

M8 / M1000 Arctic Cat Turbo (Auxiliary Injector) EFI Control Box Instructions

Before you begin, please read all the instructions below and check kit contents.

Kit Contents:

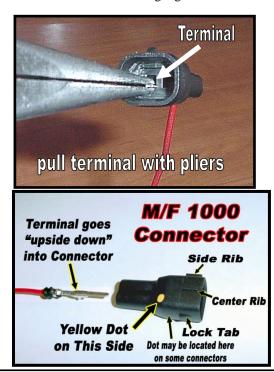
Quality	check by:
	1 Control Box
	1 EFI harness
	2 black connectors
	1 battery/jumper connector
	1 Reusable Zip Tie

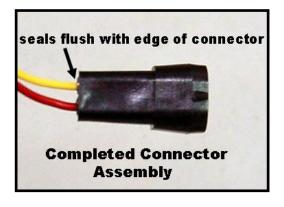
Arctic Cat Wiring Harness Connector Assembly Instructions

The **two black connectors** must be installed on the Control Box EFI harness as shown below before continuing with the installation.

All Models: Connect a test light to the chassis ground. Unplug a stock injector. Connect the other connector of the test light to one of the contacts on the stock injector connector. Pull the starter rope and watch for the test light to come on. If there is no light, try the other contact terminal. The terminal that produces light is positive. After you have determined which of the terminals is positive, insert the red wire of the BoonDocker harness into the black connector to correspond with the positive wire on the factory connector.

Insert the terminals into the connectors by following the steps below:


Non-1000 connector: Hold the black connector with its locking tab up. Insert the terminal with its alignment tabs up (see picture).


1000 connector: Orient the black connector and pin terminal as shown in picture.

Note: Look inside black connector to verify that the lock tab inside will mate with the slot in the terminal (below guide tabs).


Push the terminal into the black connector. The terminal will go part way into the connector and stop. 3. Using needle-nose pliers, pull the terminal the rest of the way into the connector. You should feel the terminal lock into place (you will feel a slight "pop"). The rubber seal should be flush with the end of the connector. Use care to not gouge the terminals.

Revised 03-14-07 Page 1 of 17

4. If a terminal must be removed, use pliers to carefully push the terminal out of the connector. The terminal can usually be re-inserted one more time. Don't do this unless absolutely necessary! The terminal tabs need to be pried up slightly before re-inserting. See photo of terminal at right for tab location. Use a 1.2mm or 0.050" jeweler's screwdriver to pry with. Check to be sure that the wire can resist a slight tug without coming

I. Theory of Operation:

The Boondocker Control Box connects between the sled's ECU (Electronic Control Unit) and the fuel injectors. It does not reprogram or communicate with the ECU. It only modifies the existing signals sent from the ECU to the fuel injectors. By modifying only these signals, it is possible to make fuel changes while keeping the stock fuel map. This means the ECU can still compensate for engine speed, throttle position, barometric pressure, engine temperature, air temperature, etc.

The Control Box can reduce fuel or increase fuel amounts for certain rpm ranges and load conditions. This is done by changing its fuel adjustment settings by using the buttons and LCD display. As with tuning a carburetor, it is possible to go too rich or too lean!

Note: Be sure you know how to properly tune an engine before you adjust the fuel settings! Use of EGTs and plug and piston readings are highly recommended when tuning.

IMPORTANT NOTES – READ THIS!

Note 1: We recommend using **Dielectric Grease** on all connections to help prevent corrosion on the terminals.

Note 2: Avoid exposing the Control Box to environments where static charges may exist. For example, quickly removing a sled cover from the sled in a dry environment can create a static spark that will damage the box (especially if box is mounted on handlebars).

Note 3: The Control Box is sealed – do not take it apart or it will no longer be sealed. The Control Box is designed to be splash-proof. Do not submerge or subject the box to high-pressure spray. During long periods of non-use it is recommended that you do not leave the control box exposed to the elements.

Note 4: If the headlights have been removed (hood is removed or aftermarket hood is used), the electrical system can cause interference with the Control Box. In some cases, the sled's computer may become damaged! We recommend and sell a 100W power resistor that can be used to place a sufficient load on the electrical system to avoid this condition.

Note 5: Always use Resistor Spark Plugs! Non-resistor plugs will cause electrical interference with the Control Box.

II. Control Box Harness Connectors

The Control Box will plug directly into the factory injector connectors. There is also an unused connector for the optional Nitrous wiring harness or for the battery jumper (see below).

Note: We recommend using **Dielectric Grease** on all connections to help prevent corrosion on the terminals.

III. Battery / Jumper Connector

The supplied Battery/Jumper Connector has a dual purpose. It can function as a battery connector in order to supply voltage to the Control Box when the engine is not running, and it can function as a jumper in order to bypass the Control Box.

1. Battery Connector

The Control Box is designed to operate without a battery – the box will turn itself on whenever power is applied for the fuel injectors. However, a 9-volt battery (not included) can be plugged into the box through the Control Box's connectors with the supplied **battery / jumper connector** in order to operate the box without the sled running. This battery connector plugs into the Control Box's nitrous connector (refer to picture below). Secure the battery to the connector with a zip tie in order to provide a strain relief for the 9-volt connector. The battery can

also be secured to part of the harness if it is to be used on the sled while it is running.

The battery connector can be left plugged in during engine operation, but the nitrous harness (if used) cannot be plugged into the Control Box. The battery will eventually drain if left connected to the box, so it is best to disconnect the battery when not in use.

2. Jumper Connector

The Battery/Jumper connector can also be used to bypass the Control Box in case the sled needs to be run without the Control Box. Disconnect the Control Box from the EFI harness and plug in the Jumper connector - the injectors are now connected directly to the sled's ECU.

IV. Box Mounting Locations

The best mounting location is on the dash or on the handlebars (if pad is removed) using the supplied Velcro strips. Before applying the adhesive strips, thoroughly clean each surface (rubbing alcohol works well). It is also best if each surface is room temperature.

Mounting the box under the hood is less desirable (LCD is more likely to have condensation), but if it is necessary, keep the box away from excess heat (like the exhaust), away from any moving parts, and away from the ignition coil.

Note: The location on the plate in front of the steering shaft, above the exhaust pipe gets very hot! We DO NOT recommend this location.

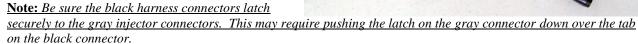
Revised 03-14-07 Page 3 of 17

V. EFI Wiring Harness

The EFI harness plugs into the stock sled's injector connectors as follows:

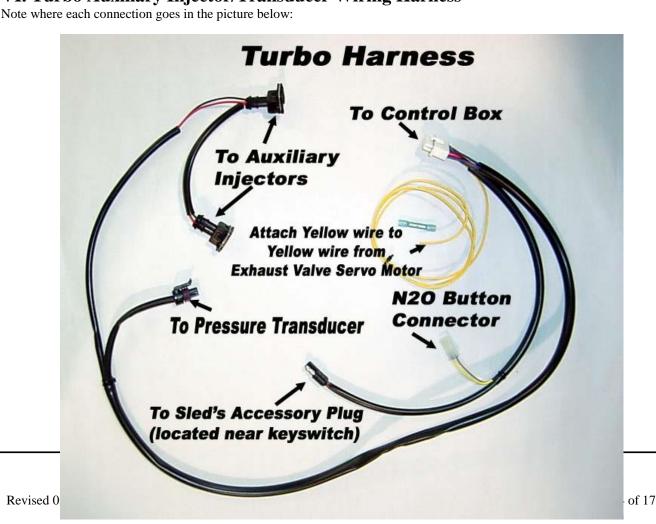
- 1. Disconnect the stock harness connector from each fuel injector. Note which connector goes to which injector.
- Determine where the control box will be mounted and how the harness will be routed. Route the harness so the injector connectors end up near the sled's fuel injectors. Note: If the control box is to be mounted on the handlebars, it is best to have the harness follow the routing of the fuel

line to the fuel rail (inside of the oil bottle) instead of following the sled's harness around the outside of the oil bottle.


Tan/Yellow

Mag Side

Green/Brown


PTO Side

- There is a left (PTO) and right (MAG) pair of connectors for each injector (see picture). The shorter length connectors go to the MAG side, and the longer length connectors go the PTO side.
- Plug the gray Control Box connector (female) to the sled's fuel injector, and the black connector to the sled's gray injector connector. Do this for both the MAG and PTO sides.

- 5. Connect the Control Box harness ground wire to **chassis ground**, not the engine ground! A good ground connection is extremely important!
- Use zip ties to keep the harness away from moving parts. Use reflective heat tape if the harness must be routed near hot items such as the exhaust Note: heat-tape may be used to protect the harness and connectors near the fuel rail from the hot exhaust pipe.

VI. Turbo Auxiliary Injector/Transducer Wiring Harness

Install the Yellow wire on the Turbo Harness onto the Yellow Exhaust Valve Servo Position Sensor wire as follows:

1. Locate the yellow wire in the bundle of wires that come from the exhaust valve srvo motor on the PTO (left) side of the sled down by the gas tank.

2. Note on using the supplied Crimp/Heat-shrink connector:

The supplied Crimp/Heat-Shrink Connector, if installed correctly, will provide a reliable connection. After the wires are cut and the insulation is stripped, the connector is crimped onto the wires. Be sure to use the correct crimping tool. DO NOT USE A CRIMPER THAT PUNCHES INTO THE INSULATION. The connector is then sealed by the heat-shrinking process. Adhesive inside the connector will melt and flow around the wires which will seal out moisture.

- 3. Use the supplied blue crimp/heat-shrink connector to connect the yellow wire from the Turbo harness to the yellow wire on the sled harness as follows. Cut the Yellow wire on the sled harness, leaving enough length on both ends to work with. Strip the insulation about 1/4" from the end of each wire. Twist one of the yellow wires that was cut with the yellow wire from the Turbo harness together, insert into one end of the connector, and crimp. Insert the other yellow wire into the other end of the connector and crimp. (Two wires will go into one end of the splice connector, one wire into the other end)
- 4. After crimping, pull on the wires to be sure they are securely crimped. Then apply heat to shrink the connector's insulation tightly around the wires.

BoonDocker – 2379 Heyrend Way Idaho Falls, Idaho 83402 – (208) 542-4411 website: www.boondockers.com - email: info@boondockers.com

IMPORTANT: Perform the following two tests after the Turbo and Control Box/Harness installation have been completed to verify installation is correct:

1. Auxiliary Injector Test:

- 1. Start the sled, check for fuel leaks.
- 2. Using the Control Box, go to the **ExV** menu. The ExV screen should appear as shown below. The **Fuel** amount should already be set to **40** and **Btn** is set to **N2O**.

Fuel ExV RPM Btn →040 OFF OFF N20

- 3. Use a small piece of wire (like a paperclip) to jump between the two terminals on the N2O button plug (yellow and tan wires). This should immediately add fuel through the auxiliary injectors. You should notice the engine load up with fuel.
- 4. <u>If the auxiliary injectors do not appear to be functioning, do not run the sled!</u> Recheck all connections. If a voltmeter is available, test the voltage across the capacitor: it should be around 7.5 to 10V DC at idle and 12-13V when revved above 4000 rpm.
- 5. When finished, set the Fuel amount to the suggested value (see end of document).

2. Oil Pump Test:

- 1. Disconnect the top oil line from the turbo.
- 2. Hold the oil line over a container and start the sled.
- 3. Hold the sled rpms above 3000 for 10 seconds. A thin stream of oil should be observed flowing from the line.
- 4. If no oil is seen, verify that the voltage into the oil pump driver box is between 11 to 13V DC when the engine is revved up.

VII. Control Box Menus

A. Intro Screen

When the box is first turned on (by the engine or battery), the Intro screen is displayed. Press any key to go to the main menu. An example Intro screen display is shown below:

AC Turbo 700/800 vers:4A5dBDT

In the example shown above, this screen displays the following information:

AC Turbo Sled model This box is designed for an Arctic Cat. Boxes for other sleds will have other

lettering. Note: Be sure the Control Box is for your model of sled!

4A5dBDT Sofware Version This is the software version of the box. The box can be reprogrammed only by

sending the box back to Boondocker.

Revised 03-14-07 Page 6 of 17

B. Main Menu

The Main Menu is shown below:

Main →<u>F</u>uel Stats Menu ExV Map1U

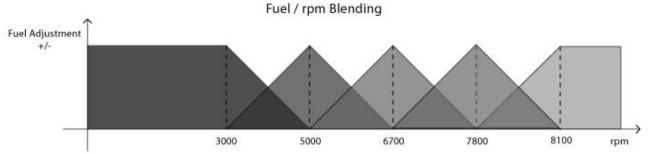
The current selection is shown by the **Right-Arrow** and the **cursor** (underscore below the "**F**"). Use the **arrow keys** to move the cursor. Move the cursor to the desired selection and press the "**SEL**" key to select the desired menu option from one of the following:

Fuel Go to the **Fuel** adjust menus (see Section 1).

Stats Display runtime data, captured data, and recorded maximum data (see Section 3).

ExV Menus for Exhaust Valve and Button setup (see Chapters VII and IX..).

Map Go to the **Map** menu (see Section 2)


The current Map number is displayed as "Map1U". This indicates that map number 1 is being used and it is Unlocked.

1. Fuel Adjust Menus

This selection is used to make fuel adjustments. There are five **Fuel** adjust screens (examples shown below). There are two screens for adjusting fuel according to Boost pressure. There is one screen for adjusting Accelerator pump fuel.

The first fuel screen comes up after selecting **Fuel** and pressing a button. Go to the next fuel screen by pressing the "**SEL**" button. After pressing the "**SEL**" on the last **Fuel** adjust screen, you will return to the Main Menu. Use the **Left/Right Arrow** keys to switch between settings. Use the **Up/Down Arrow** keys to change the settings (if the current map is unlocked). Sample **Fuel** adjust screens are shown below (actual rpm settings and number of screens may be different for your model).

Fuel screen5: Fuel screen1: M1L LO MD HI LO MD HI M1L 3000 00 00 00 8600 00 00 00 Fuel screen2: M1L LO MD HI **Boost** screen1: LO Md Hi M1L 5000 00 00 00 00 00 00 PSIL **Boost** screen2: M1L Lo Md Hi Fuel screen3: M1L LO MD HI PSIH 00 00 00 6700 00 00 00 AM DR Sens ACEL screen: M1L ACEL 00 00 00 Fuel screen4: LO MD HI M1L 7800 00 00 00

The fuel adjustment rpm ranges are blended as shown in the picture above. This allows for a broader range of adjustments with fewer steps. Each fuel setting is centered at a particular rpm value, in this example: 3000, 5000, 6700, 7800, 8100rpm. Each region is blended with the region below and the region above it as shown. For example, if the rpm is at 4000, the adjustment value will be half the value of the 3000 setting plus half the value of the 5000 setting.

1.A RPM Adjustments M1L →LO MD HI 3000 00 00 00

- M1L This displays current map that is being used in this case, M1 stands for Map1. Five possible fuel maps can be used. Each map consists of all your configuration and fuel settings for a particular setup. The "L" indicates that this map is Locked this means the settings cannot be changed (the up/down buttons have no effect). If the map is Unlocked, adjustments can be made to any setting and these changes will be automatically saved to the selected map. Refer to the Load/Copy sections for more details about how to lock and unlock individual maps.
- **3000** This is the **RPM Region** for the fuel adjustments on this screen. For this example, this screen's adjustments will be centered at 3000rpm. There are 5 rpm regions. The effect of the 3000rpm setting tapers off until 5000rpm as shown in the picture above, while the effect of the 5000rpm setting is ramping up. The other regions work similar to this.
- **LO** This adjustment is for **Low load** conditions. This will affect throttle settings from approximately 0 up to 1/3. For rpm region 3000, this adjustment will affect idle. For other rpm regions, this will affect deceleration and light-load cruising conditions.
- **MD** This adjustment is for **Medium (mid-range) load** conditions. This will affect throttle settings from approximately 1/3 up to 2/3.
- HI This adjustment is for **High load** conditions. This will affect throttle settings from approximately 2/3 to full open.
- **Fuel adjustment value.** Each setting can go from –99 to 127. Refer to the EFI tuning section for tuning guidelines.
- **Note 1:** Each number is equal to about 1/2% of the total available fuel. The maximum available fuel will vary with each engine as well as with elevation and air temperature.
- Note 2: It is possible to max the injector (duty cycle > 100%) before the adjustment setting is maxed! Pay careful attention to EGT's, O2 readings, and fuel pressure when running with engine mods that require a lot of additional fuel!

1.B Boost Adjustments	M1L	LO	Md	Ηi	M1L →	Lo	Md	Ηi
	PSIL	00	00	00	PSIH	0 <u>0</u>	00	00

PSIL This adjustment is used to control fuel on your stock injectors when under low boost.

PSIH This adjustment is used to control fuel on your auxiliary injectors above your Cross Over number. Your Cross Over number represents at what boost the auxiliary injectors turn on, and take over fueling.

Note: The cross over number is hidden in the programming. Contact Boondocker if you need specifications.

Revised 03-14-07 Page 8 of 17

1.C Accel Pump Adjustments

M1L →AM DR Sens ACEL 00 00 00

AM Amount of fuel to be added/subtracted during acceleration

DR Duration in engine cycles to make acceleration adjustment

Sens Accelerator pump Sensitivity. Larger values are Less sensitive (throttle must be moved more). Value of

Zero will cause accelerator pump to always be on! Typical values are between 5 and 20.

2. Map / Setup Menus

From the Main Menu, select Map1U to go to the Map Menu (shown below). This screen is used to Load/Copy/Lock/Unlock saved "maps" that contain fuel and N2O settings. Five maps can be used (Map1-Map5).

Lock ULock StUp →Load Copy Quit

2.1 Map: Load

When a new map is loaded, the current adjustment settings will be changed to the values from that map. To load a new **Map**, first move the cursor to select Load and press "**SEL**". The following **Load/Lock Menu** will be displayed:

Load 1 2 3 4 $5 \rightarrow \underline{Q}$ Lock L U U U U Q

Load 1-5 Selects which map to load

Lock L = Locked, U = Unlocked, applied to the map number the L or U is under

Q Quits this menu

Use the **Up/Down** and **Left/Right Arrow** keys to move the cursor around. To load a new map, move the cursor to the desired map number and press "**SEL**." The map will be loaded and the **Main Menu** will be displayed. When a map is loaded, the **Mx** (x is the map number) that is displayed in the Main and Fuel menus will show the loaded map number as a reminder.

To quickly Lock or Unlock maps, move the cursor down to the **Lock** row, place the cursor under the **L** or **U** by the desired map number, and press "**SEL**" to change a **U** (Unlocked) to an **L** (Locked) or vice versa.

Select **Q** to Quit and return to the Main Menu.

2.2 Map: Copy

To copy a map, first select **Copy** from the **Map Menu**. The following **Copy/Lock Menu** will be displayed:

Copy 1 2 3 4 5→<u>Q</u> Lock L U U U U Q

Copy 1–5 Selects which map to copy the current map TO

Lock L = Locked, U = Unlocked

Q Quits this menu

This screen is used to save the CURRENT fuel adjustment map TO one of five available map locations. The map that is being copied TO must be Unlocked – otherwise a message will be displayed telling you that the map you selected cannot be overwritten.

Note: When a map is copied, the Control Box will load the map copied TO to be the new current map.

Use the **Up/Down** and **Left/Right Arrow** keys to move the cursor to the map number you want to copy TO and press "**SEL**". The following confirmation message will be displayed:

Overwrite Map A With Map B? Y→N

"A" represents the map copied TO and "B" represents the current map to be copied FROM. If this is exactly what you intend, use the Left Arrow to underscore "Y" and press "SEL". Then the current map will be loaded into the selected map number, the selected map number will become the current map, and the Control Box will return to the Main Menu.

To quickly Lock or Unlock maps, move the cursor down to the Lock row, place the cursor under the L or U by the desired map number, and press "SEL" to change a U (Unlocked) to an L (Locked) or vice versa.

Select **Q** to Quit and return to the Main Menu.

2.3 Map – Lock and ULock

Either Lock or ULock (UnLock) can be selected from the Map Menu to quickly lock or unlock the current map. Move the cursor to the desired selection and press "SEL". The box will return to the Main Menu and the current map will be locked or unlocked when **SEL** is pressed.

3. Stats Menus

This Control Box has a new feature that allows real-time data to be displayed and captured. This feature can be useful for tuning or for diagnostic purposes.

3.1 **Stats: RUN/CAPTURE**

Selecting Stats from the Main Menu will first display the following screen with real "Run-time" data (current conditions):

> Run 35/40 10.2EA 5500 MD 10

1st line

Run "Run" indicates display is in Run mode. If in capture mode, "Cap" will be displayed.

35 Input duty cycle in percent 40 Output duty cycle in percent

10.2 Current Boost Pressure

E If "E" displayed, Exhuast Valve Fuel adjustment is on Α If "A" displayed, Accelerator Pump Fuel adjustment is on

2nd line

5500 RPM (note, if the engine is shut off, the last recorded RPM may be displayed)

Engine Load. LO, MD, or HI will be displayed. MD

These bars are a graphic display of **LO**, **MD**, or **HI** as shown below:

MD HI BEEFE

10 Current Fuel Adjustment

Run/Capture mode:

Left-Arrow button: Sets **Capture Mode**, "Cap" will be displayed and the current data will be frozen on the display. The capture occurs on the display when the button is released (data will continue to be captured if the button is held down). It will stay in capture mode (data will remain frozen) until the **Right-Arrow** is pressed to return to **Run** mode or until the Control Box is repowered. If the Stats menu is re-entered before the engine is shut off and the box is in Capture mode, the last captured data will be displayed.

Right-Arrow button: Clears capture mode (captured data will be lost!) and sets **Run mode**. "**Run**" will be displayed and real-time data will be displayed. Note: The Button Mode can also be configured to Capture the Status screen Press SEL to go to the next screen: Stats: MAX.

3.2 **Stats: MAX**

Any button press from the Run screen will go to the next Stats screen which is the Max screen, displaying max RPM, Duty Cycle In from the sled's ECU, and Duty Cycle Out to the injectors.

MAX:DCIn/Out Clr	MAX:	5500	Max rpm
5500 35/45 Y→N	DCIn	35	Max Duty Cycle Input from sled's ECU.
	DCOut	45	Max Duty Cycle Output to the injectors.

These max values will be saved when the box is shut off so they will remain the next time this screen is displayed even if the box is re-powered. Peak values or "spikes" are filtered by finding the average during a certain timewindow. Therefore, a maximum must be held for at least 1 second to be recorded and displayed properly.

Use the arrow keys to move the cursor between Y and N. Pressing SEL when the cursor is on Y will clear the max values. Pressing SEL when the cursor is on N takes you to the next screen: Stats: N2O/TPS.

3.3 Stats: PSI

This menu displays nitrous and TPS information.

PSI	MAX	Temp	Clr
	12.2	255	$Y\rightarrow N$

MAX 12.2 This is the average maximum boost amount measured in psi. The boost is averaged during a 1 second window in order to filter out boost spikes. This value should be very close to the actual sustained boost. If the display shows "XX.X", the boost value has exceeded the valid range.

255 Temp This is your Max intake temperature.

Clr Y N Selecting Y will clear the save PSI Max/Peak values. Use any arrow key to select Y or N. Pressing "SEL" takes you to the Main Menu.

4. ExV: Exhaust Valve and Button Configuration Menus

From Main Menu, move the cursor-arrow to ExV and press SEL, the following screen will be displayed:

Fuel ExV RPM Btn →O40 OFF OFF N2O

This menu can be used to set fuel adjustments prior to the exhaust valve opening, set the Button mode, or for making fuel adjustments using the button for diagnostic or tuning purposes.

4.A Fuel Setting

The number under "Fuel" is the fuel that will be added (or subtracted if value is negative) when the other settings in this menu have been satisfied. Use the Up or Down Arrow buttons to increase or decrease this fuel amount.

4.B ExV (Exhuast Valve) Setting

This menu allows the Fuel adjustment to be made whenever the Exhaust Valve value is above a certain value (before it closes). Move the cursor-arrow to ExV and press Sel or Up/Down arrow, the following screen will be displayed:

ExV Fuel on if ExV > 200 \rightarrow OFF

ExV OFF Shows **ExV** mode is **OFF**. Press Up or Down Arrow Buttons to toggle ON/OFF.

200 Exhaust Valve threshold value. When the Exhaust valve is closed, the value will be high (165 or so). When the Exhaust Valve is open, the value will be low (less than 100). The fuel adjustment will be made when the Exhaust valve position value is greater than this value. Suggested values are between 110 to 150.

Press the "SEL" button to return to the Main Menu.

4.C RPM Setting (for Exhaust Valve)

This menu allows an RPM window to be set for fuel adjustments to be made according to Exhaust Valve position. If RPMs are above the Min value and the Exhaust Valve is closed (ExV is a high value), fuel will be added until either the RPMs exceed Max RPM value or the Exhaust Valve closes (ExV is a low value). Note: The ExV setting (previous menu) must be set to ON for the RPM settings to have effect. Move the cursor-arrow to RPM and press either Sel or Up/Down arrow buttons, the following screen will be displayed:

RPM Min Max OFF← 5050 7550

RPM OFF Shows **RPM** mode is **OFF**. Press Up or Down Arrow Buttons to toggle ON/OFF.

5050 Min RPM threshold.7550 Max RPM threshold.

Move the cursor right to adjust the **Minimum RPM** (fuel adjustment will be on above this level) and the **Maximum RPM** (fuel adjustment will turn off above this level).

Press the "SEL" button to return to the Main Menu.

4.D BTN (Button) Settings

To select the button mode, move the cursor right until it is under **Btn**. Press the up or down key to select between the following five possible modes. The screen will change to the following:

OFF: Description: Btn
Button Off :→OFF

This mode disables the handlebar button.

N2O: Description: Btn N2O + Fuel :→N2O

This mode allows the Fuel adjustment to be made whenever the button is pressed. Fuel is adjusted on the Auxiliary injectors. Be sure **ExV** and **RPM** triggering are OFF when using this feature.

TUN: Description: Btn Fuel only :→TUN

This mode allows the Fuel adjustment to be made whenever the button is pressed. Fuel is adjusted only on the Stock injectors. This is used to experiment with fuel addition and subtraction while riding. Press the button at a certain rpm or under a certain load to see whether your addition or subtraction is beneficial. Be sure **ExV** and **RPM** triggering are OFF when using this feature.

CAP: Description: Btn StatCapture:→CAP

In **CAP** mode, the handlebar button is used to capture current data. When pressed, the **Stats Capture** screen will be displayed and the data will be frozen when the button is <u>released</u>. After a capture, pressing the **Right-Arrow** button will erase the captured data and return to **Run** Mode.

ARM: Description: Btn
On for N2O :→ARM

This mode is probably not useful for turbo use. If desired the Exhaust Valve fuel adjustment can be "armed" by using the button. In this mode, if the Exhaust Valve fuel adjustments are set up, the button must be on for the fuel adjustments to be made.

Press the Left or Right Arrow to return to the N2O menu or push the "SEL" button to return to the Main Menu.

VIII. EFI Tuning

Important: The Auxiliary Injector Test (under Auxiliary Injector Harness section above) must successfully pass before running or tuning the sled!

Fuel Requirements:

Race gas MUST be used, even for low boost! Detonation will quickly destroy your engine! (see topic in Tuning

SUNOCO 112 is recommended and has been determined to be adequate for boost levels up to 14psi. VP fuel is not recommended - it has been found to have lower motor octane than other comparable fuels. Other suggested brands include Unical, Rockett Brand, F&L Racing Fuel, Pure Purple, and Trick racing gas. Always use fresh fuel from a sealed barrel.

Spark Plug Gap:

Use new spark plugs and reduce the gap to .018" - .020". Carry extra plugs - leaded fuel and boost is hard on spark plugs.

Recommended Control Box Settings:

*** Please call Boondocker to receive the latest Fuel Setting information ***

Each Fuel adjustment setting goes from -99 to 127. Positive numbers add fuel and negative numbers subtract fuel. This does not mean you have an effective range all the way to 127 – you will max out the injector before this setting is reached! Your usable adjustment range (max value) is dependent on how much the ECU is already driving the injector which will vary with temperature, elevation, rpm, and fuel pressure.

Boost Controller:

It is recommended to start with the boost controller turned to the **lowest boost setting.** To find this starting point, remove the boost controller, loosen the knob all the way, blow through it while tightening the knob until you start to feel resistance (the valve starts to close off). Make sure the engine is tuned properly before increasing the boost and watch closely for proper fuel mixture and detonation (see topic in Tuning Tips).

Maximum recommended boost is 12psi at 5000', 14psi if above 8000'.

Tuning Instruments:

Air/Fuel gauge:

A good wideband O2 gauge is highly recommended as an effective tuning tool. The sensor will have a limited lifespan due to exposure to pre-mix oil and leaded racegas, but in many cases it can last for a season and it is a very valuable tuning tool. If desired, after initial tuning is completed the probe may be removed to prolong its life.

Be aware that too rich a mixture can cause the gauge to read lean due to unburned fuel not being read by the gauge (the oxygen will produce a lean reading). Whenever the engine is decelerating, your A/F numbers will be lean - these readings can be ignored. However, whenever the throttle is being applied, pay attention to the readings!

Higher numbers are leaner (less fuel), lower numbers are richer (more fuel). A 14.7:1 ratio means all the available oxygen has combined with all the available fuel. Numbers from 11:1 to 13:1 generally produce the best power (extra fuel helps cooling and can help prevent detonation). A lower A/F ratio (10.8 to 11.2:1) is considered safer on a turbo since the extra fuel prevents heat build-up and helps prevent detonation. We recommend you find the lowest ratio where the sled still runs without being too rich.

EGTs:

Exhaust Gas Temperature gauges can also be an effective tuning tool, but they are not a substitute for reading spark plugs and piston wash and for a general feeling of how the engine runs. Use EGTs only as a backup to verify what you see. They can be misleading under certain conditions and safe readings can vary greatly from engine to engine depending on such things as probe placement, fuel, timing, pipe design, porting, etc. For this turbo, typical EGT temps seem to be around 1300 - 1325 degF after a long pull.

Plug and Pipe Color:

Color will develop inside the pipe and on the plug after running a while which can be used to determine fuel mixture. A tan/cardboard brown color is desired. Light-gray is too lean, and dark brown is rich.

Tuning Tips:

Important: Find the settings where your motor runs RICH before you decide to go lean!

- 1. Tune with the engine and pipe at operating temperature. The sled's ECU will make adjustments as the engine warms up you might think the engine needs leaner settings then later realize you are too lean once the engine warms up.
- 2. Use the Load/Save Map feature to quickly change and compare fuel settings when testing. This can also be useful for riding under different conditions. For example, changing elevations or temperatures may require different adjustments if the stock ECU does not compensate properly for your modifications. For drag racing, you might want to run richer settings to be safer for longer distances than you would for short distances.
- 3. To find out where a fuel adjustment setting is effective, greatly increase only that setting. Run the engine to find out when it suddenly becomes too rich this is where that setting is effective. Be careful you can easily flood the motor, especially with LO load or low RPM settings. To restart a flooded engine you may have to pull several times with the throttle held wide open and/or the injectors uplugged.
- 4. The nitrous button can be used to add or subtract fuel interactively. When the nitrous button is pressed, the amount of fuel set in the nitrous menu will be added in addition to the fuel adjustments that are already made.

Also consider the following:

A/F Mixture Generally EGT's get hotter as the motor gets lean, but too lean and the temps can actually drop! As oxygen is added, the flame gets hotter to a certain point, then too much air can can gradually cool things off.

Detonation Detonation often requires an experienced tuner to detect – in most instances it cannot be heard or noticed. Careful examination of the piston and sparkplug are required. Watch for melted sparkplug electrodes, speckling on the sparkplug insulator, or shiny or gray flakes on the electrode which could be melted aluminum from the piston. If possible, watch the crown of the piston (near exhaust port) for a pitted or sand-blasted look. EGT's can sometimes read low during detonation – heat is going into the cylinder and piston instead of out the pipe.

Timing can affect the pipe temperature. Generally if the ignition is retarded, more heat will build up in the pipe. Too much advance may drop EGT temps, but increase cylinder temps. Stock timing seems to work best for this turbo.

BoonDocker – 2379 Heyrend Way Idaho Falls, Idaho 83402 – (208) 542-4411

Revised 03-14-07

Timing

Fuel Different fuels have different specific gravities (densities) and other characteristics which can affect

your mixture requirements from one fuel to another – be aware of this if you change fuels. Oxygenated

fuel will run leaner than non-oxygenated fuel and is not recommended.

Lean spots Sometimes a motor runs hot at certain rpms and throttle positions (usually in its mid-range) no matter

what. The fuel adjustment settings can be used to richen this up, but the engine may quickly become too rich and run erratic. Under light load conditions you can sometimes get away with running hot for short periods of time. Under such conditions it is best to vary the throttle position often and not stay at

one throttle setting for long durations.

IX. Control Box Troubleshooting

Stuck Button

When the Control Box is first turned on, all buttons are checked to verify that a button is not stuck on. If a button is detected to be on during power up, the button will be disabled and the following message will be displayed until another button is pressed. To verify if a button really is stuck on, re-power the box without pressing any buttons.

Button is Stuck!

Note: A common problem is a bad ground connection on the sled causing the box to keep resetting itself. If a button is being pressed when this occurs, the "button stuck" message will be displayed. Start the sled without pressing a button and see if the message goes away. If it is not present, start looking for a disconnected ground on the sled (see Other Issues below).

If a button really is stuck on, the Control Box can still function and adjust fuel properly. The Control Box can be sent back to Boondocker to be serviced.

Injector Fault

The Control Box monitors the signals from the sled's ECU. If it detects signals on one set of wires but not the other, it will detect a fault on that injector and display one of the two error messages.

MAG Inj. Fault! Missing or bad signal detected on the MAG side injector (yellow or tan wire).

PTO Inj. Fault! Missing or bad signal detected on the PTO side injector (green or brown wire).

xxx Inj. Fault! This means a previous injector fault has occurred which has not yet been cleared.

If any of these conditions occur, the Control Box will still function and it will still try to make fuel adjustments, but the intermittent injector connection will need to be fixed. Contact Boondocker to determine if the Control Box and harness need to be sent back to be inspected or serviced.

Note 1: Injector errors that occur infrequently can be ignored since they are likely caused by sporadic electrical noise.

Note 2: It is possible for the sled to run but the wiring harness to be wrong – the box cannot make proper fuel adjustments. If you see an injector error, first recheck the wire positions in the black connectors according to the tables in these instructions.

Other Issues

Engine runs erratic:

1. Verify that the ground on the sled's harness (heavy brown wire) has a good connection to the chassis. On the M7 model, this ground is connected by an eyelet attached to the bolt at the base of the steering support hoop on the Mag side of the sled (close to the gas tank)

Note: The nut that holds the ECU ground wire on M7 sleds is known to come loose!

2. Verify that the EFI Harness Ground Wire has a good connection.

<u>Note1:</u> Arctic Cats require that this ground wire on the Control Box must be connected to CHASSIS GROUND (not Engine ground!).

<u>Note2:</u> If the headlights have been removed (hood is removed or aftermarket hood is used), the electrical system can cause interference with the Control Box. We recommend using a 100W power resistor to place a sufficient replacement load on the electrical system.

- 3. Verify that all wiring is in good condition and that the wires have not pulled out of the terminals. To verify this, look inside each connector and verify that the terminal pins are all at the same height. If a terminal is starting to back out, it will appear to be lower in the connector.
- 4. Unplug the EFI harness and plug original harness back into the injectors and verify that the sled runs OK (test can only be done at low rpms before boost comes on).
- 5. If problem only occurs with Control Box plugged in, change all fuel adjustment settings to 0 and see if problem persists.
- 6. Verify that the Control Box does not reset itself when the sled is running by doing the following:
 - a. When the sled is first powered up, change the menu screen on the Control Box to one of the fuel adjust screens.
 - b. Run the sled.
 - c. Before shutting off the sled, verify that the screen is still on the same menu selection.
 - d. If the startup screen is displayed (showing version number etc.), the box has reset itself. This is likely caused by bad voltage to the box due to an intermittent connection.
- 7. If necessary, the voltage supply to the box can be verified using a voltmeter. Probe from the Mag-side gray connector on the EFI harness where two red wires go to one connector terminal. Insert a small thin wire such as a paperclip or a small probe tip between the connector and the rubber seal in order to make contact with the terminal inside. Place the positive voltmeter probe here. Place the negative voltmeter probe on chassis ground. At idle the **DC voltage** should read around 19-21V. On the AC voltage setting, the reading should be less than 1V (this will be much higher if an older analog-needle meter is used). A bad ground to the sled's ECU will cause these readings to be incorrect (DC readings around 7-9V).

Rough Idle	Idle adjustments are much more sensitive than other adjustments since the injectors are on for a very short duration. You may not be able to adjust your 3000 LO settings by very much.
LCD is dim	If you are using a 9 volt battery to power the box when the sled is not running, your battery voltage is getting low – replace your battery. Extreme hot or cold temperatures may cause the LCD to not display properly.
LCD display is slow	Cold weather conditions can make the LCD respond very slowly. The Control Box will still function OK. You can locate the box under the hood in order to provide heat so the LCD will display quicker.
Moisture on LCD	Condensation is normal if the Control Box is quickly moved from a cold to a warm environment. In some cases, the Control Box enclosure may no longer be sealing properly. If such problems persist, contact Boondocker to determine if resealing the box is necessary.
Check Engine light	Make sure the wires in the EFI harness are correct and check for a bad connection in the wiring harness. Recheck all connectors and be sure each is completely latched. Also inspect each wire to

website: www.boondockers.com - email: info@boondockers.com
Revised 03-14-07
Page 16 of 17

make sure there are no frayed, broken, or melted wires.

Engine won't start when Hot

A problem has been known to occur on some sleds involving the engine temperature sensor when the engine is hot and especially after it has been sitting for a while (gets heat soaked). Unplug the temp sensor (yellow connector located below where the rope goes into the recoil). Pull the engine over once or twice – it usually pops. Then plug the sensor back in and the engine should operate normal.

Another trick is to use the battery jumper to turn on the control box and set 3000 LO to +10 (to add just enough fuel get the engine started), start the engine, then set it back to the original setting.

X. Warranty, Terms & Conditions

Returned Goods – No merchandise will be accepted without prior approval. A RMA number (Return Merchandise Authorization) provided by Boondocker is required before a return will be accepted. A 20% handling and restocking charge will be applied to returned merchandise. No unauthorized returns will be accepted.

Limited Warranty – Boondocker warrants its product to the original purchaser against workmanship defects for a period of 90 days, commencing from the date of product delivery to the Consumer.

Maximum Liability – The maximum liability of Boondocker in connection with this warranty shall not under any circumstances exceed the price of the product claimed to be defective.

Revised 03-14-07 Page 17 of 17