

FL600EVA-BIO

FL600EVA-BIO is a bio-based ethylene vinyl acetate (EVA) filament, derived from raw sugar care, providing a more sustainable alternative to traditional flexible materials available on the market. This low carbon footprint formulation, delivers a unique combination of

sustainability, flexibility, ductility, light weighting, and moisture resistance for direct drive 3D printing systems. FL600EVA-BIO expands the availability of sustainable materials for use in 3D printing applications such as; consumer, packaging, and industrial markets.

Recommended Print Settings

Direct drive system 3D printer recommended.

Parameter	Units	Range
Extruder Temperature	°C	220 - 250
*Recommended Bed Temperature (first layer)/ Substrate	°C / Type	20-40 (90) / Magigoo PPGF adhesion solution stick
**Alternate Bed Temperature (first layer)/ Substrate	°C / Type	20 - 40 (90) / Multi-purpose polyolefin adhesive
Printing Speed	mm/s	20 - 40
Fan Speed	%	50 - 100
Extrusion Multiplier	_	0.90 - 1.10
Overlap Percentage	%	20 - 40
Retraction distance	mm	1 - 10
Retraction speed	mm/s	10 - 40

Recommended to use a bed adhesive specifically designed for flexible filaments.

Printed Part Properties

Parameter	Method	Units	94 9.6 560 78 130
Density	ASTM D 792	g/cm³	
Hardness	ASTM D 2240	Shore A MPa % MPa MPa	
Tensile Strength at Break*	ASTM D 638		
Tensile Elongation at Break*	ASTM D 638		
Young's Modulus*	ASTM D 638		
Flexural Modulus – Chord Modulus	ASTM D790		
Vicat Softening Temperature (at 10 N)	ASTM D 1525	°C	67

*Note: Printed part properties obtained using test specimens printed in X-Y direction under the following conditions: printing temperature 230°C, bed temperature 20°C (90°C first layer), print speed 20 mm/s, 100% of lines infill, 0 perimeter layers, 0.15 mm layer height, direct drive system 3D printer, 0.4 mm brass nozzle.

Notes

- 1. Recommended process conditions and printed part properties may be changed at any moment without previous communication from Braskem.
- 2. This resin does not contain the substance Bisphenol A (BPA, CAS: 80-05-7) in its composition.
- 3. For information on about safety, handling, individual protection, first aids and waste disposal, please see MSDS.
- 4. In case of questions regarding utilization or regulatory information, please contact our technical assistance area.

^{**} Traditional bed adhesive solutions used for PLA and ABS (such as blue tape, glue sticks, hair spray) will not properly adhere PP to the built plate.