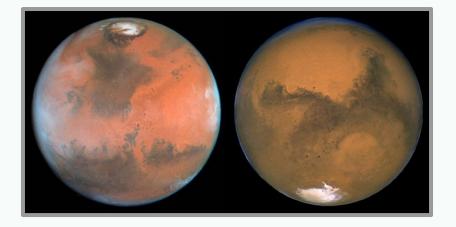
Exolith Lab Martian Simulants

What is Exolith Lab?

- Exolith provides the space industry with Lunar, Martian, and Asteroid surface analogs
 - Also called "regolith simulants"
 - Working with companies like SpaceX, Blue Origin, NASA, ESA, and JAXA
- Part of the Florida Space Institute and CLASS
 - Under the University of Central Florida

Mars


- 4th Planet from the Sun
 - Terrestrial planet
 - Second smallest in Solar System
- Very Thin atmosphere
 - 95% CO2
 - 2.7% Nitrogen
 - \circ 1.6% Argon
 - 0.13% Oxygen
- "The Red Planet"

	Mars Global Surveyor Project Simple Facts	NASA
	About Mars	
	Diameter:	6,794 km (53% of Earth)
the star	Mars Day:	24 hrs, 37 min
6 6 6 1	Mars Year:	687 Earth Days
1 and the second	Mass:	11% of Earth
1 and and	Gravity:	38% of Earth
C. Martin	Atmosphere:	95% Carbon Dioxide, 3% Nitrogen
	Atmospheric Pressure:	1% of Earth's Sea Level
	Temperature at Surface:	
		WLJLC May 1995

"The Red Planet"

- Mars is red due to an abundance of Iron Oxide on its surface!
 - \circ It is rusty
- Ice caps on the North and South pole
 - Water suspected to have once flowed on Mars
- Complex weather patterns and seismically active
 - $\circ \quad \text{A lot going on!!} \\$

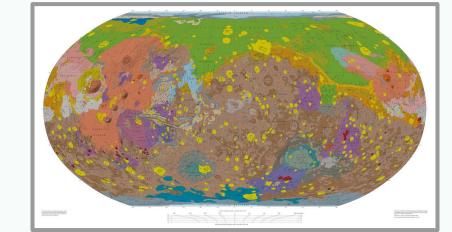
North and South Poles of Mars

Geology of Mars

Geologic History

- Nochain (4.7-3.1 BY) 0
 - Heavy bombardment
 - Volcanic activity
 - Clay minerals formed
 - Water Bodies were common
- Hesperian (3.7-2.9 BY) 0
 - Geological slow down
 - Sulphuric acid rain
 - Sulphate deposits formed
- Amazonian (2.9 BY- Present) 0
 - dry and arid
 - Erosion and oxidation

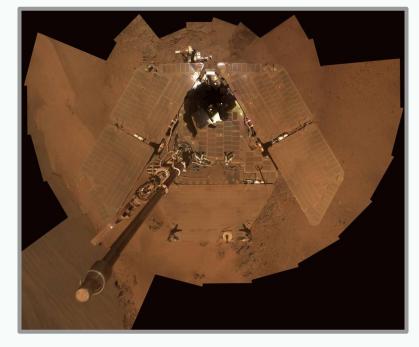
Artistic Depiction of Water on Mars



Mineralogy of Mars

• Present Day Mineralogy

- Phyllosilicates
 - Clays
- Felsic Minerals
 - Silicate lacking Iron and Magnesium
- Salts
- Carbonates
- Sulfates
- Mafic Minerals
 - Silicate with Iron and Magnesium
- \circ Iron Oxide



Map of Martian Geology (USGS)

Martian Regolith

- Regolith is a blanket of unconsolidated, loose, heterogeneous superficial deposits covering solid rock
 - Problematic on Mars
 - Dust storms are frequent
- Regolith covers rover solar panels, ultimately killing them
 - Damages rover wheels

Opportunity Rover Covered in Regolith

Exolith Lab Martian Studies

- Regolith Simulant is used to test hardware and processes on Earth, before we go to Mars
 - Structural applications
 - Plant growth
 - Human health
 - Mineral extraction
 - Hardware deterioration
- High fidelity mixture of minerals found on Mars
- We do not simulate dangerous compounds (perchlorates, asbestos, etc.)

Plant Mars Challenge using Martian Simulants

General Simulant Mineralogy

- Phyllosilicates: Smectite
- Felsic Minerals: Plagioclase
- Salts: Gypsum/Anhydrite
- Carbonates: Fe Carbonate,
- Sulfates: Mg Sulfate,
- Mafic Minerals: Basalt, Pyroxene, Olivine
- Iron Oxide: Magnetite, Hematite, Ferrihydrite

Mineral	Wt.%
Olivine	32.0
Plagioclase	16.0
Glass-rich basalt	13.5
Pyroxene	12.0
Mg-carbonate	11.0
Smectite	6.0
Mg-sulfate	2.4
Ferrihydrite	2.1
Hydrated silica	1.8
Magnetite	1.1
Anhydrite	1.0
Fe-carbonate	0.8
Hematite	0.3

MGS-1 Mixture

Mineral	Wt.%
Plagioclase	27.1
Glass-rich basalt	22.9
Pyroxene	20.3
Olivine	13.7
Mg-sulfate	4.0
Ferrihydrite	3.5
Hydrated silica	3.0
Magnetite	1.9
Anhydrite	1.7
Fe-carbonate	1.4
Hematite	0.5

JEZ-1 Mixture

Simulant Creation

- Appropriate minerals are sourced
 - Come to us crushed or we crush them
 - \circ XRD and XRF used to verify minerals
- Minerals are measured out using recipe sheet
- Mixture is put into cement mixer and mixed until homogenous
 - Oxidizes minerals and assures consistency

Outdoor Processing Area

Simulant Creation

- Data on the mineralogy of Mars has been gathered by different sources
 - \circ Rovers
 - Mars Orbiters
- Goals of simulant
 - Accurate Mineralogy
 - Particle size range
 - Particle shape
 - \circ Oxidation

Exolith Lab Mineral Mixture

Martian Global Simulant (MGS-1)

- Standard basaltic soil on Mars
 - Based on Rocknest soil analyzed by Curiosity
- Particle Size Range: .04-1000 microns
- Mean Particle Size: 90 Microns
- Bulk Density: 1.29 g/cm^3
 - Used to approximate martian regolith for any purpose

Mineral	Wt.%
Plagioclase	27.1
Glass-rich basalt	22.9
Pyroxene	20.3
Olivine	13.7
Mg-sulfate	4.0
Ferrihydrite	3.5
Hydrated silica	3.0
Magnetite	1.9
Anhydrite	1.7
Fe-carbonate	1.4
Hematite	0.5

Martian Global Simulant Clay (MGS-1C)

• Modified MGS-1 Simulant

- Enhanced with Smectite for clay representation
- Used for In Situ Resource Utilization of water
- Mean Particle Size: 24 Microns

Mineralogy		
Mineral	Wt.%	
Smectite	40.0	
Plagioclase	16.4	
Glass-rich basalt	13.7	
Pyroxene	12.2	
Olivine	8.2	
Mg-sulfate	2.4	
Ferrihydrite	2.1	
Hydrated silica	1.8	
Magnetite	1.1	
Anhydrite	1.0	
Fe-carbonate	0.8	
Hematite	0.3	

Martian Global Simulant Sulfate (MGS-1S)

• Modified MGS-1 Simulant

- Enhanced with Gypsum for sulfate representation
- Used for In Situ Resource Utilization of water
- Mean Particle Size: 119 Microns

Jezero Delta Simulant (JEZ-1)

- Based on orbital data of Jezero Crater
 - Used for studies involving Perseverance
 - Additional Smectite, Mg-Carbonate, and Olivine
- Mean Particle Size: 70 Microns

Mineral	Wt.%
Olivine	32.0
Plagioclase	16.0
Glass-rich basalt	13.5
Pyroxene	12.0
Mg-carbonate	11.0
Smectite	6.0
Mg-sulfate	2.4
Ferrihydrite	2.1
Hydrated silica	1.8
Magnetite	1.1
Anhydrite	1.0
Fe-carbonate	0.8
Hematite	0.3

Phobos (PGI-1 and PCA-1)

- Two Phobos simulants were created for the JAXA Phobos mission
 - Phobos Giant Impact
 - Phobos Captured Asteroid
- Used to test sample return mechanisms

Phobos Simulant Creation

Uses of Simulant

- In Situ Resource Utilization
 - water extraction
 - construction processes
- Hardware Testing
 - Rover wheels
 - Sampling equipment
- Mechanical properties testing
- Plant growth
- Outreach

Student Plant Growth Studies

In Situ Resource Utilization

- Water extraction
 - Testing to see which types of regolith hold the most water
- Construction processes
 - Manufacturing using clay components
 - Utilizing Iron Oxides for sintering

EOLITH

David Karl @spaceceramics · Jan 21, 2021

at @TUBerlin and enjoying the last espresso from a real spaceceramics cup (made using Mars simulant MGS-1 supplied by @ExolithLab and @kmcannon) before further lockdown starts on monday. the ceramic cup is dense sintered to maturity with a lot of bloating and looks/feels

Cup Created with MGS-1

Plant Growth

- Plant growth is one of the most common uses of MGS-1
 - Food production is essential on Mars
- Plant Mars challenge
 - Students all over world participate
 - Various methodologies and level of success

MGS-1 Plant Growth Experiment

Summary

- A good simulant will replicate:
 - Mineralogy
 - Physical Properties
 - Driven by mineralogy
- Exolith Lab creates mineralogically accurate simulants that mimic the expected chemical and physical properties of planetary regolith
 - \circ Can create custom simulants
 - Free scientific consultations
 - <u>https://www.exolithsimulants.com</u>
 - exolithlab@ucf.edu

