SELECTING THE RIGHT TOWER HEIGHT

Making Sure You Maximize the Power Generated

WHERE IS THE DOMINANT WIND?

The first step to selecting the right tower height is determining where the dominant wind comes from. In North America, dominant winds generally flow west to east. Check your local weather report to be certain.

> ADD MINUMUM 1OFT TO TALLEST OBSTRUCTION

Once you determine the height of the tallest obstruction, add minimum 10 ft , ideally 20 ft . This number is your minimum tower height for the turbine. Our towers are 22 ft , 33 ft , 44 ft , 55 ft , and 66 ft ; be sure to round up!
,

0

IS THERE ANYTHING BLOCKING THE WIND?

Once you establish where the dominant wind originates from, evaluate any possible obstructions in that direction. Take a look at our blog "How You Can Easily Measure Tree Heights" for more information.

DO YOU HAVE THE

AREA FOR

 INSTALLATION?Our turbines are assembled horizontally and then raised. It is important that you have the area to build the turbine flat and then raise it. As an example, a 44 ft tower will need at least 44 ft of land on which to be assembled before being raised.

Example

Mary has no obstructions surrounding her property so she selects a 22 ft tower. In addition, the turbine has a 6 ft diameter. With a total length of 28 ft , she chooses to assemble and install her turbine in the middle of 60 ftx 40 ft property. She will have the space for horizontal assembly.

Check out our blog post which depicts the best mobile apps for measuring tree heights!

i.e. Nova Scotia, Canada

Height: Mean wind speed kWh/Year

$$
22 \mathrm{ft} \quad 22.7 \mathrm{~km} / \mathrm{hr} 2531
$$ $66 \mathrm{ft} \quad 25.2 \mathrm{~km} / \mathrm{hr} 3017$

An 11\% increase in mean wind speed, kWh/Year increased by almost 20\%!

