. A deviation of more than 1 or 2 percentage points can indicate inaccurate CO, CO₂, or fuel composition input data.

Selection of an appliance type in cell F2 of the "Data" sheet is needed for the air/fuel ratio calculation in accordance with Clause 16.3.5 of the Standard.

The "CSA B415.1 Calculations" and "Report" sheets include calculation of efficiencies based on the Lower Heating Value (LHV) of the fuel, which is not required in CSA B415.1-09. The LHV is calculated from the Higher Heating Value (HHV) and fuel composition data in accordance with ASTM E711.

The "CSA B415.1 Calculations" sheet is locked and password protected to prevent inadvertent modifications.

The "Chart" sheet includes a chart of flue gas composition data and fuel consumption. The range of cells in the "CSA B415.1 Calculations" sheet to be charted or plotted might need to be adjusted to correspond to the number of data points entered.

Please report any errors or problems to Tony Joseph at CSA.

Tony Joseph A.L.P. (Tony) Joseph Project Manager, Energy & Utilities Canadian Standards Association 5060 Spectrum Way, Suite 100 Mississauga, ON L4W 5N6 Tel: 416-747-4035

Direct Fax: 416-401-6807 E-mail: tony.joseph@csa.ca

Spreadsheet created by: Rick Curkeet, PE, Intertek Testing Services, NA Inc.

Version 2.2 14 December 2009

VERSION:	2.2 SMG Hearth & Hor	12/14/2009	Δnnlia	nce Type:	Pellet	(Cat Non-	-Cat, Pellet)
Model:		TIC .	Дріїа	ilice Type.	i clict	(Oat, Non-	oat, i clicty
	10/21/2021		Te	mp. Units	F	(F or C)	Defa
Run:	1			ight Units	lb	(kg or lb)	
Control #:	G104780922					,	HHV (kJ/kg
Test Duration:	60						%
Output Category:	High			Fuel I	Data		%
					Marth		%
Wood	Moisture (% wet):	3.25		HHV	18,967	kJ/kg	%As
Load	d Weight (lb wet):	6.51		%C	46.87		
	n Rate (dry kg/h):	2.86		%Н	6.41		
Total Partic	culate Emissions:	1.53	g	%O	46.62		
				%Ash	0.1		
		0.00	0.70	44.0		- 0.00	
	Averages	0.00	8.52	11.85	322.95	73.92	
Elanced	Fuel Weight	Elua Ca	a Campasit	ion (0/)	-). (°F)	
Elapsed	Fuel Weight	riue Ga	s Composit	1011 (%)	Flue	Room	
•	Damaining (lb)	00	•	` '	0	T	
Time (min)	Remaining (lb)	СО	CO ₂	O ₂	Gas	Temp	
Time (min)	6.51	0.00	CO ₂	O ₂	321.4	73.9	
Time (min) 0 10	6.51 5.41	0.00	8.34 8.66	O ₂ 12.27 11.79	321.4 326.4	73.9 74.1	
Time (min) 0 10 20	6.51 5.41 4.30	0.00 0.00 0.00	8.34 8.66 8.79	O ₂ 12.27 11.79 12.02	321.4 326.4 321.6	73.9 74.1 74.0	
Time (min) 0 10 20 30	6.51 5.41 4.30 3.32	0.00 0.00 0.00 0.00	8.34 8.66 8.79 8.40	12.27 11.79 12.02 12.07	321.4 326.4 321.6 321.7	73.9 74.1 74.0 74.4	
Time (min) 0 10 20 30 40	6.51 5.41 4.30 3.32 2.21	0.00 0.00 0.00 0.00 0.00	8.34 8.66 8.79 8.40 8.36	12.27 11.79 12.02 12.07 11.79	321.4 326.4 321.6 321.7 324.8	73.9 74.1 74.0 74.4 73.6	
Time (min) 0 10 20 30 40	6.51 5.41 4.30 3.32 2.21 1.11	0.00 0.00 0.00 0.00 0.00	8.34 8.66 8.79 8.40 8.36 8.76	12.27 11.79 12.02 12.07 11.79 11.65	321.4 326.4 321.6 321.7 324.8 320.8	73.9 74.1 74.0 74.4 73.6 73.9	
Time (min) 0 10 20 30 40	6.51 5.41 4.30 3.32 2.21	0.00 0.00 0.00 0.00 0.00	8.34 8.66 8.79 8.40 8.36	12.27 11.79 12.02 12.07 11.79	321.4 326.4 321.6 321.7 324.8	73.9 74.1 74.0 74.4 73.6 73.9	
Time (min) 0 10 20 30 40	6.51 5.41 4.30 3.32 2.21 1.11	0.00 0.00 0.00 0.00 0.00	8.34 8.66 8.79 8.40 8.36 8.76	12.27 11.79 12.02 12.07 11.79 11.65	321.4 326.4 321.6 321.7 324.8 320.8	73.9 74.1 74.0 74.4 73.6 73.9	
Time (min) 0 10 20 30 40	6.51 5.41 4.30 3.32 2.21 1.11	0.00 0.00 0.00 0.00 0.00	8.34 8.66 8.79 8.40 8.36 8.76	12.27 11.79 12.02 12.07 11.79 11.65	321.4 326.4 321.6 321.7 324.8 320.8	73.9 74.1 74.0 74.4 73.6 73.9	
Time (min) 0 10 20 30 40	6.51 5.41 4.30 3.32 2.21 1.11	0.00 0.00 0.00 0.00 0.00	8.34 8.66 8.79 8.40 8.36 8.76	12.27 11.79 12.02 12.07 11.79 11.65	321.4 326.4 321.6 321.7 324.8 320.8	73.9 74.1 74.0 74.4 73.6 73.9	
Time (min) 0 10 20 30 40	6.51 5.41 4.30 3.32 2.21 1.11	0.00 0.00 0.00 0.00 0.00	8.34 8.66 8.79 8.40 8.36 8.76	12.27 11.79 12.02 12.07 11.79 11.65	321.4 326.4 321.6 321.7 324.8 320.8	73.9 74.1 74.0 74.4 73.6 73.9	
Time (min) 0 10 20 30 40	6.51 5.41 4.30 3.32 2.21 1.11	0.00 0.00 0.00 0.00 0.00	8.34 8.66 8.79 8.40 8.36 8.76	12.27 11.79 12.02 12.07 11.79 11.65	321.4 326.4 321.6 321.7 324.8 320.8	73.9 74.1 74.0 74.4 73.6 73.9	
Time (min) 0 10 20 30 40	6.51 5.41 4.30 3.32 2.21 1.11	0.00 0.00 0.00 0.00 0.00	8.34 8.66 8.79 8.40 8.36 8.76	12.27 11.79 12.02 12.07 11.79 11.65	321.4 326.4 321.6 321.7 324.8 320.8	73.9 74.1 74.0 74.4 73.6 73.9	
Time (min) 0 10 20 30 40	6.51 5.41 4.30 3.32 2.21 1.11	0.00 0.00 0.00 0.00 0.00	8.34 8.66 8.79 8.40 8.36 8.76	12.27 11.79 12.02 12.07 11.79 11.65	321.4 326.4 321.6 321.7 324.8 320.8	73.9 74.1 74.0 74.4 73.6 73.9	
Time (min) 0 10 20 30 40	6.51 5.41 4.30 3.32 2.21 1.11	0.00 0.00 0.00 0.00 0.00	8.34 8.66 8.79 8.40 8.36 8.76	12.27 11.79 12.02 12.07 11.79 11.65	321.4 326.4 321.6 321.7 324.8 320.8	73.9 74.1 74.0 74.4 73.6 73.9	
Time (min) 0 10 20 30 40	6.51 5.41 4.30 3.32 2.21 1.11	0.00 0.00 0.00 0.00 0.00	8.34 8.66 8.79 8.40 8.36 8.76	12.27 11.79 12.02 12.07 11.79 11.65	321.4 326.4 321.6 321.7 324.8 320.8	73.9 74.1 74.0 74.4 73.6 73.9	

Note 1: For other fuels, use the heating value and fuel composition determined by analysis of fuel sample in accordance with Clause 9.2.

Default Fuel Values

HHV (kJ/kg)

%C %Н

%O

%Ash

D. Fir

19,810

48.73

6.87

43.9

0.5

Oak

19,887

50

6.6

42.9

0.5

Note 2: In cases where the "Fuel Weight Remaining" is the same for three or more readings in a row, a "divide by zero error" will occur in the calculation sheet. In such cases, adjust the weight values by interpolation between the first occurence and the next reading showing a decrease in weight. Manufacturer: MG Hearth & Home

HP22 Model: 10/21/21 Date: Run: 1

Control #: G104780922

Test Duration:

60	min	
	HHV	LHV
Eff	79.13%	85.35%
Comb Eff	99.50%	99.50%
HT Eff	79.53%	85.78%
Output	42,894	kJ/h
Burn Rate	2.86	kg/h
Grams CO	0	g
Input	54,208	kJ/h
MC wet	3.25	

Note: In the "Input data", "Calc. % O₂", "Fuel Properties", and "Mass Balance" columns, [e], [d], [g], [a]. [b], [c], [h], [u], [w], [j], and [k] refer to their respective variables in Clauses 13.7.3 to 13.7.5.

Overall Heating Efficiency: 79.13% Combustion Efficiency: 99.50% Heat Transfer Efficiency: 79.53%

Air Fuel Ratio (A/F) Dry Molecular Weight (M_d) 29.85 Dry Moles Exhaust Gas (N_r): 498.75 Air Fuel Ratio (A/F) 14.38

%HC

8.0

Heat Output: 40,689 Btu/h 42,894 kJ/h Heat Input: 51,422 Btu/h 54,208 kJ/h

h

161.8 Deg. C

Ultimate CO₂

 $CO_{2\text{-ult}}$ 20.36 F_0

Burn Duration: 1.00

1.024

6.30 2.858 kg/h Burn Rate:

Stack Temp: 323.2 Deg. F

	Averages	0.00	8.52	1.39	20.70	12.18	161.64	23.29	100.4%	81.2%	81.6%	13.31	1.48	49.83	1.43	49.83	58822	3.91	6.41
	INPUT DATA			Oxyg	en Calculatio	n	Input	Data	Combust	Heat	Net	Air	Wet Wt	% Wet	Dry Wt.	% Dry			Fuel i
Elapsed	Weight	%	%	Excess	Total	Calc. %	Flue	Room	Eff	Transfer	Eff	Fuel	Now	Consumed	Now	Comsumed	Total	Carbon	Hydrogen
Time	Remaining (kg)	CO [e]	CO ₂ [d]	Air EA	O_2	O ₂ [g]	Gas (°C)	Temp (°C)	%	%	%	Ratio	Wt	Х	\mathbf{Wt}_{dn}	у	Input	/12= [a]	/1= [b]
0	2.95	0.00	8.34	144.1%	20.70	12.36	160.8	23.3	100.4%	81.1%	81.4%	13.6	2.95	0.00	2.86	0.00	0	3.91	6.41
10	2.46	0.00	8.66	135.2%	20.70	12.04	163.6	23.4	100.4%	81.2%	81.6%	13.1	2.46	16.87	2.38	16.87	13765	3.91	6.41
20	1.95	0.00	8.79	131.8%	20.69	11.91	160.9	23.3	100.4%	81.6%	81.9%	12.9	1.95	33.91	1.89	33.91	8710	3.91	6.41
30	1.51	0.00	8.40	142.6%	20.70	12.31	160.9	23.6	100.4%	81.2%	81.5%	13.5	1.51	49.01	1.46	49.01	8705	3.91	6.41
40	1.00	0.00	8.36	143.7%	20.70	12.35	162.7	23.1	100.4%	80.9%	81.3%	13.6	1.00	66.03	0.97	66.03	9207	3.91	6.41
50	0.50	0.00	8.76	132.5%	20.69	11.93	160.4	23.3	100.4%	81.6%	81.9%	12.9	0.50	82.98	0.49	82.98	13821	3.91	6.41

Moisture Content M_{Cwb}: 3.25

Combustion Efficiency: Moisture of Wood (wet basis): 3.25 Dry kg: 99.50% 2.86 Initial Dry Weight Wt_{do} (kg): 2.86 Total Input (kJ): 54,208 51,413 (Btu) CA: 46.87 Total Output (kJ): 42,894 40,683 (Btu) Moisture Content Dry 3.36 HY: 6.41 OX: 46.62 Efficiency: 79.13% Total CO (g): 0.05

Load Weight (kg): 2.95

 Fuel Heating
 HHV
 LHV
 HHV
 LHV

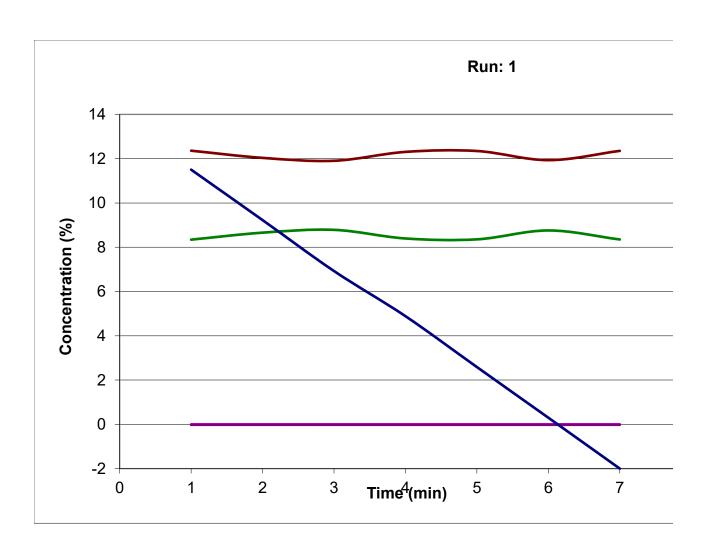
 Value in kJ/kg - CV:
 18,967
 17,585
 Btu/lb
 8159.8
 7565.2

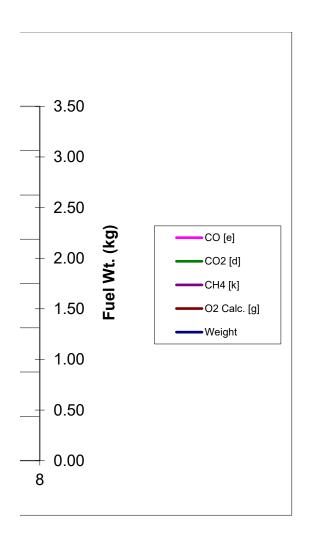
2.91	18967.00	3.25	79.30	21.03	2.18	7.01	-0.02	0.22	39.18	56.04	0.00	-0.09	364.82	32.25	1.87	434.79	5553.78	4160.55	4041.14	3997.33	5388.12
Properties		Mw		I	Mass Balaı	nce		kg Wood per								Stack	Hea	t Content Cha	inge - Ambie	ent to Stack	Temperatu
Oxygen	Calorific	Moisture		(moles/1	00 mole di	ry flue gas))	100 mole dfp		М	oles per k	g of Dry W	ood		Moisture	Temp		F	lue Gas Cor	nstituent	
/16= [c]	Value	Fuel Burnt	[h]	[u]	[w]	[ij]	[k]	Nk	CO ₂	O ₂	CO	НС	N ₂	H ₂ O	Present	K	CO ₂	O ₂	СО	N ₂	CH₄
2.91	18967.00	3.25	79.30	21.03	2.13	6.87	-0.02	0.21	39.19	58.06	0.00	-0.09	372.44	32.26	1.87	433.96	5519.19	4135.38	4016.88	3973.29	5352.93
2.91	18967.00	3.25	79.30	21.04	2.21	7.13	-0.02	0.22	39.18	54.47	0.00	-0.08	358.86	32.25	1.87	436.71	5631.52	4217.00	4095.53	4051.23	5467.46
2.91	18967.00	3.25	79.31	21.04	2.24	7.23	-0.02	0.22	39.18	53.09	0.00	-0.08	353.65	32.24	1.87	434.04	5520.59	4136.31	4017.75	3974.16	5354.57
2.91	18967.00	3.25	79.30	21.03	2.14	6.91	-0.02	0.21	39.18	57.44	0.00	-0.09	370.10	32.26	1.87	434.08	5513.14	4130.47	4012.02	3968.51	5347.88
2.91	18967.00	3.25	79.30	21.03	2.13	6.88	-0.02	0.21	39.19	57.90	0.00	-0.09	371.85	32.26	1.87	435.83	5603.79	4197.23	4076.57	4032.42	5438.36
2.91	18967.00	3.25	79.31	21.04	2.24	7.21	-0.02	0.22	39.18	53.39	0.00	-0.08	354.77	32.25	1.87	433.59	5504.65	4124.82	4006.70	3963.21	5338.11

					SUMS				AVERAGE			SUM	S			
4834.38	296.44	1523.28	1632.32	1.06	10208.60	-536.71	11018.49	637.55	3497.80	10810.40	-232.54	11042.9	48011.1	-232.5	0.0	-4.2
re	Room			Energy L	osses (kJ/kg of	Dry Fuel)			Total							
	Temp			Flu	ie Gas Constitເ	ient			Loss	Total	Chemical	Sensible and	Total	Chem	Grams I	Produced
H ₂ O	K	CO ₂	O ₂	CO	N ₂	CH₄	H ₂ O Comb	H ₂ O Fuel MC	Rate	Loss	Loss 1	Latent Loss	Output	Loss 2	CO	НС
4805.41	296.42	216.27	240.09	0.16	1479.80	-79.42	1573.44	91.02	3521.36	0.00	0	0.00	0	0	0.00	0.00
4899.30	296.53	220.64	229.69	0.21	1453.84	-74.50	1575.93	91.20	3497.01	2537.92	-54	2591.51	11227	-54	0.01	-0.97
4806.45	296.48	216.28	219.59	0.20	1405.46	-72.60	1572.73	91.03	3432.69	1576.32	-33	1609.37	7133	-33	0.01	-0.60
4799.57	296.72	216.03	237.25	0.13	1468.74	-78.59	1573.16	91.01	3507.74	1609.84	-36	1645.63	7095	-36	0.01	-0.64
4876.70	296.28	219.59	243.02	0.11	1499.44	-79.23	1575.71	91.16	3549.80	1723.19	-38	1761.36	7484	-38	0.01	-0.69
4793.26	296.41	215.66	220.21	0.17	1406.04	-73.02	1572.35	91.00	3432.41	2501.14	-53	2553.91	11320	-53	0.01	-0.95

Run: 1
Test Duration: 60
Output Category: High

	HHV Basis	LHV Basis
Overall Efficiency	79.1%	85.3%
Combustion Efficiency	99.5%	99.5%
Heat Transfer Efficiency	80%	85.8%


Output Rate (kJ/h)	42,894	40,689	(Btu/h)
Burn Rate (kg/h)	2.86	6.30	(lb/h)
Input (kJ/h)	54,208	51,422	(Btu/h)


Test Load Weight (dry kg)	2.86	6.30	dry lb
MC wet (%)	3.25		
MC dry (%)	3.36		
Particulate (g)	1.53	1	
CO (g)	0	1	
Test Duration (h)	1.00		

Emissions	Particulate	CO
g/MJ Output	0.04	0.00
g/kg Dry Fuel	0.54	0.02
g/h	1.53	0.05
lb/MM Btu Output	0.08	0.00

0.00081

Air/Fuel Ratio (A/F) 14.38

Note: In the legend, [d], [e], [g], and [k] refer to their respective variables in Clauses 13.7.3 and 13.7.5

This Excel spreadsheet calculates solid fuel appliance efficiency and heat output in accordance with the procedure specified in CSA B415.1-09. In general the column headings correspond to the variables used in the Standard

All data from a test run are entered on the "Data" sheet. The cells requiring data entry are highlighted. Please note that input data can be entered in either yard/pound or SI units. Select the units in cells F4 and F5 of the "Data" sheet.

Particulate emissions determined using the dilution tunnel method should be entered in cell C13 of the "Data" sheet as total grams of emissions.

Since oxygen concentrations are calculated for the efficiency determination, entry of measured oxygen data is optional. However, it might be useful to include the measured oxygen values for comparison to the calculated values for diagnostic purposes. A deviation of more than 1 or 2 percentage points can indicate inaccurate CO, CO₂, or fuel composition input data.

Selection of an appliance type in cell F2 of the "Data" sheet is needed for the air/fuel ratio calculation in accordance with Clause 16.3.5 of the Standard.

The "CSA B415.1 Calculations" and "Report" sheets include calculation of efficiencies based on the Lower Heating Value (LHV) of the fuel, which is not required in CSA B415.1-09. The LHV is calculated from the Higher Heating Value (HHV) and fuel composition data in accordance with ASTM E711.

The "CSA B415.1 Calculations" sheet is locked and password protected to prevent inadvertent modifications.

The "Chart" sheet includes a chart of flue gas composition data and fuel consumption. The range of cells in the "CSA B415.1 Calculations" sheet to be charted or plotted might need to be adjusted to correspond to the number of data points entered.

Please report any errors or problems to Tony Joseph at CSA.

Tony Joseph
A.L.P. (Tony) Joseph
Project Manager, Energy & Utilities
Canadian Standards Association
5060 Spectrum Way, Suite 100
Mississauga, ON
L4W 5N6
Tel: 416-747-4035

Direct Fax: 416-401-6807 E-mail: tony.joseph@csa.ca

Spreadsheet created by: Rick Curkeet, PE, Intertek Testing Services, NA Inc.

Version 2.2 14 December 2009

VERSION:	2.2	12/14/2009					
Manufacturer:	SMG Hearth & Hor	ne	Applia	nce Type:	Pellet	(Cat, Non-	Cat, Pellet)
Model:	HP22						
Date:	10/21/2021		Te	mp. Units	F	(F or C)	Default
Run:	1		We	ight Units	lb	(kg or lb)	
Control #:	G104780922						HHV (kJ/kg)
Test Duration:	180						%C
Output Category:	Low			Fuel	Data		%Н
					Marth		%O
Wood	Moisture (% wet):	3.25		HHV	18,967	kJ/kg	%Ash
Loa	d Weight (lb wet):	6.10		%C	46.87		
Bur	rn Rate (dry kg/h):	0.89		%Н	6.41		Г
	culate Emissions:	6.06 g		%O	46.62		
				%Ash	0.1		1
	Averages	0.00	3.52	17.28	182.84	71.87	_
	_				Temp	o. (°F)	Г
Elapsed	Fuel Weight	Flue Gas	Composit	ion (%)	Flue	Room	
Time (min)	Remaining (lb)	CO	CO_2	O_2	Gas	Temp	i
0	6.10	0.00	4.03	16.62	192.3	71.8	
10	5.71	0.00	4.06	16.91	188.5		
20	5.40	0.00	3.73	17.63	184.6		
30		0.00	3.47	17.57	183.4		
40	4.71	0.00	3.52	18.01	182.4	72.2	_
50	4.40	0.00	3.61	17.22	183.2	71.9	
60	4.01	0.00	3.35	17.01	182.7	71.7	
70	3.69	0.00	3.63	16.73	182.4	72.2	
80	3.31	0.00	3.90	16.80	185.5		
90	2.99	0.00	3.29	17.28	183.7		
100		0.00	3.49	17.41	182.1	71.9	
110			3.06	17.31	182.9		
120	1.99	0.00	3.47	18.15	176.4		
130		0.00	3.33	17.46	178.7		
140	1.29	0.00	3.57	17.38	179.7	71.5	
150	1.00	0.00	3.39	16.97	181.2		
160	0.69	0.00	3.14	17.69	178.2		
170		0.00	3.29	16.82	182.8		
180	0.00	0.00	3.51	17.43	183.1	71.8	

12/14/2009

VERSION: 2.2

Note 1: For other fuels, use the heating value and fuel composition determined by analysis of fuel sample in accordance with Clause 9.2.

Default Fuel Values

D. Fir

19,810

48.73

6.87

43.9

0.5

Oak

19,887 50

6.6

42.9

0.5

Note 2: In cases where the "Fuel Weight Remaining" is the same for three or more readings in a row, a "divide by zero error" will occur in the calculation sheet. In such cases, adjust the weight values by interpolation between the first occurence and the next reading showing a decrease in weight. Manufacturer: MG Hearth & Home

HP22 Model: 10/21/21 Date: Run: 1

Burn Rate

Grams CO

Input

MC wet

Control #: G104780922

Test Duration: 180

HHV LHV Eff 79.80% 86.07% Comb Eff 99.50% 99.50% HT Eff 80.20% 86.51% 13,515 Output kJ/h

0.89

0

16,936

3.25

kg/h

kJ/h

min

Note: In the "Input data", "Calc. % O₂", "Fuel Properties", and "Mass Balance" columns, [e], [d], [g], [a]. [b], [c], [h], [u], [w], [j], and [k] refer to their respective variables in Clauses 13.7.3 to 13.7.5.

Heat Output: 12,820 Btu/h 16,065 Btu/h Heat Input:

Ultimate CO₂ $CO_{2\text{-ult}}$ 20.36

 F_0 1.017 **Burn Duration:** 3.00

Overall Heating Efficiency:

Combustion Efficiency:

Heat Transfer Efficiency:

0.893 kg/h Burn Rate: 1.97

79.80%

99.50%

80.20%

h

Air Fuel Ratio (A/F)

29.26

1207.75

34.82

%HC

8.0

Dry Molecular Weight (M_d)

Dry Moles Exhaust Gas (N_r):

Air Fuel Ratio (A/F)

13,515 kJ/h

16,936 kJ/h

Stack Temp: 182.3 Deg. F 83.5 Deg. C

	Averages	0.00	3.52	4.82	20.84	17.32	83.80	22.15	101.4%	81.2%	82.3%	32.51	1.37	50.59	1.32	50.59	52487	3.91	6.41
	INPUT DATA	\		Oxyg	en Calculatio	n	Input	Data	Combust	Heat	Net	Air	Wet Wt	% Wet	Dry Wt.	% Dry			Fuel I
Elapsed	Weight	%	%	Excess	Total	Calc. %	Flue	Room	Eff	Transfer	Eff	Fuel	Now	Consumed	Now	Comsumed	Total	Carbon	Hydrogen
Time	Remaining (kg)	CO [e]	CO ₂ [d]	Air EA	O ₂	O ₂ [g]	Gas (°C)	Temp (°C)	%	%	%	Ratio	Wt	Х	\mathbf{Wt}_{dn}	у	Input	/12= [a]	/1= [b]
0	2.77	0.00	4.03	404.7%	20.83	16.79	89.1	22.1	101.2%	81.7%	82.7%	28.2	2.77	0.00	2.68	0.00	0	3.91	6.41
10	2.59	0.00	4.06	401.9%	20.83	16.77	86.9	22.2	101.2%	82.1%	83.1%	28.0	2.59	6.49	2.50	6.49	4578	3.91	6.41
20	2.45	0.00	3.73	445.3%	20.83	17.10	84.8	22.2	101.3%	81.7%	82.7%	30.5	2.45	11.53	2.37	11.53	2979	3.91	6.41
30	2.26	0.00	3.47	486.3%	20.84	17.37	84.1	22.3	101.4%	81.1%	82.2%	32.8	2.26	18.22	2.19	18.22	2883	3.91	6.41
40	2.14	0.00	3.52	477.8%	20.84	17.32	83.5	22.3	101.4%	81.3%	82.5%	32.3	2.14	22.88	2.07	22.88	2467	3.91	6.41
50	2.00	0.00	3.61	464.6%	20.84	17.23	84.0	22.2	101.3%	81.5%	82.6%	31.5	2.00	27.93	1.93	27.93	2903	3.91	6.41

Moisture Content M_{Cwb}: 3.25

Combustion Efficiency: Moisture of Wood (wet basis): 3.25 Dry kg: 99.50% 2.68 Initial Dry Weight Wt_{do} (kg): 2.68 Total Input (kJ): 50,807 48,188 (Btu) CA: 46.87 Total Output (kJ): Moisture Content Dry 3.36 HY: 40,545 38,455 (Btu) 6.41 OX: 46.62 Efficiency: 79.80%

Load Weight (kg): 2.77

Total CO (g):

0.03

 Fuel Heating
 HHV
 LHV
 HHV
 LHV

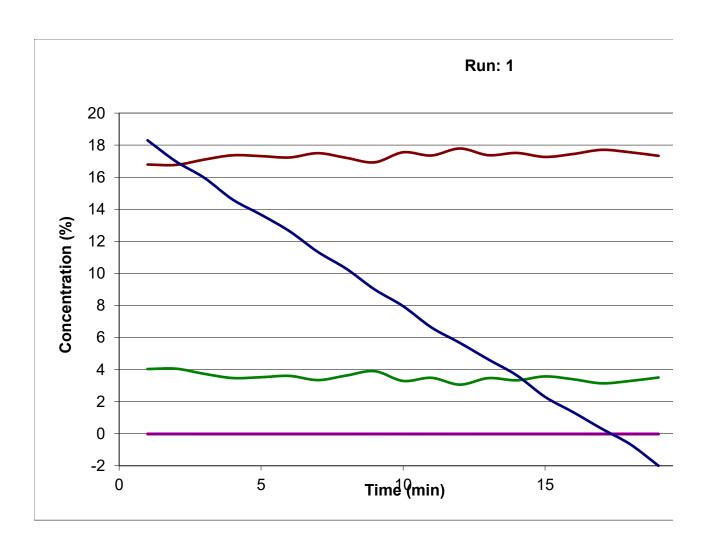
 Value in kJ/kg - CV:
 18,967
 17,585
 Btu/lb
 8159.8
 7565.2

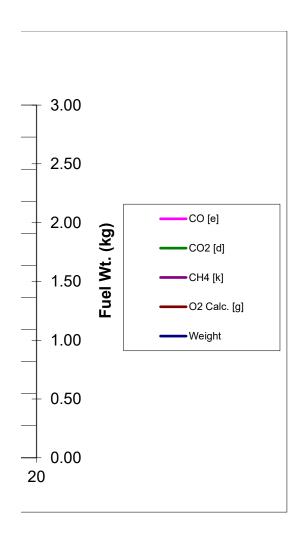
2.91	18967.00	3.25	79.16	21.00	0.89	2.92	-0.03	0.09	39.40	195.21	0.00	-0.30	891.07	32.68	1.87	356.95	2404.24	1832.06	1787.12	1766.14	2264.74
Properties		Mw		N	Mass Balai	nce		kg Wood per								Stack	Hea	t Content Cha	inge - Ambie	nt to Stack	Temperatu
Oxygen	Calorific	Moisture		(moles/1	00 mole d	ry flue gas)	100 mole dfp		M	oles per k	g of Dry W	/ood		Moisture	Temp		F	lue Gas Cor	nstituent	
/16= [c]	Value	Fuel Burnt	[h]	[u]	[w]	[i]	[k]	Nk	CO ₂	O ₂	CO	НС	N ₂	H ₂ O	Present	K	CO ₂	O ₂	CO	N ₂	CH₄
2.91	18967.00	3.25	79.17	21.00	1.03	3.34	-0.03	0.10	39.35	163.74	0.00	-0.25	772.07	32.58	1.87	362.21	2616.45	1991.51	1942.11	1919.43	2469.59
2.91	18967.00	3.25	79.17	21.00	1.03	3.36	-0.03	0.10	39.35	162.62	0.00	-0.25	767.84	32.58	1.87	360.08	2526.26	1923.71	1876.20	1854.25	2382.60
2.91	18967.00	3.25	79.17	21.00	0.95	3.10	-0.03	0.09	39.37	180.27	0.00	-0.28	834.57	32.63	1.87	357.95	2442.17	1860.56	1814.82	1793.54	2301.37
2.91	18967.00	3.25	79.16	21.00	0.88	2.88	-0.03	0.09	39.40	196.99	0.00	-0.30	897.83	32.68	1.87	357.23	2408.47	1835.12	1790.07	1769.06	2269.09
2.91	18967.00	3.25	79.16	21.00	0.90	2.92	-0.03	0.09	39.39	193.55	0.00	-0.30	884.82	32.67	1.87	356.69	2386.42	1818.53	1773.94	1753.11	2247.84
2.91	18967.00	3.25	79.16	21.00	0.92	2.99	-0.03	0.09	39.38	188.16	0.00	-0.29	864.43	32.66	1.87	357.16	2412.40	1838.22	1793.11	1772.07	2272.57

					SUMS				AVERAGE	SUMS						
2140.35	295.30	1799.58	6782.73	1.66	29856.89	-5059.94	28629.22	1634.96	3349.74	9270.98	-737.25	10008.2	43216.2	-737.3	0.0	-13.3
re	Room		Energy Losses (kJ/kg of Dry Fuel)						Total							
	Temp		Flue Gas Constituent						Loss	Total	Chemical	Sensible and	Total	Chem	Grams F	Produced
H ₂ O	K	CO ₂	O ₂	CO	N ₂	CH₄	H₂O Comb	H ₂ O Fuel MC	Rate	Loss	Loss 1	Latent Loss	Output	Loss 2	CO	НС
2325.80	295.25	102.95	326.09	0.07	1481.94	-223.44	1508.41	86.40	3282.42	0.00	0	0.00	0	0	0.00	0.00
2246.94	295.38	99.40	312.83	0.17	1423.77	-221.84	1505.68	86.25	3206.25	773.92	-53	827.29	3804	-53	0.00	-0.96
2173.49	295.35	96.16	335.39	0.07	1496.84	-245.94	1505.78	86.11	3274.41	514.35	-39	552.88	2465	-39	0.00	-0.69
2143.87	295.49	94.89	361.51	80.0	1588.32	-268.76	1507.17	86.06	3369.27	512.12	-41	552.86	2371	-41	0.00	-0.73
2124.56	295.49	94.01	351.98	80.0	1551.18	-264.05	1506.05	86.02	3325.27	432.47	-34	466.71	2034	-34	0.00	-0.62
2147.52	295.31	95.01	345.88	0.04	1531.83	-256.72	1506.05	86.06	3308.14	506.38	-39	545.57	2397	-39	0.00	-0.70

Run: 1
Test Duration: 180
Output Category: Low

	HHV Basis	LHV Basis
Overall Efficiency	79.8%	86.1%
Combustion Efficiency	99.5%	99.5%
Heat Transfer Efficiency	80%	86.5%


Output Rate (kJ/h)	13,515	12,820	(Btu/h)
Burn Rate (kg/h)	0.89	1.97	(lb/h)
Input (kJ/h)	16,936	16,065	(Btu/h)


Test Load Weight (dry kg)	2.68	5.90	dry lb
MC wet (%)	3.25		
MC dry (%)	3.36		
Particulate (g)	6.06		
CO (g)	0		
Test Duration (h)	3.00		

Emissions	Particulate	CO
g/MJ Output	0.15	0.00
g/kg Dry Fuel	2.26	0.01
g/h	2.02	0.01
lb/MM Btu Output	0.35	0.00

0.00015

Air/Fuel Ratio (A/F) 34.82

Note: In the legend, [d], [e], [g], and [k] refer to their respective variables in Clauses 13.7.3 and 13.7.5

This Excel spreadsheet calculates solid fuel appliance efficiency and heat output in accordance with the procedure specified in CSA B415.1-09. In general the column headings correspond to the variables used in the Standard.

All data from a test run are entered on the "Data" sheet. The cells requiring data entry are highlighted. Please note that input data can be entered in either yard/pound or SI units. Select the units in cells F4 and F5 of the "Data" sheet.

Particulate emissions determined using the dilution tunnel method should be entered in cell C13 of the "Data" sheet as total grams of emissions.

Since oxygen concentrations are calculated for the efficiency determination, entry of measured oxygen data is optional. However, it might be useful to include the measured oxygen values for comparison to the calculated values for diagnostic purposes. A deviation of more than 1 or 2 percentage points can indicate inaccurate CO, CO₂, or fuel composition input data.

Selection of an appliance type in cell F2 of the "Data" sheet is needed for the air/fuel ratio calculation in accordance with Clause 16.3.5 of the Standard.

The "CSA B415.1 Calculations" and "Report" sheets include calculation of efficiencies based on the Lower Heating Value (LHV) of the fuel, which is not required in CSA B415.1-09. The LHV is calculated from the Higher Heating Value (HHV) and fuel composition data in accordance with ASTM E711.

The "CSA B415.1 Calculations" sheet is locked and password protected to prevent inadvertent modifications.

The "Chart" sheet includes a chart of flue gas composition data and fuel consumption. The range of cells in the "CSA B415.1 Calculations" sheet to be charted or plotted might need to be adjusted to correspond to the number of data points entered.

Please report any errors or problems to Tony Joseph at CSA.

Tony Joseph A.L.P. (Tony) Joseph Project Manager, Energy & Utilities Canadian Standards Association 5060 Spectrum Way, Suite 100 Mississauga, ON L4W 5N6 Tel: 416-747-4035

Direct Fax: 416-401-6807 E-mail: tony.joseph@csa.ca

Spreadsheet created by: Rick Curkeet, PE, Intertek Testing Services, NA Inc.

Version 2.2 14 December 2009

		12/14/2009					
Manufacturer:	SMG Hearth & Hor	ne	Applia	nce Type:	Pellet	(Cat, Non-	·Cat, Pellet)
Model:	HP22						
Date:	10/21/2021		Te	mp. Units	F	(F or C)	Default
Run:	1		We	ight Units	lb	(kg or lb)	
Control #:	G104780922						HHV (kJ/kg)
Test Duration:	360						%C
Output Category:	Overall			Fuel I	Data		%Н
					Marth		%O
Wood	Moisture (% wet):	3.25		HHV	18,967	kJ/kg	%Ash
Loa	d Weight (lb wet):	17.73		%C	46.87		
Bur	n Rate (dry kg/h):	1.30		%Н	6.41		Г
	culate Emissions:	6.06 g		%O	46.62		
				%Ash	0.1		1
	Averages	0.00	4.78	15.97	216.57	72.44	_
					Temp). (°F)	Гī
Elapsed	Fuel Weight	Flue Gas	Compositi	on (%)	Flue	Room	
Time (min)	Remaining (lb)	CO	CO ₂	O_2	Gas	Temp	ļi
0	17.73	0.00	0.24	12.27	321.4	73.9	
U	17.73	0.00	0.34	12.21	JZ 1.4	10.5	1 \
10	16.63	0.00	8.34 8.66	11.79	326.4		;
					326.4	74.1	
10	16.63	0.00	8.66	11.79		74.1	i
10 20	16.63 15.52	0.00	8.66 8.79	11.79 12.02	326.4 321.6	74.1 74.0 74.4	
10 20 30	16.63 15.52 14.54	0.00 0.00 0.00	8.66 8.79 8.40	11.79 12.02 12.07	326.4 321.6 321.7	74.1 74.0 74.4 73.6	
10 20 30 40	16.63 15.52 14.54 13.43	0.00 0.00 0.00 0.00	8.66 8.79 8.40 8.36	11.79 12.02 12.07 11.79	326.4 321.6 321.7 324.8	74.1 74.0 74.4 73.6 73.9	
10 20 30 40 50 60	16.63 15.52 14.54 13.43 12.33 11.22	0.00 0.00 0.00 0.00 0.00	8.66 8.79 8.40 8.36 8.76	11.79 12.02 12.07 11.79 11.65	326.4 321.6 321.7 324.8 320.8	74.1 74.0 74.4 73.6 73.9 73.5 73.2	
10 20 30 40 50 60 70	16.63 15.52 14.54 13.43 12.33 11.22 10.71 10.21	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	8.66 8.79 8.40 8.36 8.76 8.35 6.85 5.85	11.79 12.02 12.07 11.79 11.65 11.39 15.18 15.37	326.4 321.6 321.7 324.8 320.8 323.8 235.5 223.1	74.1 74.0 74.4 73.6 73.9 73.5 73.2 72.9	
10 20 30 40 50 60 70 80	16.63 15.52 14.54 13.43 12.33 11.22 10.71 10.21 9.71	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	8.66 8.79 8.40 8.36 8.76 8.35 6.85 5.85 4.79	11.79 12.02 12.07 11.79 11.65 11.39 15.18 15.37 15.54	326.4 321.6 321.7 324.8 320.8 323.8 235.5 223.1 215.8	74.1 74.0 74.4 73.6 73.9 73.5 73.2 72.9 72.7	
10 20 30 40 50 60 70 80 90	16.63 15.52 14.54 13.43 12.33 11.22 10.71 10.21 9.71 9.31	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	8.66 8.79 8.40 8.36 8.76 8.35 6.85 5.85 4.79 4.53	11.79 12.02 12.07 11.79 11.65 11.39 15.18 15.37 15.54 16.26	326.4 321.6 321.7 324.8 320.8 323.8 235.5 223.1 215.8 209.0	74.1 74.0 74.4 73.6 73.9 73.5 73.2 72.9 72.7 72.8	
10 20 30 40 50 60 70 80 90 100	16.63 15.52 14.54 13.43 12.33 11.22 10.71 10.21 9.71 9.31 8.81	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	8.66 8.79 8.40 8.36 8.76 8.35 6.85 5.85 4.79 4.53 4.08	11.79 12.02 12.07 11.79 11.65 11.39 15.18 15.37 15.54 16.26 16.82	326.4 321.6 321.7 324.8 320.8 323.8 235.5 223.1 215.8 209.0 207.1	74.1 74.0 74.4 73.6 73.9 73.5 73.2 72.9 72.7 72.8 72.5	
10 20 30 40 50 60 70 80 90 100 110	16.63 15.52 14.54 13.43 12.33 11.22 10.71 10.21 9.71 9.31 8.81 8.41	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	8.66 8.79 8.40 8.36 8.76 8.35 6.85 5.85 4.79 4.53 4.08 4.27	11.79 12.02 12.07 11.79 11.65 11.39 15.18 15.37 15.54 16.26 16.82 16.40	326.4 321.6 321.7 324.8 320.8 323.8 235.5 223.1 215.8 209.0 207.1 202.9	74.1 74.0 74.4 73.6 73.9 73.5 73.2 72.9 72.7 72.8 72.5 72.3	
10 20 30 40 50 60 70 80 90 100 110 120	16.63 15.52 14.54 13.43 12.33 11.22 10.71 10.21 9.71 9.31 8.81 8.41 8.03	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	8.66 8.79 8.40 8.36 8.76 8.35 6.85 5.85 4.79 4.53 4.08 4.27 4.37	11.79 12.02 12.07 11.79 11.65 11.39 15.18 15.37 15.54 16.26 16.82 16.40 16.50	326.4 321.6 321.7 324.8 320.8 323.8 235.5 223.1 215.8 209.0 207.1 202.9 201.8	74.1 74.0 74.4 73.6 73.9 73.5 73.2 72.9 72.7 72.8 72.5 72.3 72.0	
10 20 30 40 50 60 70 80 90 100 110 120 130	16.63 15.52 14.54 13.43 12.33 11.22 10.71 10.21 9.71 9.31 8.81 8.41 8.03 7.61	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	8.66 8.79 8.40 8.36 8.76 8.35 6.85 5.85 4.79 4.53 4.08 4.27 4.37	11.79 12.02 12.07 11.79 11.65 11.39 15.18 15.37 15.54 16.26 16.82 16.40 16.50 16.91	326.4 321.6 321.7 324.8 320.8 323.8 235.5 223.1 215.8 209.0 207.1 202.9 201.8 194.7	74.1 74.0 74.4 73.6 73.9 73.5 73.2 72.9 72.7 72.8 72.5 72.3 72.0 72.4	
10 20 30 40 50 60 70 80 90 100 110 120 130 140	16.63 15.52 14.54 13.43 12.33 11.22 10.71 10.21 9.71 9.31 8.81 8.41 8.03 7.61	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	8.66 8.79 8.40 8.36 8.76 8.35 6.85 5.85 4.79 4.53 4.08 4.27 4.37 4.00 3.95	11.79 12.02 12.07 11.79 11.65 11.39 15.18 15.37 15.54 16.26 16.82 16.40 16.50 16.91 16.69	326.4 321.6 321.7 324.8 320.8 323.8 235.5 223.1 215.8 209.0 207.1 202.9 201.8 194.7 195.6	74.1 74.0 74.4 73.6 73.9 73.5 73.2 72.9 72.7 72.8 72.5 72.3 72.0 72.4 72.3	
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150	16.63 15.52 14.54 13.43 12.33 11.22 10.71 10.21 9.71 9.31 8.81 8.41 8.03 7.61 7.20 6.81	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	8.66 8.79 8.40 8.36 8.76 8.35 6.85 5.85 4.79 4.53 4.08 4.27 4.37 4.00 3.95 3.86	11.79 12.02 12.07 11.79 11.65 11.39 15.18 15.37 15.54 16.26 16.82 16.40 16.50 16.91 16.69 16.52	326.4 321.6 321.7 324.8 320.8 323.8 235.5 223.1 215.8 209.0 207.1 202.9 201.8 194.7 195.6 197.5	74.1 74.0 74.4 73.6 73.9 73.5 73.2 72.9 72.7 72.8 72.5 72.3 72.0 72.4 72.3	
10 20 30 40 50 60 70 80 90 100 110 120 130 140	16.63 15.52 14.54 13.43 12.33 11.22 10.71 10.21 9.71 9.31 8.81 8.41 8.03 7.61 7.20 6.81 6.41	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	8.66 8.79 8.40 8.36 8.76 8.35 6.85 5.85 4.79 4.53 4.08 4.27 4.37 4.00 3.95	11.79 12.02 12.07 11.79 11.65 11.39 15.18 15.37 15.54 16.26 16.82 16.40 16.50 16.91 16.69	326.4 321.6 321.7 324.8 320.8 323.8 235.5 223.1 215.8 209.0 207.1 202.9 201.8 194.7 195.6	74.1 74.0 74.4 73.6 73.9 73.5 73.2 72.9 72.7 72.8 72.5 72.3 72.0 72.4 72.3 72.2 72.0	

12/14/2009

VERSION: 2.2

Note 1: For other fuels, use the heating value and fuel composition determined by analysis of fuel sample in accordance with Clause 9.2.

Default Fuel Values

D. Fir

19,810

48.73

6.87

43.9

0.5

Oak

19,887 50

6.6

42.9 0.5

Note 2: In cases where the "Fuel Weight Remaining" is the same for three or more readings in a row, a "divide by zero error" will occur in the calculation sheet. In such cases, adjust the weight values by interpolation between the first occurence and the next reading showing a decrease in weight. Manufacturer: MG Hearth & Home

HP22 Model: 10/21/21 Date: Run: 1

Input

MC wet

Control #: G104780922

Test Duration: 360

HHV LHV Eff 80.48% 86.80% Comb Eff 99.50% 99.50% HT Eff 80.88% 87.24% 19,798 Output kJ/h kg/h **Burn Rate** 1.30 **Grams CO**

0

24,600

3.25

kJ/h

min

and "Mass Balance" columns, [e], [d], [g], [a]. [b], [c], [h], [u], [w], [j], and [k] refer to their respective variables in Clauses 13.7.3 to 13.7.5.

Note: In the "Input data", "Calc. % O2", "Fuel Properties",

Overall Heating Efficiency: Combustion Efficiency: Heat Transfer Efficiency:

Air Fuel Ratio (A/F) 80.48% Dry Molecular Weight (M_d) 29.41 99.50% Dry Moles Exhaust Gas (N_r): 888.21 80.88% Air Fuel Ratio (A/F) 25.61

%HC 8.0

Heat Output: 18,780 Btu/h 19,798 kJ/h Heat Input: 23,336 Btu/h 24,600 kJ/h

Ultimate CO₂

1.020

 $CO_{2\text{-ult}}$ 20.36 F_0

Burn Duration: 6.00

1.297 kg/h Burn Rate: 2.86

Stack Temp: 213.7 Deg. F 100.9 Deg. C

h

	Averages	0.00	4.78	3.80	20.80	16.02	102.54	22.47	101.1%	81.3%	82.2%	26.79	3.09	61.60	2.99	61.60	149280	3.91	6.41
	INPUT DATA			Oxyg	en Calculatio	n	Input	Data	Combust	Heat	Net	Air	Wet Wt	% Wet	Dry Wt.	% Dry			Fuel I
Elapsed	Weight	%	%	Excess	Total	Calc. %	Flue	Room	Eff	Transfer	Eff	Fuel	Now	Consumed	Now	Comsumed	Total	Carbon	Hydrogen
Time	Remaining (kg)	CO [e]	CO ₂ [d]	Air EA	O ₂	O ₂ [g]	Gas (°C)	Temp (°C)	%	%	%	Ratio	Wt	Х	\mathbf{Wt}_{dn}	У	Input	/12= [a]	/1= [b]
0	8.04	0.00	8.34	144.1%	20.70	12.36	160.8	23.3	100.4%	81.1%	81.4%	13.6	8.04	0.00	7.78	0.00	0	3.91	6.41
10	7.54	0.00	8.66	135.2%	20.70	12.04	163.6	23.4	100.4%	81.2%	81.6%	13.1	7.54	6.20	7.30	6.20	13765	3.91	6.41
20	7.04	0.00	8.79	131.8%	20.69	11.91	160.9	23.3	100.4%	81.6%	81.9%	12.9	7.04	12.46	6.81	12.46	8710	3.91	6.41
30	6.60	0.00	8.40	142.6%	20.70	12.31	160.9	23.6	100.4%	81.2%	81.5%	13.5	6.60	18.00	6.38	18.00	8705	3.91	6.41
40	6.09	0.00	8.36	143.7%	20.70	12.35	162.7	23.1	100.4%	80.9%	81.3%	13.6	6.09	24.25	5.89	24.25	9207	3.91	6.41
50	5.59	0.00	8.76	132.5%	20.69	11.93	160.4	23.3	100.4%	81.6%	81.9%	12.9	5.59	30.47	5.41	30.47	9207	3.91	6.41

Moisture Content M_{Cwb}: 3.25

Combustion Efficiency: Moisture of Wood (wet basis): 3.25 Dry kg: 99.50% 7.78 Initial Dry Weight Wt_{do} (kg): 7.78 Total Input (kJ): 147,599 139,991 (Btu) CA: 46.87 Total Output (kJ): 118,785 112,662 (Btu) Moisture Content Dry 3.36 HY: 6.41 OX: 46.62 Efficiency: 80.48%

Total CO (g): 0.08

Load Weight (kg): 8.04

 Fuel Heating
 HHV
 LHV
 HHV
 LHV

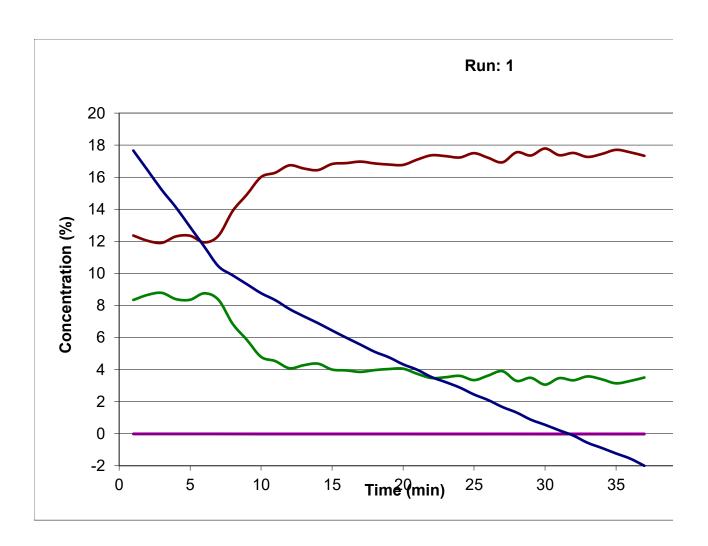
 Value in kJ/kg - CV:
 18,967
 17,585
 Btu/lb
 8159.8
 7565.2

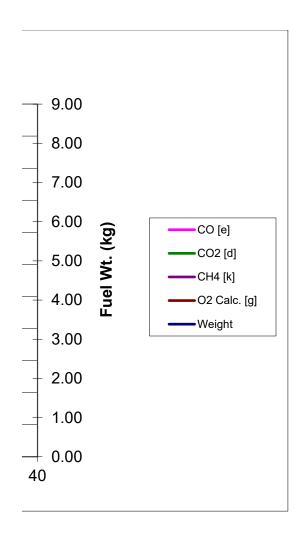
2.91	18967.00	3.25	79.20	21.01	1.22	3.96	-0.02	0.12	39.33	153.76	0.00	-0.24	734.33	32.55	1.87	375.69	3157.25	2390.24	2327.82	2301.28	3008.28
Properties		Mw		N	Mass Bala	nce		kg Wood per								Stack	Hea	t Content Cha	nge - Ambie	nt to Stack	Temperatu
Oxygen	Calorific	Moisture		(moles/1	00 mole d	ry flue gas)	100 mole dfp		M	oles per k	g of Dry W	ood .		Moisture	Temp		F	lue Gas Cor	nstituent	
/16= [c]	Value	Fuel Burnt	[h]	[u]	[w]	[j]	[k]	Nk	CO ₂	O ₂	CO	НС	N ₂	H ₂ O	Present	K	CO ₂	O ₂	CO	N ₂	CH₄
2.91	18967.00	3.25	79.30	21.03	2.13	6.87	-0.02	0.21	39.19	58.06	0.00	-0.09	372.44	32.26	1.87	433.96	5519.19	4135.38	4016.88	3973.29	5352.93
2.91	18967.00	3.25	79.30	21.04	2.21	7.13	-0.02	0.22	39.18	54.47	0.00	-0.08	358.86	32.25	1.87	436.71	5631.52	4217.00	4095.53	4051.23	5467.46
2.91	18967.00	3.25	79.31	21.04	2.24	7.23	-0.02	0.22	39.18	53.09	0.00	-0.08	353.65	32.24	1.87	434.04	5520.59	4136.31	4017.75	3974.16	5354.57
2.91	18967.00	3.25	79.30	21.03	2.14	6.91	-0.02	0.21	39.18	57.44	0.00	-0.09	370.10	32.26	1.87	434.08	5513.14	4130.47	4012.02	3968.51	5347.88
2.91	18967.00	3.25	79.30	21.03	2.13	6.88	-0.02	0.21	39.19	57.90	0.00	-0.09	371.85	32.26	1.87	435.83	5603.79	4197.23	4076.57	4032.42	5438.36
2.91	18967.00	3.25	79.31	21.04	2.24	7.21	-0.02	0.22	39.18	53.39	0.00	-0.08	354.77	32.25	1.87	433.59	5504.65	4124.82	4006.70	3963.21	5338.11

					SUMS				AVERAGE	SUMS						
2786.71	295.62	4591.18	11890.27	3.42	56336.99	-7763.93	56307.94	3228.49	3367.42	26701.54	-1374.71	28076.3	122578.0	-1374.7	0.1	-24.7
re	Room		Energy Losses (kJ/kg of Dry Fuel)													
	Temp		Flue Gas Constituent						Loss	Total	Chemical	Sensible and	Total	Chem	Grams F	Produced
H ₂ O	K	CO ₂	O ₂	CO	N ₂	CH₄	H₂O Comb	H ₂ O Fuel MC	Rate	Loss	Loss 1	Latent Loss	Output	Loss 2	CO	НС
4805.41	296.42	216.27	240.09	0.16	1479.80	-79.42	1573.44	91.02	3521.36	0.00	0	0.00	0	0	0.00	0.00
4899.30	296.53	220.64	229.69	0.21	1453.84	-74.50	1575.93	91.20	3497.01	2537.92	-54	2591.51	11227	-54	0.01	-0.97
4806.45	296.48	216.28	219.59	0.20	1405.46	-72.60	1572.73	91.03	3432.69	1576.32	-33	1609.37	7133	-33	0.01	-0.60
4799.57	296.72	216.03	237.25	0.13	1468.74	-78.59	1573.16	91.01	3507.74	1609.84	-36	1645.63	7095	-36	0.01	-0.64
4876.70	296.28	219.59	243.02	0.11	1499.44	-79.23	1575.71	91.16	3549.80	1723.19	-38	1761.36	7484	-38	0.01	-0.69
4793.26	296.41	215.66	220.21	0.17	1406.04	-73.02	1572.35	91.00	3432.41	1666.21	-35	1701.36	7541	-35	0.01	-0.63

Run: 1
Test Duration: 360
Output Category: Overall

	HHV Basis	LHV Basis
Overall Efficiency	80.5%	86.8%
Combustion Efficiency	99.5%	99.5%
Heat Transfer Efficiency	81%	87.2%


Output Rate (kJ/h)	19,798	18,780	(Btu/h)
Burn Rate (kg/h)	1.30	2.86	(lb/h)
Input (kJ/h)	24,600	23,336	(Btu/h)


Test Load Weight (dry kg)	7.78	17.15	dry lb
MC wet (%)	3.25		
MC dry (%)	3.36		
Particulate (g)	6.06		
CO (g)	0		
Test Duration (h)	6.00		

Emissions	Particulate	СО
g/MJ Output	0.05	0.00
g/kg Dry Fuel	0.78	0.01
g/h	1.01	0.01
lb/MM Btu Output	0.12	0.00

0.00024

Air/Fuel Ratio (A/F) 25.61

Note: In the legend, [d], [e], [g], and [k] refer to their respective variables in Clauses 13.7.3 and 13.7.5

Intertek Pharmaceutical Services

P.O. Box 470 Salem Industrial Park Bldg. #5 Whitehouse, NJ 08888 Phone 908.534.4445 Fax 908.534.1054

Analytical Report

Report Number: 186096 Report Status: *Interim*

Brian Ziegler Intertek 8431 Murphy Dr. Middleton, WI 53562

Sample: Marth wood pellets

	С	Н	N	Ο
•	46.87 %	6.41 %	0.06 %	To Follow.
	ROI	LOD		
-	< 0.1 %	4.32 %		

Intertek Pharmaceutical Services

P.O. Box 470 Salem Industrial Park Bldg. #5 Whitehouse, NJ 08888 Phone 908.534.4445 Fax 908.534.1054

Analytical Report

Report Number: 186096 Report Status: *Interim*

Brian Ziegler Intertek 8431 Murphy Dr. Middleton, WI 53562

non-GMP Statement

All experimental work at Intertek Whitehouse is conducted under the auspices of a rigorous Quality Management System; however, the data presented in this report was generated using procedures that have not been validated in accordance with 21 CFR, parts 210 and 211.

Intertek makes no claims to the applicability of the data and the Client is solely responsible for determining whether the information provided in this report is suitable for the intended application.

This Excel spreadsheet calculates solid fuel appliance efficiency and heat output in accordance with the procedure specified in CSA B415.1-09. In general the column headings correspond to the variables used in the Standard

All data from a test run are entered on the "Data" sheet. The cells requiring data entry are highlighted. Please note that input data can be entered in either yard/pound or SI units. Select the units in cells F4 and F5 of the "Data" sheet.

Particulate emissions determined using the dilution tunnel method should be entered in cell C13 of the "Data" sheet as total grams of emissions.

Since oxygen concentrations are calculated for the efficiency determination, entry of measured oxygen data is optional. However, it might be useful to include the measured oxygen values for comparison to the calculated values for diagnostic purposes. A deviation of more than 1 or 2 percentage points can indicate inaccurate CO, CO₂, or fuel composition input data.

Selection of an appliance type in cell F2 of the "Data" sheet is needed for the air/fuel ratio calculation in accordance with Clause 16.3.5 of the Standard.

The "CSA B415.1 Calculations" and "Report" sheets include calculation of efficiencies based on the Lower Heating Value (LHV) of the fuel, which is not required in CSA B415.1-09. The LHV is calculated from the Higher Heating Value (HHV) and fuel composition data in accordance with ASTM E711.

The "CSA B415.1 Calculations" sheet is locked and password protected to prevent inadvertent modifications.

The "Chart" sheet includes a chart of flue gas composition data and fuel consumption. The range of cells in the "CSA B415.1 Calculations" sheet to be charted or plotted might need to be adjusted to correspond to the number of data points entered.

Please report any errors or problems to Tony Joseph at CSA.

Tony Joseph
A.L.P. (Tony) Joseph
Project Manager, Energy & Utilities
Canadian Standards Association
5060 Spectrum Way, Suite 100
Mississauga, ON
L4W 5N6
Tel: 416-747-4035

Direct Fax: 416-401-6807 E-mail: tony.joseph@csa.ca

Spreadsheet created by: Rick Curkeet, PE, Intertek Testing Services, NA Inc.

Version 2.2 14 December 2009

	VERSION:	2.2	12/14/2009					
	Manufacturer:	SMG Hearth & Hor	ne	Applia	nce Type:	Pellet	(Cat, Non-	-Cat, Pellet)
	Model:	HP22						
	Date:	10/21/2021		Te	emp. Units	F	(F or C)	Default
	Run:	1		We	eight Units	lb	(kg or lb)	
	Control #:	G104780922						HHV (kJ/kg)
	Test Duration:	120						%C
(Output Category:	Medium			Fuel	Data		%Н
						Marth		%O
	Wood	Moisture (% wet):	3.25		HHV	18,967	kJ/kg	%Ash
	Load	d Weight (lb wet):	5.11		%C	46.87	Ū	
	Bur	n Rate (dry kg/h):	1.12		%Н	6.41		_
		culate Emissions:	6.06	q	%O	46.62		1
				3	%Ash	0.1		1
		Averages	0.00	4.84	15.96	214.97	72.51	_
		J				Temp	o. (°F)	Ti-
	Elapsed	Fuel Weight	Flue Ga	s Composit	ion (%)	Flue .	Room	
	Time (min)	Remaining (lb)	CO	CO ₂	O_2	Gas	Temp	i
ſ	Time (min)	Remaining (lb)	-				Temp	i C
I	0	5.11	0.00	8.35	11.39	323.8	73.5	i (
F	0 10	5.11 4.61	0.00	8.35 6.85	11.39 15.18	323.8 235.5	73.5 73.2	i C V
	0 10 20	5.11 4.61 4.11	0.00 0.00 0.00	8.35 6.85 5.85	11.39 15.18 15.37	323.8 235.5 223.1	73.5 73.2 72.9	i C
-	0 10	5.11 4.61 4.11 3.60	0.00	8.35 6.85	11.39 15.18 15.37 15.54	323.8 235.5 223.1 215.8	73.5 73.2 72.9 72.7	i ()
	0 10 20 30	5.11 4.61 4.11	0.00 0.00 0.00 0.00	8.35 6.85 5.85 4.79	11.39 15.18 15.37	323.8 235.5 223.1 215.8	73.5 73.2 72.9 72.7	i O N
	0 10 20 30 40	5.11 4.61 4.11 3.60 3.21	0.00 0.00 0.00 0.00 0.00	8.35 6.85 5.85 4.79 4.53	11.39 15.18 15.37 15.54 16.26	323.8 235.5 223.1 215.8 209.0 207.1	73.5 73.2 72.9 72.7 72.8 72.5	i () (
	0 10 20 30 40 50	5.11 4.61 4.11 3.60 3.21 2.71	0.00 0.00 0.00 0.00 0.00 0.00	8.35 6.85 5.85 4.79 4.53 4.08	11.39 15.18 15.37 15.54 16.26 16.82	323.8 235.5 223.1 215.8 209.0 207.1	73.5 73.2 72.9 72.7 72.8 72.5 72.3 72.0	i () ?
	0 10 20 30 40 50	5.11 4.61 4.11 3.60 3.21 2.71 2.31	0.00 0.00 0.00 0.00 0.00 0.00	8.35 6.85 5.85 4.79 4.53 4.08 4.27	11.39 15.18 15.37 15.54 16.26 16.82 16.40	323.8 235.5 223.1 215.8 209.0 207.1 202.9	73.5 73.2 72.9 72.7 72.8 72.5 72.3 72.0	i O N
	0 10 20 30 40 50 60 70 80	5.11 4.61 4.11 3.60 3.21 2.71 2.31 1.92 1.51 1.10	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	8.35 6.85 5.85 4.79 4.53 4.08 4.27 4.37 4.00 3.95	11.39 15.18 15.37 15.54 16.26 16.82 16.40 16.50 16.91 16.69	323.8 235.5 223.1 215.8 209.0 207.1 202.9 201.8 194.7 195.6	73.5 73.2 72.9 72.7 72.8 72.5 72.3 72.0 72.4 72.3	
	0 10 20 30 40 50 60 70 80 90	5.11 4.61 4.11 3.60 3.21 2.71 2.31 1.92 1.51 1.10 0.71	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	8.35 6.85 5.85 4.79 4.53 4.08 4.27 4.37 4.00 3.95 3.86	11.39 15.18 15.37 15.54 16.26 16.82 16.40 16.50 16.91 16.69	323.8 235.5 223.1 215.8 209.0 207.1 202.9 201.8 194.7 195.6 197.5	73.5 73.2 72.9 72.7 72.8 72.5 72.3 72.0 72.4 72.3 72.2	i
	0 10 20 30 40 50 60 70 80 90 100	5.11 4.61 4.11 3.60 3.21 2.71 2.31 1.92 1.51 1.10 0.71	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	8.35 6.85 5.85 4.79 4.53 4.08 4.27 4.37 4.00 3.95 3.86 3.97	11.39 15.18 15.37 15.54 16.26 16.82 16.40 16.50 16.91 16.69 16.52	323.8 235.5 223.1 215.8 209.0 207.1 202.9 201.8 194.7 195.6 197.5	73.5 73.2 72.9 72.7 72.8 72.5 72.3 72.0 72.4 72.3 72.2 72.0	
	0 10 20 30 40 50 60 70 80 90	5.11 4.61 4.11 3.60 3.21 2.71 2.31 1.92 1.51 1.10 0.71	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	8.35 6.85 5.85 4.79 4.53 4.08 4.27 4.37 4.00 3.95 3.86	11.39 15.18 15.37 15.54 16.26 16.82 16.40 16.50 16.91 16.69	323.8 235.5 223.1 215.8 209.0 207.1 202.9 201.8 194.7 195.6 197.5	73.5 73.2 72.9 72.7 72.8 72.5 72.3 72.0 72.4 72.3 72.2 72.0	
	0 10 20 30 40 50 60 70 80 90 100	5.11 4.61 4.11 3.60 3.21 2.71 2.31 1.92 1.51 1.10 0.71	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	8.35 6.85 5.85 4.79 4.53 4.08 4.27 4.37 4.00 3.95 3.86 3.97	11.39 15.18 15.37 15.54 16.26 16.82 16.40 16.50 16.91 16.69 16.52	323.8 235.5 223.1 215.8 209.0 207.1 202.9 201.8 194.7 195.6 197.5	73.5 73.2 72.9 72.7 72.8 72.5 72.3 72.0 72.4 72.3 72.2 72.0	
	0 10 20 30 40 50 60 70 80 90 100	5.11 4.61 4.11 3.60 3.21 2.71 2.31 1.92 1.51 1.10 0.71	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	8.35 6.85 5.85 4.79 4.53 4.08 4.27 4.37 4.00 3.95 3.86 3.97	11.39 15.18 15.37 15.54 16.26 16.82 16.40 16.50 16.91 16.69 16.52	323.8 235.5 223.1 215.8 209.0 207.1 202.9 201.8 194.7 195.6 197.5	73.5 73.2 72.9 72.7 72.8 72.5 72.3 72.0 72.4 72.3 72.2 72.0	
	0 10 20 30 40 50 60 70 80 90 100	5.11 4.61 4.11 3.60 3.21 2.71 2.31 1.92 1.51 1.10 0.71	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	8.35 6.85 5.85 4.79 4.53 4.08 4.27 4.37 4.00 3.95 3.86 3.97	11.39 15.18 15.37 15.54 16.26 16.82 16.40 16.50 16.91 16.69 16.52	323.8 235.5 223.1 215.8 209.0 207.1 202.9 201.8 194.7 195.6 197.5	73.5 73.2 72.9 72.7 72.8 72.5 72.3 72.0 72.4 72.3 72.2 72.0	
	0 10 20 30 40 50 60 70 80 90 100	5.11 4.61 4.11 3.60 3.21 2.71 2.31 1.92 1.51 1.10 0.71	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	8.35 6.85 5.85 4.79 4.53 4.08 4.27 4.37 4.00 3.95 3.86 3.97	11.39 15.18 15.37 15.54 16.26 16.82 16.40 16.50 16.91 16.69 16.52	323.8 235.5 223.1 215.8 209.0 207.1 202.9 201.8 194.7 195.6 197.5	73.5 73.2 72.9 72.7 72.8 72.5 72.3 72.0 72.4 72.3 72.2 72.0	

Note 1: For other fuels, use the heating value and fuel composition determined by analysis of fuel sample in accordance with Clause 9.2.

Default Fuel Values

D. Fir

19,810

48.73

6.87

43.9

0.5

Oak

19,887

50

6.6

42.9 0.5

Note 2: In cases where the "Fuel Weight Remaining" is the same for three or more readings in a row, a "divide by zero error" will occur in the calculation sheet. In such cases, adjust the weight values by interpolation between the first occurence and the next reading showing a decrease in weight. Manufacturer: MG Hearth & Home

HP22 Model: 10/21/21 Date: Run: 1

Eff

Comb Eff

HT Eff

Output

Burn Rate

Grams CO

Input

MC wet

min

HHV

80.57%

99.50%

80.98%

17,156

1.12

0

21,292

3.25

LHV

86.91%

99.50%

87.34%

kJ/h

kg/h

kJ/h

Control #: G104780922

Test Duration: 120

and "Mass Balance" columns, [e], [d], [g], [a]. [b], [c], [h], [u], [w], [j], and [k] refer to their respective variables in Clauses 13.7.3 to 13.7.5.

Note: In the "Input data", "Calc. % O₂", "Fuel Properties",

 $CO_{2\text{-ult}}$ F_0 1.020 Heat Transfer Efficiency: 80.98%

Combustion Efficiency:

Overall Heating Efficiency:

Air Fuel Ratio (A/F) Dry Molecular Weight (M_d) 80.57% 29.41 Dry Moles Exhaust Gas (N_r): 99.50% 878.13 Air Fuel Ratio (A/F) 25.32

%HC

8.0

Heat Output: 16,274 Btu/h 17,156 kJ/h Heat Input: 20,198 Btu/h 21,292 kJ/h

Ultimate CO₂ 20.36 **Burn Duration:** 2.00 h

> 1.123 kg/h Burn Rate: 2.47

Stack Temp: 205.9 Deg. F 96.6 Deg. C

	Averages	0.00	4.84	3.44	20.80	15.96	101.65	22.50	101.0%	81.6%	82.4%	24.78	1.09	53.04	1.05	53.04	43869	3.91	6.41
	INPUT DATA			Oxyg	en Calculatio	n	Input	Data	Combust	Heat	Net	Air	Wet Wt	% Wet	Dry Wt.	% Dry			Fuel
Elapsed	Weight	%	%	Excess	Total	Calc. %	Flue	Room	Eff	Transfer	Eff	Fuel	Now	Consumed	Now	Comsumed	Total	Carbon	Hydrogen
Time	Remaining (kg)	CO [e]	CO ₂ [d]	Air EA	O ₂	O ₂ [g]	Gas (°C)	Temp (°C)	%	%	%	Ratio	Wt	Х	Wt _{dn}	У	Input	/12= [a]	/1= [b]
0	2.32	0.00	8.35	143.9%	20.70	12.35	162.1	23.1	100.4%	81.0%	81.3%	13.6	2.32	0.00	2.25	0.00	0	3.91	6.41
10	2.09	0.00	6.85	197.2%	20.75	13.89	113.0	22.9	100.6%	83.5%	84.0%	16.6	2.09	9.89	2.02	9.89	6294	3.91	6.41
20	1.86	0.00	5.85	247.9%	20.77	14.92	106.2	22.7	100.7%	83.0%	83.5%	19.4	1.86	19.67	1.80	19.67	4182	3.91	6.41
30	1.64	0.00	4.79	324.9%	20.80	16.01	102.1	22.6	100.9%	81.6%	82.4%	23.7	1.64	29.54	1.58	29.54	3731	3.91	6.41
40	1.46	0.00	4.53	349.5%	20.81	16.28	98.3	22.7	101.0%	81.6%	82.4%	25.1	1.46	37.19	1.41	37.19	3710	3.91	6.41
50	1.23	0.00	4.08	398.8%	20.82	16.74	97.3	22.5	101.2%	80.6%	81.6%	27.8	1.23	46.96	1.19	46.96	3771	3.91	6.41

Moisture Content M_{Cwb}: 3.25

Combustion Efficiency: Moisture of Wood (wet basis): 3.25 Dry kg: 99.50% 2.25 Initial Dry Weight Wt_{do} (kg): 2.25 Total Input (kJ): 42,585 40,389 (Btu) CA: 46.87 Total Output (kJ): 34,312 32,543 (Btu) Moisture Content Dry 3.36 HY: 6.41 OX: 46.62 Efficiency: 80.57% Total CO (g): 0.01

Load Weight (kg): 2.32

 Fuel Heating
 HHV
 LHV
 HHV
 LHV

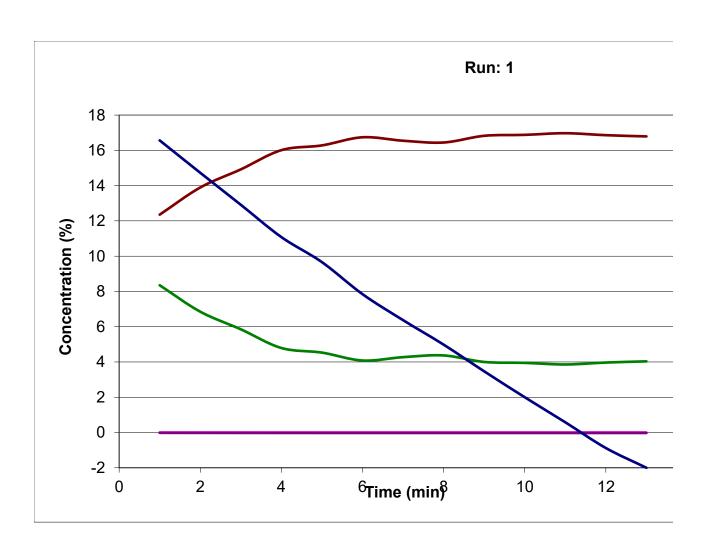
 Value in kJ/kg - CV:
 18,967
 17,585
 Btu/lb
 8159.8
 7565.2

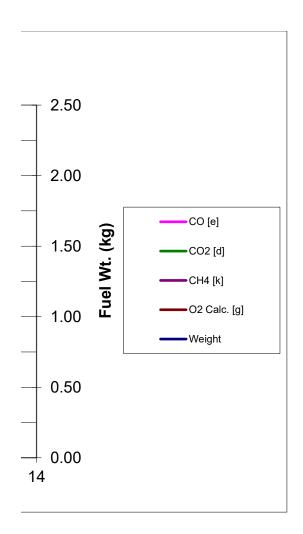
2.91	18967.00	3.25	79.20	21.01	1.23	4.00	-0.02	0.12	39.31	139.19	0.00	-0.21	679.25	32.51	1.87	374.80	3112.41	2360.00	2299.28	2272.88	2957.43
Properties		Mw		N	Mass Balaı	nce		kg Wood per								Stack	Hea	t Content Cha	nge - Ambie	ent to Stack	Temperatu
Oxygen	Calorific	Moisture		(moles/1	00 mole d	ry flue gas)	100 mole dfp		M	oles per k	g of Dry W	ood .		Moisture	Temp		F	lue Gas Cor	nstituent	
/16= [c]	Value	Fuel Burnt	[h]	[u]	[w]	[j]	[k]	Nk	CO ₂	O ₂	CO	НС	N ₂	H ₂ O	Present	K	CO ₂	O ₂	CO	N ₂	CH₄
2.91	18967.00	3.25	79.30	21.03	2.13	6.87	-0.02	0.21	39.19	57.97	0.00	-0.09	372.10	32.26	1.87	435.29	5583.55	4182.62	4062.52	4018.49	5417.52
2.91	18967.00	3.25	79.25	21.02	1.75	5.65	-0.02	0.17	39.22	79.52	0.00	-0.12	453.61	32.33	1.87	386.19	3554.17	2690.65	2620.36	2590.50	3386.66
2.91	18967.00	3.25	79.23	21.01	1.49	4.83	-0.02	0.15	39.25	100.05	0.00	-0.15	531.24	32.39	1.87	379.33	3283.28	2489.39	2425.30	2397.46	3120.16
2.91	18967.00	3.25	79.20	21.01	1.22	3.96	-0.02	0.12	39.30	131.29	0.00	-0.20	649.35	32.48	1.87	375.27	3121.40	2368.79	2308.32	2281.72	2961.65
2.91	18967.00	3.25	79.19	21.00	1.15	3.75	-0.02	0.12	39.31	141.27	0.00	-0.22	687.13	32.51	1.87	371.48	2967.38	2253.75	2196.67	2171.26	2811.47
2.91	18967.00	3.25	79.18	21.00	1.04	3.38	-0.03	0.10	39.34	161.36	0.00	-0.25	763.07	32.58	1.87	370.44	2931.53	2227.12	2170.86	2145.71	2776.21

	Γ				SUMS				AVERAGE			SUM	IS			
2752.83	295.65	1590.07	4043.78	0.83	19248.73	-2470.07	19743.82	1133.51	3330.05	7618.75	-441.06	8059.8	36250.0	-441.1	0.0	-7.9
re	Room			Energy Lo	osses (kJ/kg o	f Dry Fuel)			Total							
	Temp			Flu	e Gas Constit	uent			Loss	Total	Chemical	Sensible and	Total	Chem	Grams F	Produced
H ₂ O	K	CO ₂	O ₂	CO	N ₂	CH₄	H₂O Comb	H ₂ O Fuel MC	Rate	Loss	Loss 1	Latent Loss	Output	Loss 2	CO	HC
4859.94	296.21	218.80	242.46	0.07	1495.29	-79.35	1575.19	91.13	3543.58	0.00	0	0.00	0	0	0.00	0.00
3136.92	296.06	139.39	213.97	0.06	1175.08	-108.62	1522.71	87.91	3030.50	1005.60	-36	1041.49	5288	-36	0.00	-0.65
2903.70	295.86	128.87	249.07	0.21	1273.64	-136.56	1518.10	87.47	3120.81	688.15	-30	718.12	3494	-30	0.00	-0.54
2763.81	295.78	122.66	310.99	0.09	1481.64	-179.24	1518.04	87.21	3341.40	657.21	-35	692.33	3073	-35	0.00	-0.63
2630.27	295.82	116.66	318.40	0.00	1491.93	-192.88	1515.13	86.96	3336.20	652.62	-38	690.23	3058	-38	0.00	-0.68
2599.41	295.65	115.34	359.36	0.03	1637.33	-220.28	1516.99	86.91	3495.68	695.05	-44	738.70	3076	-44	0.00	-0.78

Run: 1
Test Duration: 120
Output Category: Medium

	HHV Basis	LHV Basis
Overall Efficiency	80.6%	86.9%
Combustion Efficiency	99.5%	99.5%
Heat Transfer Efficiency	81%	87.3%


Output Rate (kJ/h)	17,156	16,274	(Btu/h)
Burn Rate (kg/h)	1.12	2.47	(lb/h)
Input (kJ/h)	21,292	20,198	(Btu/h)


Test Load Weight (dry kg)	2.25	4.95	dry lb
MC wet (%)	3.25		
MC dry (%)	3.36		
Particulate (g)	6.06		
CO (g)	0		
Test Duration (h)	2.00		

Emissions	Particulate	CO
g/MJ Output	0.18	0.00
g/kg Dry Fuel	2.70	0.01
g/h	3.03	0.01
lb/MM Btu Output	0.41	0.00

0.00012

Air/Fuel Ratio (A/F) 25.32

Note: In the legend, [d], [e], [g], and [k] refer to their respective variables in Clauses 13.7.3 and 13.7.5

Manufacturer: 5m6	HCATIL+Home
Job# 67 104 780	922

Model:	HPZZ
Run	

Page of Date 10-21-21 Tech 16

DILUTION TUNNEL PARTICULATE SAMPLER DATA FILTER TYPE: Gelman 47mm A/E

	SYSTEM 1		SYSTEM 2			SYSTEM 3						
	test ight ord	Probe & Housing Number	Front Filter + gasket Number	Back Filter + gasket Number	Probe & Housing Number	Front Filter + gasket Number	Back Filter + gasket Number	Probe & Housing Number	Front Filter + gasket Number	Back Filter + gasket Number	Temp	Humidity
Date	Time	10	3(32	A	3)	34	3	35	36	°F	%
10/2/21	7'000	92.0013	18472	1.8017	92.4454	18419	1.8332	92.3730	1.8584	1.8254	71.6	42.8
10/20/21		92.0012	1.8471	1.8016	92.4453	1.8419	1.833/	92.3329	1.8584	1.8254	71.7	44.9
10/01/21	1.70.9	10.			1	and the state of t					:	-
NA	,											
114											******	
1020												-
NA	-							~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				/
111	9	Total:	3.64	187	Total:	3.4	15	Total:	3.6	838	NA	NA

3		SYST	EM 1.	SYST	EM 2	SYSTEM 3			
Post-test Weight Record		Probe & Housing	Combined Filter/gasket Number	Probe & Housing Number	Combined Filter/gasket Number	Probe & Housing Number	Combined Filter/gasket Number	Temp	Humidity
Date	Time	Number	31+32	\mathcal{B}	33+34	C	75 + 36	°F	%
10/21/21	3:10.0	920012	3.6.555	92.4454	3.6814	92.3329	3.6878	\$5.2	39.2
.	7:100	97.00/2	3:6534	92.4453	3,67.97	92.3329	3:6857	47.8	40.2.
10/22/21	7:30A	92.0612	3.6521	92.4453	3.6786	92.3329	3.6849	65.5	42.1
10/26/21	7:000	92.0012	3.6521	92.4453	3.4786	92.7329	3.6847	104.6	40.2
NA		The state of the s			,				/
NA									0

Dry Down Weight Btu Gr/hr Lb/MMbtu F3 F2 P3 P2 Date Time P1 F1 1.921 NA NA 4.8 0,1 0 1.356 4.7 0 6 0 7:300 1.010 3.6 0 34 1.010 3.6 7:00 A 0 7

1hr - 1.535 ave/TE 6.06

pg. 1 of 8

INTRODUCTION

This document provides a systematic guide for the technician conducting tests to EPA standard requirements. Procedures outlined here, when followed, will result in tests in conformance with ASTM E2779 and ASTM E2515. This guide cannot cover every possible contingency that may develop during a particular test program. Many questions that may arise can be answered by a complete understanding of the test standards and their intent. When in doubt on any detail check with the laboratory manager and be sure you understand the procedures involved.

The primary measurements to be obtained are particulate emission data and efficiency data. The technician's duties include the following steps. It is critical that all spaces on the data forms be properly filled in. Each test must be represented by a complete record of what was done and when.

- I. APPLIANCE INSPECTION AND SET-UP
 - A. Incoming Inspection
 - B. Unit Set-Up
- II. SAMPLING SYSTEMS SET-UP
 - A. Gas Analysis
 - B. Dilution Tunnel
- III. TEST CONDUCT
 - A. Pre-Test Fuel Load
 - B. Test Fuel Load
 - C. Unit Start up
 - D. Test Run
- IV. POST TEST PROCEDURE
 - A. Leak Checks
 - B. Particulate Sample Recovery

The technician running this test must be familiar with the following documents that are to be kept in the laboratory at all times.

- 1. ASTM E2779
- 2. ASTM E2515

pg. 2 of 8

I. APPLIANCE INSPECTION AND SET-UP

A. Incoming Inspection

- Check for completeness of unit including parts, accessories, installation and operating instructions, drawings and specifications, etc. Note any discrepancies or missing parts.
- Check for shipping damage. If damage has occurred, notify the laboratory manager. In some cases repairs may be made, provided the manufacturer and laboratory manager concur that repairs will not affect the unit's performance. If damage is irreparable, a new unit will need to be obtained.
- 3. Mark unit with manufacturer's name, model number, work order number, and date received.
- 4. If unit is safety listed, note label data including listing agency and serial number.

B. Unit Set-Up

- 1. All units must be operated by the manufacturer or Intertek for a break-in period of 50 hours at a medium burn rate. NOTE: Inserts are tested as if they are freestanding stoves.
- 2. Once break-in is completed, allow unit to cool then clean unit thoroughly.
- 3. Prior to placing unit on scale, the scale must be turned on and allowed to warm up for 1-hour minimum.
- 4. Place unit on scale and align so chimney will be centered in hood. Record the weight of the unit and all accessories. (Do not weigh with chimney attached.)
- 5. Chimney and connector should be cleaned with a wire brush prior to mounting. Attach chimney and connector then seal all joints. Be sure the single wall stove pipe terminates and insulated pipe starts at proper level above scale platform. Chimney must be supported from scale so that it does not touch test enclosure or hood walls.
- 6. Plug thermocouples into data acquisition system jacks and verify that all instrumentation is working properly.
- 7. Dilution tunnel must be cleaned prior to each certification test series, and at anytime a higher burn rate follows a lower burn rate.

II. SAMPLING SYSTEMS SET-UP

A. Gas Analysis

1. All instruments should be turned on and allowed to warm up for 1-hour minimum.

pg. 3 of 8

Prior to calibrating, make sure that the outlet pressure on each calibration gas bottle reads 10 PSI. Adjust flow meters at each gas analyzer to required flow.

The gas analyzer (CO₂, CO, O₂) is zeroed on nitrogen. The O₂, CO₂ and CO analyzer is spanned with a certified span gas mixture.

Calibrate analyzers as follows:

- a. With calibration switch at "SPAN", adjust all span controls to values specified on span gas label.
- b. Switch to "ZERO" and adjust zero controls to provide 0.00 readout on all analyzers.
- c. Repeat a. and b. until no further adjustment is required.
- d. Record these values on the appropriate data sheet.
- e. Switch to "CAL." and record all analyzer values.
- 3. Response time synchronization check.
 - a. With switch at "SAMPLE" and no fire in unit, allow readings to stabilize (O₂ analyzer should read 20.93, CO and CO₂ should read 0.00).
 - b. Switch to "CAL" setting and start the stopwatch. Note the time required for each unit to reach the calibration gas bottle value. If all three analyzers reach this value within 5 seconds of each other, synchronization is adequate. If not, contact the laboratory manager. Synchronization is adjusted by either internal instrument setting or adjustment of sample line length.
 - c. Use EPA Method 5H 6.7-6.9 procedures to check calibration of instruments.
- 4. Sample clean-up train.
 - a. Load a new filter in 4-inch glass filter holder.
 - b. Load four Impingers as follows:
 - #1: 100 ml. distilled water
 - #2: 100 ml. distilled water
 - #3: Empty
 - #4: 200-300 grams Drierite.
 - c. Place Impingers in container and connect with greased "U TUBES".
 (Grease carefully on bottom half of ball joint so that grease will not get into tubes.)
 - d. Connect filter to impinger #1 and sample line to impinger #4.
 - e. Connect stack probe to filter.
 - f. Leak check system as follows:

pg. 4 of 8

- 1) Plug probe.
- 2) Turn on sample system and increase flow rate slowly.
- 3) Set vacuum-adjust valve to obtain a vacuum of 10 inches mercury.
- 4) If sapphire float in rotometer does not stabilize below 10 on scale, system must be resealed.
- 5) Repeat leak-check procedure until satisfactory results are obtained.
- 6) Unplug probe slowly, then decrease flow rate slowly before shutting off system.
- g. Just prior to starting test, fill impinger container with ice.

B. Dilution Tunnel Sample Train Set-Up:

- 1. Filters and holders.
 - a. Clean probes and filter holder front housings carefully and desiccate to a constant weight prior to use.
 - b. Filters and filter probe combinations should be numbered and labeled prior to use.
 - c. Weigh desiccated filters and probe filter units on analytical balance. Record the weights on the appropriate form. Note that the probe and front half of the front filter holder is to be weighed as a unit.
 - d. Carefully assemble the filter holder units and connect to sampling systems.
 - e. System #1 (Filter set #1) will have one filter set and System #2 (Filter set #2 and #3) will have two filter sets. Filter set #2 will be changed 1-hour into the test.
 - e. Change desiccate columns with dry absorbent before each test series.

2. Leak checking.

- a. Each sample system is to be checked for leakage prior to inserting probes in tunnel.
- b. Plug probes and start the samplers. Adjust pump bypass valve to produce a vacuum reading of 10 inches mercury. NOTE: During test, highest vacuum recorded is required for posttest leak check.
- c. Allow vacuum indication to stabilize at 10" mercury, record dry gas meter readings, (DGM₁, DGM₂). At a convenient DGM value start stopwatch. Time for 1 minute then stop vacuum pumps. Record dry gas meter readings again, (DGM₃, DGM₄). NOTE: If rotometer ball is floating above the 5-mm mark, system is leaking too much and all seals should be checked.

pg. 5 of 8

d. Calculate leakage rate as follows.

System 1: DGM3-DGM₁ = CFM₁ System 2: DGM4-DGM₂ = CFM₂

If CFM₁ or CFM₂ is greater than 0.02 cfm, or $_1$ S greater than 0.04 x Sample Rate, leakage is unacceptable and system must be resealed. For most tests the sample rate will be 0.25 cfm, thus leakage rates in excess of 0.04 x 0.25 = 0.010 cfm are not acceptable.

e. To prevent contamination, do not insert probes in tunnel until the start of the test run.

III. TEST CONDUCT

A. Pre-Test Fuel Load

1. Fill hopper with pellets, tare the scale, and place a 25lb weight on the scale to measure fuel consumed.

B. Test Fuel Load

- 1. Determine moisture content of pellets per ASTM E871 by weighing pellets before and after oven drying.
- 2. Verify and document the pellet manufacturer and grade of pellets used for test.
- 3. Confirm enough pellets are in the hopper to complete the test, add if necessary. Tare scale and place a 25lb weight on the scale to measure fuel consumed.

C. Unit Start-Up

- 1. With all doors and air controls closed, zero draft Magnehelic using screw located at bottom of meter.
- Before lighting a fire turn on dilution tunnel and set flow rate to 140 scfm (approximately 715 fpm) if burn rate is to be less than 3 kg/hr. For higher burn rates set flow for a 150:1 air fuel ratio (see chart for approximate values).
- Check draft imposed on cold stove. All inlets must be closed and a draft gauge in the chimney. If draft is greater than 0.005 inches water column, adjust tunnel to stack gap until draft is less than 0.005 inches water column.
- 4. With hot wire anemometer check for ambient airflow around unit (must be less than 50 ft/min).

pg. 6 of 8

- 5. Tare scale and start fire by turning the unit on per manufacturer's instructions. (Make sure stack sample probe is on the unit.)
- 6. Once fuel is burning well, operate at high fire for sufficient time to get the fuel burning well. Then adjust settings to intended test run levels.
- 7. Perform the dilution tunnel traverse as prescribed in ASTM E2515, Section 9.3.2 (Pitot tube should be carefully cleaned prior to each test.)
- 8. Pretest must burn for a minimum of 1 hour. Record room and flue temperatures.

D. Test Run

- 1. Stack gas analyzers should be on and in the sample mode.
- 2. When the 1-hour pre-burn is complete, the test is to be started.
 - a. Insert the sample probes into the tunnel being careful not to hit sides of tunnel with probe tip.
 - b. Check tunnel Pitot tube for proper position.
 - c. Confirm heater is set to the maximum burn rate.
 - d. Record initial readings.
 - e. Turn on probe sample systems and start timing test.
 - f. Tare platform scale and add 25lb weight.
 - g. Every 10 minutes record the following:
 - 1) Dry gas meter readings.
 - 2) Weight remaining.
 - 3) All thermocouple temperatures.
 - 4) Tunnel Pitot tube reading.
 - 5) Draft reading.
 - 6) Rotometer readings.
 - h. Filter temperatures shall not exceed 90°F anytime during the test. If the filters are approaching 90°F turn on cooling pump. Filters must be kept above the dilution tunnel wet bulb temperature in order to prevent condensation.
 - i. Regularly check impinger train for ice level during test.
 - j. At 1-hour, Filter set #2 is to be removed from the dilution tunnel and Filter set #3 is added. The heater is changed from the high burn setting to the ≤50% of maximum burn rate setting and operated for 2-hours.
 - k. At the 3-hour point, the heater is changed to the lowest burn rate setting.
 - I. At the 6-hour point, shut off sample trains and record last reading.
 - m. Record final dry gas meter values.
 - n. Shut down heater per manufacturer's instructions.

pg. 7 of 8

IV. POST TEST PROCEDURES

A. Leak Checks

1. Dilution Tunnel

- a. Remove sample probes from tunnel and plug with rubber stopper.
- b. Turn on sample system and set vacuum to 10" mercury or to the highest value reached during the test.
- c. At a convenient value start stopwatch and record the DGM starting value.
- d. After 1 minute stop sample system and record ending DGM value.
- e. Calculate leakage rate per pre-test description (see II.B.2.c.).

2. Gas Analyzers

- a. Set stack sample flow to about 75 mm on the rotometer.
- b. Plug with rubber stopper.
- c. Adjust vacuum to 10" mercury.
- d. Let system stabilize then record rotometer readings.
- e. If the rotometer readings do not equal zero, check with the laboratory manager.
- f. SLOWLY unplug probe and decrease flow rate to zero.
- g. Turn off stack sampling system.
- h. Zero, span and calibrate the analyzers (see Gas Analysis). RECORD ONLY these meter values.

B. Particulate Sample Recovery

- 1. Disassemble filter holder and collect all loose material on filters.
- Weigh and record probes and filters for each train. NOTE: 24 hours of desiccation must pass before final "no change" weight values can be recorded.
- 3. Weigh and record probes and fillers at 6-hour intervals until weight change between weighing is less than 0.5 mg.

V. DISPOSITION OF TESTED UNIT.

In order to meet the requirements of section 60.533(b)(8) of the EPA's 40CFR Part 60 Standards of Performance for New Residential Wood Heaters, Intertek Testing Services seals certified wood heaters by:

 Applying tamper-indicating tape to the firebox door, ash pan door, and the air controls.

pg. 8 of 8

- 2) Totally covering the unit with stretch wrap and stamping the stretch wrap with our WHI logo at various locations.
- 3) Strapping the door and ash pan closed with plastic banding so that the banding goes both around the unit laterally and from top to bottom. The banding is then stamped with our WHI logo so that the banding can't be simply replaced.
- 4) The certificate is then placed on the top of the unit and a second layer of stretch wrap is applied and stamped with our WHI logo.
- 5) The unit is placed on a pallet and strapped down with additional strapping to keep it on the pallet. It is then shipped back to the manufacturer.

18hR Preburn

Model: HP50	K-116	Treserie			•
Date	Time	Flue Temp		Pellets Added	Notes
10-5	10AM	77	77	40#	
10-5	11 Am	464	6/		
10-5	12 N	482	83		
10-5	IPM	483	84		
10-5	2 PM	480	54		FIL
10=5	3 PM 4 PM	472	91		(hes)
10-5	5 PM	457	94	21#	
10-6	Le AM	73	75	· · · · · · · · · · · · · · · · · · ·	-
10-6	7AM	386	77	•	
10-6	8 AM	419	81		
10-6	9 AM	447	82		
10-6	DAM	490	78	ila il	
10-6	11 AM	43 2	84	40#	
10-6	12 N	458	86		
10-6	Q PM	487	86		•
10.6	3 pm	485	86		
10-6	HPM	478	92	:	(12 hRS)
10-6	5 pm	482	·_	i n.H	<u> </u>
10-10	6 pM	4/4	59	40#	
10.7	630 AM	1140	8-3	:	
10-7	730 Am	467	රේව		
10-7	930 Am	441	53		
10-7	1030 AM	456	82		
10-7	1/30 Am	476			
10-7	B30 pm			40 #	
10-7	130PM	447	86		
10-7	2300M	461	86	· . :	e e e
18-17	330pm 430pm	460 460	84		
10-7	530 M	456	84 84		(1/hrs)
10-8	630AA		724	· :	<i>\(\lambda_{\text{i}} \)</i>
10-8	730 Am	410	73	:	
10-8	830 A~	428	78		
10-5	930 AM	433	78 61	40#	n e e
10-8	1030 An	444	5/		

Model: HP50				:	
Date	Time	Flue Temp	Room Temp	Pellets Added	Notes
10-8	1/30A	449	8/		
10-8	12 30.P	441	83		
10-8	130 P	451	81		
10-8	230 p	457	79		
10-8	330 P	442	8-2	110 16	
10-8		, —.	8/	40#	
10-8	5300		89		(11 bres)
10-9	630A	72	64		
10-9	730A	474	72		
10-9	830A	458	75 80		
10-9	930 A	476		Un H	
10-9	1030A	463 472		40#	(5 hrs)
10-41	11304		70		(5 hrs)
10-91	930A 1030A	467			
_ 10-91	1130A	464	72 73		269
	1 + 2 + + 1	, 0,	•	:	Total 115
			•		10/10 6 48
			• •		
				· ·	
p	:				
v	:	:			
	· · · · · · · · · · · · · · · · · · ·	· · · .			
		· :			
				•	
B · ·	:				
1	. :		:		
					:
				· 	
the state of the s					

Model: HP22 Date	Time	Flue Temp	Room Temp	Pellets Added	Notes
10-5	9 AM	73	76	40#	Notes
10-5	10 Am	464	81		
10-5 10-5	11 AM	504	85		·
10-5	Noon	493 496			
10-5	2 pm	472	87	25#	
10-5	3 PM	454	90		Rhac
10-5	4 PM	47/	90,		Onies
10-6	5PM GAM	416	75		-
10-6	JAM	-394	77.	•	•
10-6	8 Am	458	64	- M .	
10-6	9 AM	48 3 48 3		27#	
10-6	10 Am 11 Am	48 9	86	:	
10-6	Noon	V. ** 4	\$ <u>5</u>		
10-6	PM	476	90		
10-6	3 PM	4/6	92	40 H	
0-6	YPM	479	94	40 H	(2 5/3)
10-6	51M	4 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	95	12 #	
10-0	le pm 630 An	. 7/4 75	79		
10-7	730 An	457	79		
10-7	830 An	468	56		
10-7	930 Am 1030 Am	480	86 64	40 E	:
10-7	130 AM	473	84 83 84	10 7	:
10-7	1230 pm	462	54		
10-7) 30 pm	463	65	11. 14	
10-7	230pm	465	3 86	40#	
10-07	430 pm	48	3 86		(11 MG
10-7	430 pm 530 pm 630 Am	463	75668885	:	
10-8	730 Am	78 463	15.		
10-8	830An-	- 478	84 85 85		
10-8	930 Av	· 477	85		

Model: HP22				:	•
Date	Time	Flue Temp	Room Temp	Pellets Added	Notes
10-8	10:30 F	482	84	40#	
10-8	[130A	473	83		
/० −४	1230p	476	&3,		
10-8	130pm	480	8.4		
10-8	2 30p	7/2	35	· :	
10-8	330p 430p	708	86	40 H	
10-8	530p	476	85	707	(11 hrs)
10-9	630A		フン		
10-9	730A	478	79	•	
10-9	830A	48 1	65		
10-9	,930 A	476	83	11 31	
10-4	1030A	484		40#	(ELies)
10-9	1130 A	476	83		971.3
10-11	930A	70	// 7\$		
10-11	1030 A	482 490		. ·	263
	71.30 71		, , u		
:				· :	49 Total
		:			61 101 M