Porablot Nitrocellulose membranes ## **User manual** Porablot NCP Porablot NCL October 2017 / Rev. 04 **MACHEREY-NAGEL** www.mn-net.com ### **Table of contents** | 1 | Introduction | 4 | |------------------------|---|--| | 2 | 2 Southern (DNA) and Northern (RNA)Hybridizations 2.1 Gel Preparation 2.2 Membrane Preparation 2.3 Capillary Transfer 2.4 Alternative Transfer Systems 2.5 Immobilization 2.6 Hybridization Procedure | 4
4
5
5
5
5
6 | | 3 | 3 Nucleic Acid Dot/Slot Blotting 3.1 Sample Preparation 3.2 Sample Application 3.3 Immobilization 3.4 Hybridization 3.5 Detection | 9
9
9
9
10 | | 4 | 4 Colony Hybridizations 4.1 Membrane Preparation 4.2 Colony Transfer 4.3 Isolation 4.4 Immobilization 4.5 Hybridization 4.6 Detection 4.7 Probe Removal | 10
10
10
10
11
11
11 | | 5 | 5 Plaque Lifts 5.1 Membrane Preparation 5.2 Plaque Transfer 5.3 Isolation 5.4 Immobilization 5.5 Hybridization 5.6 Detection 5.7 Probe Removal | 12
12
12
12
12
12
13 | | 6 | 6 Western Blotting 6.1 Gel Preparation 6.2 Membrane Preparation 6.3 Transfer 6.4 Blocking Procedures 6.5 Detection 6.6 Signal Development 6.7 Probe Removal (if necessary) | 13
13
13
13
14
14
14 | | 7 | 7 Safety instruction | 15 | | 8 Ordering Information | | 16 | ### 1 Introduction **Porablot NCP** is a 100% pure cast nitrocellulose. This assures a high binding capacity (100 μ g/cm²) and sensitivity. Pure nitrocellulose exhibits the highest sensitivity with very low background in all transfers, especially in protein blotting. Unlike PVDF, nitrocellulose wets out naturally, does not require methanol, and will not turn hydrophobic during the transfer process. Excellent results will be obtained with all detection systems: antibody/antigen, radiolabeled, biotinylated, and chemiluminesscent, giving you a great amount of flexibility in designing your procedure. **Porablot NCL** is a supported pure nitrocellulose membrane. It has two advantageous properties: The specific binding characteristics of nitrocellulose and the dimensional strength of nylon. The inert web prevents curling, cracking and tearing even after baking. This makes **Porablot NCL** an ideal tool for RNA and DNA transfers. These properties are especially important in colony and plaque lifts and multiple reprobings or any other procedure requiring rigorous handling. **Porablot NCL** ensures a high binding capacity of approximately 100 µg/cm². This membrane provides excellent bond resolution due to its uniform and carefully controlled pore rating. The membranes are inherently hydrophilic and, therefore, do not require wetting prior to use. ## 2 Southern (DNA) and Northern (RNA) Hybridizations with Porablot NCP and Porablot NCL membranes. ### 2.1 Gel Preparation #### Southern Blots Run DNA on an agarose gel with a running buffer of TAE or TBE. If necessary, fragment gel in 0.25 N HCl. Rinse gel with distilled water and denature DNA by soaking gel in 1 M NaCl/0.5 M NaOH two times for 20 minutes each. Neutralize the gel by soaking in 0.5 M Tris/pH 7.5, 1.5 M NaCl two times for twenty minutes each. #### **Northern Blots** Run RNA under denaturing conditions in a Glyoxal, Formaldehyde, or Methyl Mercuric Hydroxide gel. Gel should be 0.8–1.5 % agarose, 2.5–5.0 mm thick. Stain with 33 μg/ml acridine orange in 10 mM NaPO₄/pH 6.5, then destain 3 x 15 minutes in buffer, or stain with ethidium bromide, 1 μg/ml in 50 mM NaOH for 25 minutes, then destain in 200 mM Na₄OAc/pH 4.0, 2 x 20 minutes. #### Gel Pretreatment Southerns: Not necessary. Northerns: Pretreatment, such as fragmentation of RNA, is unnecessary. ### 2.2 Membrane Preparation Float membrane on distilled water, then immerse until wet thoroughly. If wetting is not immediate, heat water until just under boiling temperature. Soak in the transfer buffer until use. ### 2.3 Capillary Transfer Use a transfer buffer of 20 x SSPE or SSC. Cut three pieces of filter paper 7 cm (MN 827 B; MN 218 B) longer than the glass plate to be used for the capillary transfer. Saturate the filter paper with transfer buffer and place on top of a glass plate. Place gel on top of the filter paper, and the membrane over the gel. Roll a clean pipette over the membrane to remove trapped air bubble. Place five pieces of filter paper cut to the size of the gel over the assembly. Throughout the transfer, do not allow the paper on the top of the gel to contact the paper below the gel. This is done by placing strips of Parafilm around the sides of the gel. Place the glass plate and the gel assembly on top of a glass baking tray filled with transfer buffer. Allow the bottom layer of filter paper (MN 827 B; MN 218 B) to overhang into the transfer solution in the glass baking tray. Place a 5 cm stack of paper towels on top of the gel assembly and secure with a light weight. Make sure that the filter paper under the gel is completely saturated. The wicking action of the solution through the gel and up the paper towels allows the solution to transfer the DNA or RNA molecules to the membrane. Secure plastic wrap over the entire assembly and place in a cold room for 3 hours to overnight. If the paper towels become saturated with transfer buffer, replace them with dry ones. After transfer, stain a part of the gel with 0.5 $\mu g/$ ml ethidium bromide to check transfer efficiency. ### 2.4 Alternative Transfer Systems Vacuum blotting, semi-dry electroblotting, bidirectional transfers, and positive pressure blotting systems can all be used with Porablot NC membranes. Follow manufacturers instructions, and contact MN Technical Services with any questions. #### 2.5 Immobilization After blotting, wash the membranes in 5 x SSPE at 60 °C for 5 minutes. This is an optional step to remove residual agarose. Place the membrane between two sheets of dry filter paper (MN 218 B) and bake in a vacuum oven at 80 °C for 1 to 2 hours. ### 2.6 Hybridization Procedure Hybridization is most commonly done in heat-sealable bags in order to conserve solution and protect researchers from exposure to radioactivity. All hybridization solutions should be filtered before use e.g. with a 0.22 µm cellulose acetate filter. (NOTE: Use only cellulose acetate filters; other membrane types may not perform comparably). Low binding cellulose acetate filters will filter prehybridization and hybridization solutions without nonspecifically binding essential components of these solutions. ### 2.6.1 Prehybridization This step should always be carried out at the temperature of the hybridization. Place the membrane in a heat-sealable bag without the probe in 0.1 ml/cm² of the following prehybridization buffers: Southern Prehybridization Solution - 5x SSPF - 50 % formamide - 5x Denhardt's solution - 0.5 % SDS - 100 μg/ml denatured DNA - 10 % dextran sulfate Northern Prehybridization Solution - 5x SSPE - 50 % formamide - 5x Denhard's solution - 0.1–0.5 % SDS - 100 μg/ml denatured DNA - 10 % dextran sulfate Nitrocellulose membranes (**Porablot NCP**, **Porablot NCL**) should be wet with 1 x SSPE, 0.1% SDS before prehybridization step. Shake 1 to 2 hours. ### 2.6.2 Hybridization Remove prehybridization solution completely from bag, and add the hybridization solution. Hybridization temperature should be determined by the presence of formamide in the hybridization solution. #### **Hybridization Temperature Chart** | Temperature | % Formamide | Hybridization Solution | |-------------|-------------|---| | 42 °C | 50 % | Low-Temperature Hybridization Solution | | 65 °C | 0% | High-Temperature Hybridization Solution | #### Low-Temperature Hybridization Solution for Southern Blots - 50 % formamide (47 %) - 5x Denhardt's solution - 6x SSPE - 0.2 % SDS - 100–200 μg/ml denatured fragmented DNA - 10 % dextran sulfate #### Low-Temperature Hybridization Solution for Northern Blots - 50 % formamide - 5x Denhardt's solution - 5x SSPE - 0.2 % SDS - 100-200 μg/ml denatured fragmented DNA - 10 % dextran sulfate #### High-Temperature Hybridization Solution for Southern Blots - 5x Denhard's solution - 6x SSPF - 0.5 % SDS - 50 μg/ml denatured fragmented DNA - 10 % dextrap sulfate #### High-Temperature Hybridization Solution for Northern Blots - 5x Denhard's solution - 5x SSPE - 0.5 % SDS - 100 μg/ml denatured fragmented DNA - 10 % dextran sulfate Dextran sulfate is a rate enhancer for probes larger 200 base pairs and should not be used with oligonucleotide probes. Clean probe solutions by adding a small amount of hybridization solution to the probe, and filter it through a cellulose acetate syringe filter, to eliminate any contaminants before they come into contact with the transfer membrane. Denature the probe by boiling in TE buffer for 5 minutes, or incubate with 0.1 volume of 1 N NaOH at 37 °C for 5 minutes. Place on ice. Add the probe to the hybridization solution in the heat-sealable bag and reseal. Probe concentration should not exceed 20 ng/ml. Single copy genes or low copy message may require $1-5 \times 10^6$ cpm/ml. Probes should be labeled no more than 24 hours before hybridization. Hybridize 12 hours to overnight. <u>Important:</u> If the membrane is to be rehybridized, do not allow it to dry past this point. This will cause irreversible binding to the membrane. ### 2.6.3 Post Hybridization Wash temperature should be 25 $^{\circ}$ C below the T_{m} (melting temperature of the hybrid). If the homology between the probe and membrane bound DNA is inexact, the wash temperature should be lower. #### **Stringency Washing Procedure** NOTE: With nitrocellulose membranes, an initial low stringency washing procedure is recommended. Use 0.5 ml of wash solution per square centimeter for all membranes. After washing, remove excess moisture with paper towels. Low Stringency (for inexact matching) - 2 x 15 minutes with 1 x SSC, 0.1 % SDS at room temperature - 2 x 15 minutes with 1 x SSC, 0.1 % SDS at 37 °C #### Medium Stringency - 2 x 15 minutes with 5 x SSC, 0.5 % SDS at room temperature - 2 x 15 minutes with 1 x SSC, 0.5–1.0 % SDS at 37 °C - 1 x 15 minutes with 0.1 x SSC, 1.0 % SDS at 37 °C High Stringency (for perfect hybrids) - 2 x 15 minutes with 5 x SSC, 0.5 % SDS at room temperature - 2 x 15 minutes with 1 x SSC, 0.5–1.0 % SDS at 37 °C - 3 x 15 minutes with 0.1 x SSC, 1.0 % SDS at 65 °C ### 2.6.4 Autoradiography Wrap the membrane in plastic wrap and autoradiograph at -70 °C in a cassette with an intensifying screen while slightly damp. Expose the membrane for 25-60 hours. #### 2.6.5 Probe Removal Do not allow the membrane to dry if a rehybridization step is intended. For **Porablot NCP** (unsupported nitrocellulose): Boil 0.1 x SSPE or SSC, 0.1 % SDS and add blot after removing from heat. Check for residual probe activity. For **Porablot NCL** (supported nitrocellulose): Boil in distilled water for 5 minutes. Check for residual probe activity. If necessary, boil for an additional 5 minutes. ### 3 Nucleic Acid Dot/Slot Blotting with Porablot NCP, Porablot NCL nitrocellulose membranes. ### 3.1 Sample Preparation Purify DNA or RNA by standard methods and suspend in 50 μ l of TE buffer/pH 8. For RNA adjust the pH to 7.5. #### DNA: Denature DNA with the addition of 0.1 vol of 3 M NaOH. Incubate for 1 hour at 60 °C. Cool and add 1 vol 2 M NH₄OAc/pH 7, or 6 x SSC. #### RNA: Denature RNA by adding 35 μl of 20 x SSC, and 20 μl of 37 % formaldehyde. Incubate for 15 minutes at 60 °C. Wet membrane in distilled water, then soak in the appropriate buffer. #### DNA: Soak in 1 M NH₄OAc/pH 7, or 6 x SSC. #### RNA: Soak in 20 x SSC. ### 3.2 Sample Application If using a filtration manifold, cut two pieces of filter paper to the size of the manifold plate and soak them in: #### DNA: 6 x SSC #### RNA: 20 x SSC Place filter paper (MN 218 B), then membrane onto the sample plate and secure the unit. Apply low vacuum, and wash wells with 500 μ l of 1 M NH₄OAc/pH 7, or 6 x SSC for DNA, 500 μ l of 20 x SSC for RNA. Apply sample (not to exceed 10 μ g DNA or RNA per well), under low vacuum. Remove membrane. If working with RNA, rinse each well again with 500 μ l of 20 x SSC. If dotting directly onto the membrane, apply 2–5 μ I samples to membrane placed on two sheets of dry filter paper. Allow to dry. #### 3.3 Immobilization Immobilize DNA by baking in a vacuum oven at 80 $^{\circ}$ C for 15 minutes – 1 hour. Remove when dry. ### 3.4 Hybridization Hybridize by standard methods (see Southern and Northern procedures listed on page 4). #### 3.5 Detection Detect with isotopic or colorimetric probes. Densitometric analysis can be carried out on nitrocellulose membranes after clearing with paraffin oil. ### 4 Colony Hybridizations with Porablot NCP. Porablot NCL nitrocellulose membranes. ### 4.1 Membrane Preparation If necessary, sterilize the membrane between two pieces of filter paper (MN 218 B) in the autoclave for 15 minutes. Allow the membrane to wet on the agar surface. Mark the membrane so that future orientation is assured. ### 4.2 Colony Transfer #### Step 1: Incubate cell colonies and plaques at 37 °C until they are 0.5–1.0 mm in diameter. Alternatively, the cell colonies may be grown after the membrane and appropriate cell media have been added to the plate. #### Step 2: Replication. After 30–60 seconds, use blunt ended forceps, lift the membrane from the surface of the plate and place it colony side up on two sheets of dry filter paper (MN 218 B). Carefully place a fresh membrane over the one with the colonies, and apply gentle pressure with a replication tool or glass plate. Mark the filters in three or more asymetric locations with a sterile needle. Wrap the filters in aluminium toil and store them at –20 °C at least for two hours. Thaw the filters for 2–3 minutes and peel the filters apart (FAST!). Avoid smearing the colonies when separating the membranes. To amplify plasmids, transfer the membrane to an agar plate with 200–250 μg/ml of chloramphenicol at 37 °C for 10 hours. #### 4.3 Isolation Peel the membrane and immerse it, DNA side up on filter paper prewet with 0.5 N NaOH for 5–7 minutes to denature the nucleic acid. Neutralize the membrane on filter paper saturated with 1 M Tris-HCl/pH 8.0 for 5 minutes. Incubate on filter paper saturated with 1 M Tris-HCl/pH 8.0, 1.5 M NaCl for 5 minutes. Wash in 2 x SSC. #### 4.4 Immobilization Bake membranes until dry for 15–30 minutes at 80 $^{\circ}$ C. Nitrocellulose membranes must always be baked in a vacuum oven. ### 4.5 Hybridization Use 5–10 ml of prehybridization buffer solution per membrane with gentle agitation. Prehybridize for 1 hour in a heat-sealable bag. Prehybridization Buffer - 50 % formamide - 5 x SSPE - 1–3 x Denhardt's solution - 0.1–0.5 % SDS - 100–200 μg/ml denatured DNA Hybridize in freshly made prehybridization buffer with $1-5 \times 10^6$ cpm/ml probe, or approximately 5–20 ng/ml. Incubate for 12-20 hours at $45 \, ^{\circ}$ C. #### 4.6 Detection Autoradiograph on X-ray film at -70 °C for 48 hours or more. #### 4.7 Probe Removal See probe removal details in the appropriate sections of his protocol (See Southern and the Northern reprobing procedures on page 8). ### 5 Plaque Lifts with Porablot NCP, Porablot NCL nitrocellulose membranes. ### 5.1 Membrane Preparation If necessary, sterilize the membrane between two pieces of filter paper (MN 218 B) in the autoclave for 15 minutes. Allow the membrane to wet on the agar surface. Mark the membrane so that future orientation is assured. ### 5.2 Plaque Transfer #### Step 1: Cells should be plated with phage in soft agarose and incubated at 37 °C until plaques are 0.2 mm. The plate should not show confluent lysis. Chill the plates for 30 minutes at 4 °C to allow the top agarose to harden. #### Step 2: Place membrane on the plate in complete contact with the agarose and assure orientation by marking. Be careful not to trap air bubbles. The filters should be handled with gloved hands! Mark the filter (needle) and the plate (pen) in three or more asymmetric locations. Allow phage to transfer for 15 minutes. Increase the transfer time if many transfers are to be performed. #### 5.3 Isolation Peel the membrane and immerse it, DNA side up on filter paper prewet with 0.5 N NaOH, 1.5 M NaCl for 5–7 minutes to denature the nucleic acid. #### 5.4 Immobilization Bake membranes until dry for 15–30 minutes at 80 $^{\circ}$ C. Neutralize and incubate the membrane on filter paper saturated with 0.5 M Tris-HCl/pH 8.0, 1.5 M NaCl. Place the membrane on sheets wet with 2 x SSC and blot dry. ### 5.5 Hybridization Use 5–10 ml of prehybridization buffer solution per membrane with gentle agitation. Prehybridize for 1 hour in a heat-sealable bag. Prehvbridization Buffer - 50 % formamide - 5 x SSPE - 1–3 x Denhardt's solution - 0.1–0.5 % SDS - 100–200 µg/ml denatured DNA Hybridize in freshly made prehybridization buffer with 1–5 x 10^6 cpm/ml probe, or approximately 5–20 ng/ml. Incubate for 12–20 hours at 45 °C. #### 5.6 Detection Autoradiograph on X-ray film at -70 °C for 48 hours or more. #### 5.7 Probe Removal See probe removal details in the appropriate sections of this protocol (See Southern and Northern reprobing procedures on page 8). ### 6 Western Blotting with Porablot NCP. Porablot NCL membranes Protocols are often provided for Western blotting onto nitrocellulose and nylon membranes, but MN recommends that most Western blot procedures be performed on **Porablot NCP**, **Porablot NCL** or **Porablot PVDF** membranes to reduce the potential for high backgrounds. ### 6.1 Gel Preparation Gels may be stained before transfer with Coomassie Blue, or after transfer with Fast Green, Amido Black, or any other appropriate stain. Soak the gel for 1 hour in a transfer buffer made of 25 mM Tris-HCl/pH 8.0, 0.15 M glycine, 20 % methanol. ### 6.2 Membrane Preparation Completely soak the membrane in deionized water, and then in transfer buffer. #### 6.3 Transfer ### 6.3.1 Electroblotting Assemble the membrane and gel in the electroblotting unit. Place the membrane on the anode (positive) side of the gel. Transfer according to manufacturers instructions. Remove and wash thoroughly with transfer buffer. ### 6.3.2 Capillary Blotting Prepare gel assembly by the method of Southern (see page 4). Transfer for 2 hours to overnight. Use transfer buffer of 10 mM Tris-HCI/pH 7.5. After the transfer step, determine transfer efficiency by staining the blot or gel by standard methods. ### 6.4 Blocking Procedures #### Step 1: First Wash Block the blot in PBS buffer (0.9 % NaCl, 10 mM sodium phosphate/pH 7.2) containing 5 % nonfat dry milk for 1 hour, with gentle agitation. Tween-20 may also be added to enhance blocking. #### Step 2: Primary Antibody Binding Remove the PBS buffer solution from blot completely. Dilute the first antibody in 50 ml of fresh PBS buffer solution. Incubate the blot in the PBS blocking buffer/antibody solution for 1 hour at 37 °C with gentle agitation. Use a ratio of 5–10 ml of solution to 100 cm² of membrane. #### Step 3: Second Wash Wash the membrane in 100 ml of fresh PBS buffer solution (without antibody) with 0.1–0.3 % Tween-20. Agitate in a shaker for 5 minutes. Repeat the wash step 2 times. (Note: Increasing the number of short washes reduces the potential for high backgrounds). #### 6.5 Detection Thoroughly remove the PBS buffer solution and overlay the blot with an anti-species (second) antibody, or with protein A (radiolabelled or enzyme linked) for 1–2 hours at room temperature with gentle agitation. The final concentration of radiolabelled second antibody solution should be $1–2 \times 10^5$ cpm/ml of PBS buffer solution. Enzyme-linked second antibody solutions should be made at a 1:1000 titer in PBS buffer solution. Repeat the wash step described in the procedure above. ### 6.6 Signal Development The choice of signal development method is dependent on the type of probe used. Radiolabeled probes are developed and quantitated by autoradiography. Enzyme-conjugated labels (horseradish peroxidase or alkaline phosphatase) are developed and quantitated with the appropriate substrate solution. ### 6.7 Probe Removal (if necessary) Do not allow the filter to become dry, or irreversible binding of the probe will result. Wash the membrane at 60 °C for 30 minutes in 0.05 M sodium phosphate/pH 6.5, 10 M urea, 0.1 M 2-mercaptoethanol, or wash the membrane in 0.2 M glycine-HCl, 0.5 M NaCl for 5 minutes. Binse in 0.1 M NaOH or 0.5 M Tris for 10 minutes. ### 7 Safety instruction | Component | Hazard contents | GHS
symbol | Hazard
phrases | Precaution phrases | |----------------------|---|------------------|-------------------|--------------------| | Inhalt | Gefahrstoff | GHS-Symbol | H-Sätze | P-Sätze | | Porablot NCP/
NCL | nitrocellulose (membrane
filter) 90–100 %
Nitrocellulose (Membranfilter)
90–100 %
CAS 9004-70-0 | DANGER
GEFAHR | 201 | 210, 250, 372 | #### Hazard phrases H 201 Explosive; mass explosion hazard. Explosiv, Gefahr der Massenexplosion. #### **Precaution phrases** P 210 Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking. Von Hitze, heissen Oberflächen, Funken, offenen Flammen sowie anderen Zündquellenarten fernhalten. Nicht rauchen. P 250 Do not subject to grinding/shock/.../friction. Nicht schleifen/stoßen/.../reiben. P 372 Explosion risk in case of fire. Explosionsgefahr bei Brand. riangle The symbol shown on labels refers to further safety information in this section. Das auf Etiketten dargestellte Symbol weist auf weitere Sicherheitsinformationen dieses Kapitels hin. For further information, please see Material Safety Data Sheets (www.mn-net.com). Weiterführende Informationen finden Sie in den Sicherheitsdatenblättern (www.mn-net.com). ## 8 Ordering Information #### Nitrocellulose membranes | Porablot NCP | 0.3 x 3 m | 1 roll | 0.45 | 741280 | | | | | |---|--------------|-----------|------|--------|--|--|--|--| | Nitrocellulose membranes with supporting tissue | | | | | | | | | | Porablot NCL | 0.3 x 3 m | 1 roll | 0.45 | 741290 | | | | | | Porablot NCL | 200 x 200 mm | 10 sheets | | 741291 | | | | | | PVDF membranes | | | | | | | | | | Porablot PVDF | 0.25 x 3 m | 1 roll | 0.20 | 741260 | | | | | www.mn-net.com MACHEREY-NAGEL GmbH & Co. KG · Neumann-Neander-Str. 6-8 · 52355 Düren · Germany FR: DE/International: E-mail: info@mn-net.com CH: Tel.: +49 24 21 969-0 Tel.: +41 62 388 55 00 Fax: +49 24 21 969-199 Fax: +41 62 388 55 05 Tel.: +33 388 68 22 68 Fax: +33 388 51 76 88 E-mail: sales-ch@mn-net.com E-mail: sales-fr@mn-net.com US: Tel.: +1 484 821 0984 Fax: +1 484 821 1272 E-mail: sales-us@mn-net.com A007635/1070.2