FL600R

FL600R is a **recycled resin** designed for use in material extrusion based Additive Manufacturing while maximizing sustainably sourced content. Primarily sourced from **recycled bottle caps**, FL600R is a **recycled polyolefin blend** containing **over 90% sustainably sourced material**, providing a more sustainable solution without sacrificing printability. This environmentally friendly filament provides the same low density as well as water, chemical, and impact resistance inherent to virgin polyolefin-based materials.

Recommended Print Settings

Parameter	Units	Range
Extruder Temperature	°C	220 - 240
*Recommended Bed Temperature / Substrate	°C / Type	60 / PP-GF bed adhesion solution stick (water soluble)
*Initial Bed Temperature / Substrate	°C / Type	110 / PP-GF bed adhesion solution stick (water soluble)
Printing Speed (First Layer)	mm/s	30 - 65 (50% speed)
Fan Speed	%	50 - 100
Extrusion Multiplier	-	0.90 - 1.10
Overlap Percentage	%	20 - 40
**Brim	Layers	≥ 5

* Recommended to use a bed adhesive specifically designed for Polypropylene or glass-filled Polypropylene filaments. For longer prints it may be necessary to lower the bed temperature to 30 °C then increase the temperature to remove the part.

** Depends on geometry and length of print. Some prints will not require a brim.

Material Properties

Parameter	Method	Units	Value
Density	D 792	g/cm ³	0.95
Hardness ^a	D 2240	Shore D	54
Ultimate Tensile Strength ^a	D 638	MPa	15.5
Tensile Elongation at Break ^a	D 638	%	514
Youngs Modulus ^a	D 638	MPa	703
Flexural Modulus – Chord Modulus ^a	D 790	MPa	547
Charpy Impact Strength at 23 °C ª	ISO 179	kJ/m ²	83.9
Izod Impact Strength at 23 °C ª	D 256	J/m	414
Deflection Temperature (at 0.455 MPa) ^a	D 648	°C	51
Vicat Softening Temperature (at 10 N) ^a	D 1525	°C	99

^aPrinted part properties obtained using test specimens printed in X-Y direction under the following conditions: printing temperature 230 °C, bed temperature 60 °C (initial temperature 110 °C), print speed 1800 mm/min (1200 mm/min first two layers), 100% line infill, 0 perimeter/shell layers, 0.4 mm nozzle, 0.2 mm layer height, 5 brim layers, and Magigoo PP-GF bed adhesive.

Notes

1. Read Safety Data Sheet before use.

- 2. Recommended process conditions and printed part properties may be changed at any moment without previous communication from Braskem.
- 3. For product stewardship information, please contact Braskem at us_compliance@braskem.com.
- 4. In case of questions regarding utilization, or for other applications, please contact Braskem at <u>3dprinting@braskem.com</u>.

Braskem does not guarantee printed part conditions, these represent estimated values based on internal test methods. Properties may vary based on print conditions.