SET-3G™ High-Strength Epoxy Adhesive

SET-3G is an epoxy-based anchoring adhesive with high design strength and proven performance. SET-3G is a 1:1 ratio, two-component, anchoring adhesive for concrete (cracked and uncracked). SET-3G installs and performs in a variety of environmental conditions and temperature extremes.

Features

- Exceptional performance superior bond strengths permit ductile solutions in high seismic areas
- Design flexibility improved sustained load performance at elevated temperature
- Jobsite versatility can be specified for all base material conditions when in-service temperatures range from -40°F (-40°C) to 176°F (80°C)
- Recognized per ICC ES AC308 for post-installed rebar development and splice length design provisions
- Approved for installation with multiple vacuum-drill bit systems without further hole cleaning. See Code Report (ESR-4057) and engineering letter at **strongtie.com** for approved systems.

Product Information

Mix Ratio/Type	1:1 epoxy
Mixed Color	Gray
Base Materials	Concrete and masonry — cracked and uncracked
Base Material Conditions	Dry, water-saturated, water-filled hole, submerged
Anchor Type	Threaded rod or rebar
Substrate Installation Temperature	40°F (4°C) to 100°F (38°C)
In-Service Temperature Range	-40°F (-40°C) to 176°F (80°C)
Storage Temperature	45°F (7°C) and 90°F (32°C)
Shelf Life	24 months
Volatile Organic Compound (VOC)	2 g/L
Chemical Resistance	See pp. 242–243
Manufactured in the US using global m	naterials

Test Criteria

SET-3G has been tested in accordance with ICC-ES AC308, AC58, ACI 355.4 and applicable ASTM test methods.

Code Reports, Standards and Compliance

Concrete — ICC-ES ESR-4057 (including post-installed rebar connections, City of LA and Florida Building Code), Florida FL15730. Masonry — ICC-ES ESR pending. ASTM C881 and AASHTO M235 - Types I/IV and II/V, Grade 3, Class B & C. UL Certification — CDPH Standard Method v1.2.

Cracked SET-3G Adhesivo para sujetadores de mucha resistencia Adhésif d'ancrage à haute **22** floz 650 mL

SET-3G Adhesive

Installation Instructions

Installation instructions are located at the following locations: pp. 48-51; product packaging; or strongtie.com/set3g.

• Hole cleaning brushes are located on p. 52.

SET-3G Adhesive Cartridge System

NSF/ANSI/CAN 61 (216 in.2 / 1,000 gal.).

Model No.	Capacity (ounces)	Cartridge Type	Carton Quantity	Dispensing Tool(s)	Mixing Nozzle³
SET3G10⁴	8.5	Coaxial	12	CDT10S	
SET3G22-N ⁴	22	Side-by-side	10	EDT22S, EDTA22P, EDTA22CKT	EMN22I
SET3G56	56	Side-by-side	6	EDTA56P	

- 1. Cartridge estimation guidelines are available at strongtie.com/softwareandwebapplications/category.
- 2. Detailed information on dispensing tools, mixing nozzles and other adhesive accessories is available at strongtie.com.
- 3. Use only Simpson Strong-Tie mixing nozzles in accordance with Simpson Strong-Tie instructions. Modification or improper use of mixing nozzle may impair SET-3G adhesive performance.
- 4. One EMN22I mixing nozzle and one extension are supplied with each cartridge.
- 5. Use of rodless pneumatic tools to dispense single-tube, coaxial adhesive cartridges is prohibited.

SET-3G™ High-Strength Epoxy Adhesive

SET-3G Cure Schedule^{1,2}

Concrete To	emperature	Gel Time	Cure Time
(°F)	(°C)	(minutes)	(hr.)
40	4	120	192
50	10	75	72
60	16	50	48
70	21	35	24
90	32	25	24
100	38	15	24

For SI: $1^{\circ}F = (^{\circ}C \times \%) + 32$.

- 1. For water-saturated concrete, submerged concrete and water-filled holes, the cure times shall be doubled.
- 2. For installation of anchors in concrete where the temperature is below 70°F (21°C), the adhesive must be conditioned to a minimum temperature of 70°F (21°C).

SET-3G Typical Properties

	Dranashi	Class B	Class C	Test		
	Property	(40°-60°F)	(>60°F)	Method		
Consistency		Non-sag	Non-sag	ASTM C881		
	Hardened to Hardened Concrete, 2-Day Cure ¹	3,700 psi	3,300 psi			
Bond Strength, Slant Shear	Hardened to Hardened Concrete, 14-Day Cure ¹	3,850 psi	3,350 psi	ASTM C882		
	Fresh to Hardened Concrete, 14-Day Cure ²	2,750 psi	2,750 psi			
Compressive Yield Strength, 7-Day Cure ²		13,000 psi	15,350 psi	ASTM D695		
Compressive Modulus, 7-Day	Cure ²	650,000 psi	992,000 psi	ASTM D695		
Heat Deflection Temperature,	7-Day Cure ²	147°F	ASTM D648			
Glass Transition Temperature,	7-Day Cure ²	149°F	ASTM E1356			
Decomposition Temperature, 2	24-Hour Cure ²	500°F	ASTM E2550			
Water Absorption, 24-Hours, 7	7-Day Cure ²	0.1	3%	ASTM D570		
Shore D Hardness, 24-Hour Cure ²		8	84			
Linear Coefficient of Shrinkage	e, 7-Day Cure ²	0.002	ASTM D2566			
Coefficient of Thermal Expans	ion ²	2.3 x 10 ⁻	⁵ in./in.°F	ASTM C531		

- 1. Material and curing conditions: Class B at 40° \pm 2°F, Class C at 60° \pm 2°F.
- 2. Material and curing conditions: $73^{\circ} \pm 2^{\circ}F$.

SET-3G Installation Information and Additional Data for Threaded Rod and Rebar¹

Characteristic	Symbol	Units	Nominal Anchor Diameter da (in.) / Rebar Size							
Gnaracteristic			3% / #3	1/2 / #4	% / #5	3⁄4 / #6	7⁄8 / # 7	1 / #8	11/4 / #10	
		Installa	tion Informa	ation						
Drill Bit Diameter for Threaded Rod	d _{hole}	in.	7/16	9/16	11/16	7/8	1	1 1/8	1 3/8	
Drill Bit Diameter for Rebar	d _{hole}	in.	1/2	5/8	3/4	7/8	1	1 1/8	1%	
Maximum Tightening Torque	T _{inst}	ftlb.	15	30	60	100	125	150	200	
Minimum Embedment Depth	h _{ef, min}	in.	23/8	23/4	31/8	3½	3¾	4	5	
Maximum Embedment Depth	h _{ef, max}	in.	71/2	10	121/2	15	17½	20	25	
Minimum Concrete Thickness	h _{min}	in.	h _{ef} +	- 11⁄4			$h_{ef} + 2d_{hole}$			
Critical Edge Distance	C _{ac}	in.	See footnote 2							
Minimum Edge Distance	c _{min}	in.	1¾ 2¾						2¾	
Minimum Anchor Spacing	S _{min}	in.	1	21/2		(3		6	

^{1.} The information presented in this table is to be used in conjunction with the design criteria of ACI 318-19, ACI 318-14 and ACI 318-11.

2. $C_{ac} = h_{ef} (\tau_{k,uncr}/1,160)^{0.4} \times [3.1 - 0.7(h/h_{ef})],$ where:

 $[h/h_{ef}] \le 2.4$

 $au_{k,uncr}$ = the characteristic bond strength in uncracked concrete, given in the tables that follow $\leq k_{uncr} ((h_{ef} \times f_C)^{0.5}/(\pi \times d_a))$

h = the member thickness (inches)

 h_{ef} = the embedment depth (inches)

SET-3G[™] Design Information — Concrete

SET-3G Tension Strength Design Data for Threaded Rod^{1,7}

	Obayaak	autakia.	Cumbal	Unite			Nominal	Rod Dian	neter (in.)		
	Charact	eristic	Symbol	Units	3/8	1/2	5/8	3/4	7/8	1	11/4
		Steel Stren	gth in Tens	ion							
Mini	mum Tensile Stress Area		Ase	in. ²	0.078	0.142	0.226	0.334	0.462	0.606	0.969
Tens	sion Resistance of Steel — ASTM F155	54, Grade 36			4,525	8,235	13,110	19,370	26,795	35,150	56,200
Tens	sion Resistance of Steel — ASTM F155	54, Grade 55			5,850	10,650	16,950	25,050	34,650	45,450	72,675
_	sion Resistance of Steel — ASTM A193	,			9,750	17,750	28,250	41,750	57,750	75,750	121,125
	ion Resistance of Steel — Stainless Stee es 304 and 316)	el ASTM A193, Grade B8 and B8M	N _{sa}	lb.	4,445	8,095	12,880	19,040	26,335	34,540	55,235
		teel ASTM F593 CW (Types 304 and 316)			7,800	14,200	22,600	28,390	39,270	51,510	82,365
_	sion Resistance of Steel — Stainless S	, ()1 /			8,580	15,620	24,860	36,740	50,820	66,660	106,590
Stre	ngth Reduction Factor for Tension — S	teel Failure	φ					0.755			
		Concrete Breakout Strength in T	ension (2,5	00 psi s	\leq f' _C \leq 8,0	00 psi)					
Effe	ctiveness Factor for Cracked Concrete		k _{c,cr}	_				17			
Effe	ctiveness Factor for Uncracked Concret	e	k _{c,uncr}	_				24			
Stre	ngth Reduction Factor — Concrete Bre	eakout Failure in Tension	φ					0.655			
		Bond Strength in Tension (2,500 psi ≤	≤ f' _C ≤ 8	,000 psi) ⁶						
Mini	mum Embedment		h _{ef,min}	in.	2%	23/4	31/8	3½	3¾	4	5
Max	imum Embedment		h _{ef,max}	in.	71/2	10	121/2	15	17½	20	25
	Temperature Range A ^{2,4}	Characteristic Bond Strength in Cracked Concrete ⁸	τ _{k,cr}	psi	1,448	1,402	1,356	1,310	1,265	1,219	1,128
 E	Temperature hange A	Characteristic Bond Strength in Uncracked Concrete ⁸	τ _{k,uncr}	psi	2,357	2,260	2,162	2,064	1,967	1,868	1,672
Continuous Inspection	Temperature Range B ^{3,4}	Characteristic Bond Strength in Cracked Concrete ⁸	$ au_{k,cr}$	psi	1,201	1,163	1,125	1,087	1,050	1,012	936
sul sno		Characteristic Bond Strength in Uncracked Concrete ⁸	$ au_{k,uncr}$	psi	1,957	1,876	1,795	1,713	1,632	1,551	1,388
in l	Anchor Category	Dry Concrete	_	_				1			
out	Strength Reduction Factor	Dry Concrete	Ф _{dry,ci}	_			1	0.655			
	Anchor Category	Water-Saturated Concrete, Water-Filled Hole or Submerged Concrete	_	_	;	3			2		
	Strength Reduction Factor	Water-Saturated Concrete, Water-Filled Hole or Submerged Concrete	φ _{wet,ci}	_	0.4	1 5⁵			0.555		1
	Temperature Range A ^{2,4}	Characteristic Bond Strength in Cracked Concrete ⁸	$ au_{k,cr}$	psi	1,346	1,304	1,356	1,310	1,265	1,219	1,128
_	Tomporatare Hange / L	Characteristic Bond Strength in Uncracked Concrete ⁸	$ au_{k,uncr}$	psi	2,192	2,102	2,162	2,064	1,967	1,868	1,672
Periodic Inspection	Temperature Range B ^{3,4}	Characteristic Bond Strength in Cracked Concrete ⁸	$ au_{k,cr}$	psi	1,117	1,082	1,125	1087	1,050	1,012	936
Characteristic Bond Strength in Uncracked Concrete ⁸			$ au_{k,uncr}$	psi	1,820	1,744	1,795	1,713	1,632	1,551	1,388
ioi	Anchor Category Dry Concrete			_		2			1		
Per			φ _{dry,pi}	_	0.5	55 ⁵			0.655		
	Anchor Category	Water-Saturated Concrete, Water-Filled Hole or Submerged Concrete	_	_				3			
	Strength Reduction Factor	Water-Saturated Concrete, Water-Filled Hole or Submerged Concrete	Фwet,pi	_		1		0.455			
Red	uction Factor for Seismic Tension		$\alpha_{N,seis}^{g}$	—	1.0	0.9	1.0	1.0	1.0	1.0	1.0

- 1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-19, ACI 318-14 and ACI 318-11.
- $2. \ Temperature \ Range \ A: Maximum \ short-term \ temperature = 160°F, \ Maximum \ long-term \ temperature = 110°F.$
- 3. Temperature Range B: Maximum short-term temperature = 176°F, Maximum long-term temperature = 110°F.
- 4. Short-term concrete temperatures are those that occur over short intervals (diurnal cycling). Long-term temperatures are roughly constant over significant periods of time.
- 5. The tabulated value of ϕ applies when the load combinations from the IBC or ACI 318 are used and the requirements of ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, are met. If the load combinations of ACI 318-11 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of ϕ .
- 6. Bond strength values shown are for normal-weight concrete having a compressive strength of $f_C = 2,500$ psi. For higher compressive strengths up to 8,000 psi, the tabulated characteristic bond strength may be increased by a factor of $(f_C'/2,500)^{0.35}$ for uncracked concrete and a factor of $(f_C'/2,500)^{0.34}$ for cracked concrete.
- 7. For lightweight concrete, the modification factor for bond strength shall be as given in ACI 318-19 17.2.4, ACI 318-14 17.2.6 or ACI 318-11 D.3.6, as applicable, where applicable.
- 8. Characteristic bond strength values are for sustained loads, including dead and live loads.
- 9. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, the bond strength values must be multiplied by $\alpha_{N,seis}$.

SET-3G[™] Design Information — Concrete

SET-3G Tension Strength Design Data for Rebar^{1,7}

		a					I	Rebar Siz	е		
		Characteristic	Symbol	Units	#3	#4	#5	#6	#7	#8	#10
		Steel St	rength in Te	nsion		1		1	1		
N	linimum Tensile Stress Area		A _{se}	in. ²	0.11	0.20	0.31	0.44	0.60	0.79	1.27
To	ension Resistance of Steel —	Rebar (ASTM A615 Grade 60)	N _{sa}	lb.	9,900	18,000	27,900	39,600	54,000	71,100	114,300
To	ension Resistance of Steel —	Rebar (ASTM A706 Grade 60)	IVsa	ID.	8,800	16,000	24,800	35,200	48,000	63,200	101,600
S	trength Reduction Factor for 1	ension — Steel Failure	φ	_				0.755			
		Concrete Breakout Strength	in Tension (2,500 ps	$\leq f_C \leq 8$,000 psi)					
E	ffectiveness Factor for Cracke	d Concrete	k _{c,cr}	_				17			
E	ffectiveness Factor for Uncrac	ked Concrete	k _{c,uncr}	_				24			
S	trength Reduction Factor — (Concrete Breakout Failure in Tension	φ					0.655			
		Bond Strength in Tens	T .	1		ŕ		T			
-	linimum Embedment		h _{ef,min}	in.	2%	2¾	31/8	3½	3¾	4	5
N	Maximum Embedment		h _{ef,max}	in.	7½	10	12½	15	17½	20	25
	Temperature Range A ^{2,4}	Characteristic Bond Strength in Cracked Concrete ⁸	$ au_{k,cr}$	psi	1,448	1,402	1,356	1,310	1,265	1,219	1,128
	Temperature hange A	Characteristic Bond Strength in Uncracked Concrete ⁸	$ au_{k,uncr}$	psi	2,269	2,145	2,022	1,898	1,774	1,651	1,403
ection	T	Characteristic Bond Strength in Cracked Concrete ⁸	$ au_{k,cr}$	psi	1,201	1,163	1,125	1,087	1,050	1,012	936
Continuous Inspection	Temperature Range B ^{3,4}	Characteristic Bond Strength in Uncracked Concrete ⁸	$ au_{k,uncr}$	psi	1,883	1,781	1,678	1,575	1,473	1,370	1,165
nuor	Anchor Category	Dry Concrete	-	_				1			
Sonti	Strength Reduction Factor	Dry Concrete	φ _{dry,ci}	-7				0.655			
	Anchor Category	Water-Saturated Concrete, Water-Filled Hole or Submerged Concrete	_	_	;	3			2		
	Strength Reduction Factor	Water-Saturated Concrete, Water-Filled Hole or Submerged Concrete	$\phi_{wet,ci}$	_	0.4	45 ⁵			0.555		
	Temperature Range A ^{2,4}	Characteristic Bond Strength in Cracked Concrete ⁸	τ _{k,cr}	psi	1,346	1,304	1,356	1,310	1,265	1,219	1,128
	Temperature hange A	Characteristic Bond Strength in Uncracked Concrete ⁸	$ au_{k,uncr}$	psi	2,110	1,995	2,022	1,898	1,774	1,651	1,403
ction	Temperature Range B ^{3,4}	Characteristic Bond Strength in Cracked Concrete ⁸	τ _{k,cr}	psi	1,117	1,082	1,125	1,087	1,050	1,012	936
Periodic Inspection	Temperature nange b	Characteristic Bond Strength in Uncracked Concrete ⁸	$ au_{k,uncr}$	psi	1,751	1,656	1,678	1,575	1,473	1,370	1,165
iodic	Anchor Category	Dry Concrete	_	_	_ 2 1						
Per	Strength Reduction Factor	Dry Concrete	φ _{dry,pi}	_	0.9	55 ⁵			0.655		
	Anchor Category	Water-Saturated Concrete, Water-Filled Hole or Submerged Concrete	_	_				3			
	Strength Reduction Factor	Water-Saturated Concrete, Water-Filled Hole or Submerged Concrete	$\phi_{wet,pi}$	_				0.455			
R	eduction Factor for Seismic Te	ension	$lpha_{N,seis}{}^{g}$	-	1.0	1.0	1.0	1.0	1.0	1.0	1.0

- 1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-19, ACI 318-14 and ACI 318-11.
- 2. Temperature Range A: Maximum short-term temperature = 160°F, Maximum long-term temperature = 110°F.
- 3. Temperature Range B: Maximum short-term temperature = 176°F, Maximum long-term temperature = 110°F.
- 4. Short-term concrete temperatures are those that occur over short intervals (diurnal cycling). Long-term temperatures are roughly constant over significant periods of time.
- 5. The tabulated value of ϕ applies when the load combinations from the IBC or ACI 318 are used and the requirements of ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, are met. If the load combinations of ACI 318-11 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of ϕ .
- 6. Bond strength values shown are for normal-weight concrete having a compressive strength of $f'_{C} = 2,500$ psi. For higher compressive strengths up to 8,000 psi, the tabulated characteristic bond strength may be increased by a factor of $(f_c/2,500)^{0.35}$ for uncracked concrete and a factor of $(f_c/2,500)^{0.24}$ for cracked concrete.
- 7. For lightweight concrete, the modification factor for bond strength shall be as given in ACI 318-19 17.2.4, ACI 318-14 17.2.6 or ACI 318-11 D.3.6, as applicable, where applicable.
- 8. Characteristic bond strength values are for sustained loads, including dead and live loads.
- 9. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, the bond strength values must be multiplied by $\alpha_{N,seis}$.

C-A-2023 @ 2023 SIMPSON STRONG-TIE COMPANY INC.

Strong-Tie

SET-3G[™] Design Information — Concrete

SET-3G Shear Strength Design Data for Threaded Rod¹

Characteristic	Symbol	Units	Nominal Rod Diameter (in.)							
GHALACIENSUC	Syllibol	UIIILS	3/8	1/2	5%	3/4	7/8	1	11/4	
	Steel S	trength in Sh	iear							
Minimum Shear Stress Area	Ase	in. ²	0.078	0.142	0.226	0.334	0.462	0.606	0.969	
Shear Resistance of Steel — ASTM F1554, Grade 36			2,715	4,940	7,865	11,625	16,080	21,090	33,720	
Shear Resistance of Steel — ASTM F1554, Grade 55	V _{sa}	lb.	3,510	6,390	10,170	15,030	20,790	27,270	43,605	
Shear Resistance of Steel — ASTM A193, Grade B7			5,850	10,650	16,950	25,050	34,650	45,450	72,675	
Reduction factor for Seismic Shear — Carbon Streel	$lpha_{V\!,seis^3}$	+		0.75				1	.0	
Shear Resistance of Steel — Stainless Steel ASTM A193, Grade B8 and B8M (Types 304 and 316)			2,665	4,855	7,730	11,425	15,800	20,725	33,140	
Shear Resistance of Steel — Stainless Steel ASTM F593 CW (Types 304 and 316)	V _{sa}	lb.	4,680	8,520	13,560	17,035	23,560	30,905	49,420	
Shear Resistance of Steel — Stainless Steel ASTM A193, Grade B6 (Type 410)			5,150	9,370	14,915	22,040	30,490	40,000	63,955	
Reduction factor for Seismic Shear — Stainless Steel	$\alpha_{V,seis^3}$	_	0.	80		0.75		1.0		
Strength Reduction Factor for Shear — Steel Failure	φ	_				0.65 ²				
	Concrete Brea	kout Strengt	h in Shear							
Outside Diameter of Anchor	da	in.	0.375	0.5	0.625	0.75	0.875	1	1.25	
Load-Bearing Length of Anchor in Shear	le	in.		Mi	n. of <i>h_{ef}</i> and	d 8 times ar	nchor diame	eter		
Strength Reduction Factor for Shear — Breakout Failure	φ	_	- 0.70 ²							
	Concrete Pry	out Strength	in Shear							
Coefficient for Pryout Strength	k _{cp}	in.		1.	0 for $h_{ef} < 2$	2.50"; 2.0 f	for $h_{ef} \ge 2.5$	60"		
Strength Reduction Factor for Shear — Breakout Failure	φ	_				0.702				

^{1.} The information presented in this table is to be used in conjunction with the design criteria of ACI 318-19, ACI 318-14 and ACI 318-11.

^{2.} The tabulated value of ϕ applies when the load combinations from the IBC or ACI 318 are used and the requirements of ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, are met. If the load combinations of ACI 318-11 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of ϕ .

^{3.} The values of V_{SB} are applicable for both cracked concrete and uncracked concrete. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, V_{SB} must be multiplied by α_{VSeiS} for the corresponding anchor steel type.

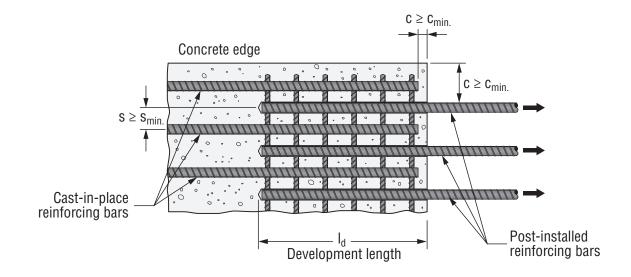
SET-3G Shear Strength Design Data for Rebar¹

Ohavastavistis	Comphal	Units	Rebar Size						
Characteristic	Symbol	Units	#3	#4	#5	#6	#7	#8	#10
St	eel Strength	in Shear	r	•				•	
Minimum Shear Stress Area	Ase	in.2	0.110	0.200	0.310	0.440	0.600	0.790	1.270
Shear Resistance of Steel — Rebar (ASTM A615 Grade 60)		lh	5,940	10,800	16,740	23,760	32,400	42,660	68,580
Shear Resistance of Steel — Rebar (ASTM A706 Grade 60)	V _{sa}	lb.	5,280	9,600	14,880	21,120	28,800	37,920	60,960
Reduction Factor for Seismic Shear — Rebar (ASTM A615 Grade 60) 0.60					0.8				
Reduction Factor for Seismic Shear — Rebar (ASTM A706 Grade 60)	$-\alpha_{V,seis}^3$		0.60					0.8	
Strength Reduction Factor for Shear — Steel Failure	φ	_				0.652			
Concrete	Breakout S	trength in	n Shear						
Outside Diameter of Anchor	da	in.	0.375	0.5	0.625	0.75	0.875	1	1.25
Load-Bearing Length of Anchor in Shear	l _e	in.		Min	. of <i>h_{ef}</i> and	l 8 times a	nchor diam	eter	
Strength Reduction Factor for Shear — Breakout Failure	φ	_				0.702			
Concrete Pryout Strength in Shear									
Coefficient for Pryout Strength	k _{cp}	in.	n. 1.0 for $h_{ef} < 2.50$ "; 2.0 for $h_{ef} \ge 2.50$ "						
Strength Reduction Factor for Shear — Breakout Failure	φ	_				0.702			

^{1.} The information presented in this table is to be used in conjunction with the design criteria of ACI 318-19, ACI 318-14 and ACI 318-11.

For additional load tables, visit **strongtie.com/set3g**.

Anchor Designer™ Software for ACI 318, ETAG and CSA


Simpson Strong-Tie® Anchor Designer software accurately analyzes existing design or suggests anchor solutions based on user-defined design elements in cracked and uncracked concrete conditions.

^{2.} The tabulated value of ϕ applies when the load combinations from the IBC or ACI 318 are used and the requirements of ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, are met. If the load combinations of ACI 318-11 Appendix C are used, refer to ACI 318-11 D.4.4 to determine the appropriate value of ϕ .

^{3.} The values of V_{SA} are applicable for both cracked concrete and uncracked concrete. For anchors installed in regions assigned to Seismic Design Category C, D, E or F, V_{SA} must be multiplied by α_{VSeis} for the corresponding anchor steel type.

SET-3G[™] Design Information -Concrete

SET-3G Development Length for Rebar Dowel

OLI OGI	Dovolopinon	L Longin for the	bai bowei				
	Drill Bit	Clear Cover,			Development Length, in. (mm)		
Rebar Size	Diameter (in.)	in. (mm)	f' _c = 2,500 psi (17.2 MPa) Concrete	f' _c = 3,000 psi (20.7 MPa) Concrete	f' _c = 4,000 psi (27.6 MPa) Concrete	f' _c = 6,000 psi (41.4 MPa) Concrete	f' _c = 8,000 psi (55.2 MPa) Concrete
#3	1/2	1.125 (29)	12 (305)	12 (305)	12 (305)	12 (305)	12 (305)
#4	5/8	1.125 (29)	14.4 (366)	14 (356)	12 (305)	12 (305)	12 (305)
#5	3/4	1.125 (29)	18 (457)	17 (432)	14.2 (361)	12 (305)	12 (305)
#6	7/8	1.125 (29)	21.6 (549)	20 (508)	17.1 (434)	14 (356)	13 (330)
#7	1	2.30 (58)	31.5 (800)	29 (737)	25 (635)	21 (533)	18 (457)
#8	11/8	2.30 (58)	36 (914)	33 (838)	28.5 (724)	24 (610)	21 (533)
#9	13/8	2.30 (58)	40.5 (1,029)	38 (965)	32 (813)	27 (686)	23 (584)
#10	13/8	2.30 (58)	45 (1,143)	42 (1,067)	35.6 (904)	30 (762)	26 (660)
#11	13/4	2.30 (58)	51 (1,295)	47 (1,194)	41 (1,041)	33 (838)	29 (737)

^{1.} Tabulated development lengths are for static, wind and seismic load cases in Seismic Design Category A and B. Development lengths in Seismic Design Category C through F must comply with ACI 318-19 and ACI 318-14 Chapter 18 or ACI 318-11 Chapter 21, as applicable.

^{2.} Rebar is assumed to be ASTM A615 Grade 60 or A706 ($f_V = 60,000$ psi). For rebar with a higher yield strength, multiply tabulated values by f_V/60,000 psi.

^{3.} Concrete is assumed to be normal-weight concrete. For lightweight concrete, multiply tabulated values by 1.33.

^{4.} Tabulated values assume bottom cover less that 12" cast below rebars ($\Psi_1 = 1.0$).

^{6.} The value of K_{tr} is assumed to be 0. Refer to ACI 318-19 Section 25.4.2.4, ACI 319-14 Section 25.4.2.3 or ACI 318-11 Section 12.2.3.

SET-3G Epoxy Anchor Installation Information — Fully Grouted CMU Construction — Face of Wall

IBC			*
	糖乳	്ട്	

Installation Information	Cumbal	Units -	Nominal Rod Diameter / Rebar Size						
installation illiorniation	Symbol	UIIIIS	%" / #3	1⁄2" / #4	%" / # 5	3⁄4" / #6			
Drill Bit Diameter — Threaded Rod	d_{o}	in.	7/16	9/16	11/16	7/8			
Drill Bit Diameter — Rebar	d _o	in.	1/2	5/8	3/4	7/8			
Minimum Embedment Depth	h _{ef,min}	in.	3	3	3	3			

SET-3G Epoxy Anchor Installation Information — Fully Grouted CMU Construction — Top of Wall

Installation Information	Symbol	Units	Nominal Rod Diameter / Rebar Size		
			1⁄2" / #4	5 ₈ " / #5	7/8"
Drill Bit Diameter — Threaded Rod	d _o	in.	9/16	11/16	1
Drill Bit Diameter — Rebar	d _o	in.	5/8	3/4	_
Minimum Embedment Depth	h _{ef,min}	in.	3	3	3

SET-3G Epoxy Anchor Installation Information — Ungrouted CMU Construction

Installation Information	Symbol	Units	Nominal Rod Diameter		
			3%"	1/2"	5/8"
Drill Bit Diameter	do	in.	9/16	3/4	7/8
Embedment Depth	h _{ef,min}	in.	3½	31/2	3½

Please see the SET-3G product page at **strongtie.com** and ICC-ES ESR Report for load data.