Vivak® ## Solid copolyester sheet ## Your benefits: - excellent thermoformability - good impact strength - suitable for food-contact applications - good fire rating Solid **Vivak**® sheets are made of thermoplastic copolyester. They offer high impact strength, a good fire rating and are fully recyclable. **Vivak® clear 099** is a clear transparent sheet with extremely high light transmission and high gloss. Vivak® clear 099 can be used for food-contact applications. ## **Applications:** Ideal fields of application for **Vivak®** are: P.O.S. (displays, price tag holders, shelf partitions), direction signs, promotional symbols, food containers and trays, flat and formed machine coverings, partitions. **Vivak®** can be rapidly thermoformed at low energy consumption, short production cycles, extreme degrees of stretching and accurate mold surface reproduction, without predrying. The sheets are easy to screen print, 3D-print and machine. | | Test Conditions | Typical values | Unit | Standard | |--|---|---|--|---| | PHYSICAL Density Moisture absorption Refractive index | after storage in standard climate 23 °C/50 %r.F. after storage in water at 23 °C until saturation 20 °C | 1.27
0.2
0.6
1.567 | g/cm³
%
% | ISO 1183-1
ISO 62-4
ISO 62-1
ISO 489 | | MECHANICAL Tensile stress at yield Elongation at yield Tensile strength Elongation at break Elastic modulus Limiting flexural stress Impact strength | Charpy, unnotched
Charpy, notched
Izod notched | > 45
4
> 45
> 35
2,020
ca. 80
no break
ca. 7
ca. 6 | MPa
%
MPa
%
MPa
MPa
kJ/m²
kJ/m² | ISO 527-2/1B/50
ISO 527-2/1B/50
ISO 527-2/1B/50
ISO 527-2/1B/50
ISO 527-2/1B/1
ISO 178
ISO 179/1fU
ISO 179/1eA
ISO 180/1A | | THERMAL Vicat softening temperature Thermal conductivity Coeff. of linear thermal expansion Heat deflection temperature under load | Method B50 Method A: 1.80 MPa Method B: 0.45 MPa | 80
0.2
0.05
63
70 | °C
W/m K
mm/m K
°C
°C | ISO 306
DIN 52612
DIN 53752-A
ISO 75-2
ISO 75-2 | | ELECTRICAL Dielectric strength Volume resistivity Surface resistivity Dielectric constant Dissipation factor | at 10 ³ Hz
at 10 ⁶ Hz
at 10 ³ Hz
at 10 ⁶ Hz | 16.1
10 ¹⁵
10 ¹⁶
2.6
2.4
0.005
0.02 | kV/mm
Ohm·cm
Ohm | IEC 60243-1
IEC 60093
IEC 60093
IEC 60250
IEC 60250
IEC 60250
IEC 60250 | The mechanical properties were measured on sheets of 4 mm thickness.