

Certificate of Analysis

COMPLIANCE FOR RETAIL

Kaycha Labs

CBG+CBD 1200MG Matrix: Edible

Type: Other Edible Product

Sample:DA31110011-002 Harvest/Lot ID: J-1200-23

Batch#: J-1200-23

Batch Date: 11/08/23

Sample Size Received: 1200 mg Total Amount: 1200 mg

Retail Product Size: 30 ml Sample Density: 1.0 g/mL

> **Ordered:** 11/08/23 Sampled: 11/10/23 **Completed:** 11/14/23

Sampling Method: SOP.T.20.010.FL

PASSED

Nov 14, 2023 | PharmaCanna

2615 state Road 7 Wellington, FL, 33414, US

Pages 1 of 5

PRODUCT IMAGE

SAFETY RESULTS

Heavy Metals PASSED

Microbials

Mycotoxins PASSED

Residuals Solvents PASSED

Filth PASSED

Water Activity

Moisture **NOT TESTED**

NOT TESTED

PASSED

Cannabinoid

CBG

CBG/Container: 688.50 mg

Total CBD Total CBD/Container: 681.60 mg

Total Cannabinoids

Total Cannabinoids/Container: 1373.40

								mg		
D9-THC	THCA	CBD	CBDA	D8-THC	CBG	CBGA	CBN	THCV	CBDV	СВС
ND	ND	2.272	ND	ND	2.295	ND	ND	ND	0.011	ND
ND	ND	22.72	ND	ND	22.95	ND	ND	ND	0.11	ND
0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
%	%	%	%	%	%	%	%	%	%	%
		Weig		Freton	ction date:				Extracted by:	
	ND ND 0.001	ND ND ND ND 0.001	ND ND 2.272 ND ND 22.72 0.001 0.001 0.001 % %	ND ND 2.272 ND ND 22.72 ND 0.001 0.001 0.001 0.001 % % %	ND ND 2.272 ND ND ND ND 22.72 ND ND 0.001 0.001 0.001 0.001 0.001 % % % %	ND ND 2.272 ND ND 2.295 ND ND 22.72 ND ND 22.95 0.001 0.001 0.001 0.001 0.001 0.001 % % % % %	ND ND 2.272 ND ND 2.295 ND ND ND 22.72 ND ND 22.95 ND 0.001 0.001 0.001 0.001 0.001 0.001 0.001 % % % % % %	ND ND 2.272 ND ND 2.295 ND ND ND ND 22.72 ND ND 22.95 ND ND 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 % % % % % % %	D9-THC THCA CBD CBDA D8-THC CBG CBGA CBN THCV ND ND 2.272 ND ND ND 2.295 ND	ND ND 2.272 ND ND 2.295 ND ND ND 0.011 ND ND 22.72 ND ND 22.95 ND ND ND ND 0.11 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 % % % % % % % %

Analysis Method: SOP.T.40.031, SOP.T.30.031

Analytical Batch: DA066337POT Instrument Used: DA-LC-007 **Analyzed Date:** 11/13/23 09:41:14

Reagent: 102423.R05; 070121.27; 110723.R05 Consumables: 947.109; 280670723; CE0123; R1KB14270

Pipette: DA-079; DA-108; DA-078

Full Spectrum cannabinoid analysis utilizing High Performance Liquid Chromatography with UV detection in accordance with F.S. Rule 64ER20-39

 $\begin{array}{l} \textbf{Reviewed On:} \ 11/14/23 \ 10{:}10{:}24 \\ \textbf{Batch Date:} \ 11/11/23 \ 23{:}49{:}19 \\ \end{array}$

Vivian Celestino

Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature 11/14/23

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Kaycha Labs

CBG+CBD 1200MG

N/A

Matrix : Edible
Type: Other Edible Product

Certificate of Analysis

2615 state Road 7 Wellington, FL, 33414, US **Telephone:** 9543050078 **Email:** johnny@pharmacanna.us Sample : DA31110011-002 Harvest/Lot ID: J-1200-23

Batch#: J-1200-23 Sampled: 11/10/23 Ordered: 11/10/23 Sample Size Received: 1200 mg
Total Amount: 1200 mg

Completed: 11/14/23 Expires: 11/14/24
Sample Method: SOP Client Method

PASSED

Page 2 of 5

Pesticides

PASSED

esticide	LOD	Units	Action Level	Pass/Fail	Result	Pesticide	LOD	Units	Action Level	Pass/Fail	Resul
OTAL CONTAMINANT LOAD (PESTICIDES)	0.010		30	PASS	ND	OXAMYL	0.010	ppm	0.5	PASS	ND
OTAL DIMETHOMORPH	0.010		3	PASS	ND	PACLOBUTRAZOL	0.010	ppm	0.1	PASS	ND
OTAL PERMETHRIN	0.010		1	PASS	ND	PHOSMET	0.010	ppm	0.2	PASS	ND
OTAL PYRETHRINS	0.010		1	PASS	ND	PIPERONYL BUTOXIDE	0.010	ppm	3	PASS	ND
OTAL SPINETORAM	0.010		3	PASS	ND	PRALLETHRIN		ppm	0.4	PASS	ND
OTAL SPINOSAD	0.010	1.1	3	PASS	ND	PROPICONAZOLE		ppm	1	PASS	ND
BAMECTIN B1A	0.010		0.3	PASS	ND	PROPOXUR		ppm	0.1	PASS	ND
EPHATE	0.010		3	PASS	ND				3	PASS	ND
EQUINOCYL	0.010		2	PASS	ND	PYRIDABEN		ppm			
ETAMIPRID	0.010		3	PASS	ND	SPIROMESIFEN		ppm	3	PASS	ND
DICARB	0.010		0.1	PASS	ND	SPIROTETRAMAT		ppm	3	PASS	ND
OXYSTROBIN	0.010		3	PASS	ND	SPIROXAMINE	0.010	ppm	0.1	PASS	ND
ENAZATE	0.010		3	PASS	ND	TEBUCONAZOLE	0.010	ppm	1	PASS	ND
FENTHRIN	0.010		0.5	PASS PASS	ND	THIACLOPRID	0.010	ppm	0.1	PASS	ND
OSCALID	0.010		3		ND	THIAMETHOXAM	0.010	ppm	1	PASS	ND
RBARYL	0.010		0.5	PASS	ND	TRIFLOXYSTROBIN	0.010	ppm	3	PASS	ND
RBOFURAN	0.010		0.1	PASS PASS	ND	PENTACHLORONITROBENZENE (PCNB) *	0.010		0.2	PASS	ND
ILORANTRANILIPROLE	0.010		3	PASS	ND	PARATHION-METHYL *	0.010		0.1	PASS	ND
LORMEQUAT CHLORIDE	0.010	P.P.	3 0.1	PASS	ND ND	CAPTAN *	0.010		3	PASS	ND
ILORPYRIFOS	0.010		0.1	PASS	ND ND		0.070		0.1	PASS	ND
OFENTEZINE	0.010		0.5	PASS	ND ND	CHLORDANE *					
UMAPHOS	0.010	1.1.	0.1	PASS	ND ND	CHLORFENAPYR *	0.010		0.1	PASS	ND
MINOZIDE	0.010		3	PASS	ND	CYFLUTHRIN *	0.050		1	PASS	ND
AZINON			-	PASS	ND ND	CYPERMETHRIN *	0.050	PPM	1	PASS	ND
CHLORVOS	0.010	1.1.	0.1	PASS	ND ND	Analyzed by: Weigh	t: E	xtraction date	e:	Extract	ed by:
METHOATE	0.010		0.1	PASS	ND ND	4056, 3379, 585, 1440 0.2184		1/11/23 17:14		4056	
HOPROPHOS	0.010		0.1	PASS	ND ND	Analysis Method: SOP.T.30.101.FL (Gainesville),	SOP.T.30.10	2.FL (Davie),	SOP.T.40.101	FL (Gainesville),
OFENPROX	0.010		1.5	PASS	ND ND	SOP.T.40.102.FL (Davie)			11/1/100	11 10 12	
OXAZOLE NHEXAMID	0.010		3	PASS	ND	Analytical Batch : DA066325PES Instrument Used : DA-LCMS-003 (PES)		Reviewed O Batch Date			
			0.1	PASS	ND	Analyzed Date :11/12/23 17:22:09		Duten Dute	11/11/25 15	.43.23	
NOXYCARB	0.010		2	PASS	ND ND	Dilution: 250					
NPYROXIMATE PRONIL	0.010		0.1	PASS	ND	Reagent: 110823.R01; 040423.08; 110723.R28;	110823.R02	; 110923.R03	101023.R01	; 110823.R03	
ONICAMID	0.010		2	PASS	ND	Consumables: 326250IW					
UDIOXONIL	0.010		3	PASS	ND	Pipette : DA-093; DA-094; DA-219					
XYTHIAZOX	0.010		2	PASS	ND	Testing for agricultural agents is performed utilizing accordance with F.S. Rule 64ER20-39.	Liquid Chron	natography Tri	pie-Quadrupo	le Mass Spectror	netry in
AZALIL	0.010		0.1	PASS	ND	Analyzed by: Weight:	Evtracti	ion date:		Extracted	l hve
IDACLOPRID	0.010		1	PASS	ND	450, 585, 1440 0.2184q		3 17:14:41		4056	. by.
ESOXIM-METHYL	0.010		1	PASS	ND	Analysis Method : SOP.T.30.151.FL (Gainesville),			SOP.T.40.15		
LATHION	0.010		2	PASS	ND	Analytical Batch : DA066326VOL	Re	eviewed On:	11/14/23 11:	08:58	
TALAXYL	0.010		3	PASS	ND	Instrument Used : DA-GCMS-001	Ba	atch Date:11	/11/23 13:46	:10	
THIOCARB	0.010		0.1	PASS	ND	Analyzed Date : 11/13/23 13:59:07					
THOMYL	0.010		0.1	PASS	ND	Dilution: 250					
VINPHOS	0.010		0.1	PASS	ND	Reagent: 110823.R01; 040423.08; 103123.R19; Consumables: 326250IW: 14725401	103123.R20)			
CLOBUTANIL	0.010	P.P.	3	PASS	ND	Pipette: DA-080: DA-146: DA-218					
ALED		ppm	0.5	PASS	ND	Testing for agricultural agents is performed utilizing	Cas Chroma	tography Triple	Ouadrupolo	Mass Chastrons	ter in

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Vivian Celestino

Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164 1/2

Signature 11/14/23

CBG+CBD 1200MG

N/A

Matrix : Edible Type: Other Edible Product

Certificate of Analysis

PASSED

2615 state Road 7 Wellington, FL, 33414, US Telephone: 9543050078 Email: iohnnv@pharmacanna.us Sample : DA31110011-002 Harvest/Lot ID: J-1200-23

Batch#: I-1200-23 Sampled: 11/10/23 Ordered: 11/10/23

Sample Size Received: 1200 mg Total Amount: 1200 mg

Completed: 11/14/23 Expires: 11/14/24 Sample Method: SOP Client Method

Page 3 of 5

Residual Solvents

PASSED

Solvents	LOD	Units	Action Level	Pass/Fail	Result	
1,1-DICHLOROETHENE	0.800	ppm	8	PASS	ND	
1,2-DICHLOROETHANE	0.200	ppm	2	PASS	ND	
ACETONE	75.000	ppm	750	PASS	ND	
DICHLOROMETHANE	12.500	ppm	125	PASS	ND	
BENZENE	0.100	ppm	1	PASS	ND	
2-PROPANOL	50.000	ppm	500	PASS	ND	
CHLOROFORM	0.200	ppm	2	PASS	ND	
ETHANOL	500.000	ppm	5000	PASS	ND	
ETHYL ACETATE	40.000	ppm	400	PASS	ND	
BUTANES (N-BUTANE)	500.000	ppm	5000	PASS	ND	
ACETONITRILE	6.000	ppm	60	PASS	ND	
ETHYL ETHER	50.000	ppm	500	PASS	ND	
ETHYLENE OXIDE	0.500	ppm	5	PASS	ND	
HEPTANE	500.000	ppm	5000	PASS	ND	
METHANOL	25.000	ppm	250	PASS	ND	
N-HEXANE	25.000	ppm	250	PASS	ND	
PENTANES (N-PENTANE)	75.000	ppm	750	PASS	ND	
TOLUENE	15.000	ppm	150	PASS	ND	
TOTAL XYLENES	15.000	ppm	150	PASS	ND	
PROPANE	500.000	ppm	5000	PASS	ND	
TRICHLOROETHYLENE	2.500	ppm	25	PASS	ND	
Analyzed by:	Weight:	Extraction date:		E	ctracted by:	

850, 585, 1440 0.0286g 11/14/23 11:18:27

Analysis Method : SOP.T.40.041.FL Analytical Batch : DA066317SOL Instrument Used: DA-GCMS-003 **Analyzed Date:** 11/14/23 11:47:17

Dilution: 1 Reagent: 030420.09

Consumables: R2017.167; 172723 Pipette: DA-309 25 uL Syringe 35028

Reviewed On: 11/14/23 12:23:56 Batch Date: 11/11/23 12:26:41

Residual solvents analysis is performed utilizing Gas Chromatography Mass Spectrometry in accordance with with F.S. Rule 64ER20-39.

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors

Vivian Celestino

Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature 11/14/23

Kaycha Labs

CBG+CBD 1200MG

N/A

Matrix : Edible

Type: Other Edible Product

LOD

Certificate of Analysis

PASSED

2615 state Road Wellington, FL, 33414, US Telephone: 9543050078 Email: iohnnv@pharmacanna.us Sample : DA31110011-002 Harvest/Lot ID: J-1200-23

Batch#: I-1200-23 Sampled: 11/10/23 Ordered: 11/10/23

Sample Size Received: 1200 mg Total Amount: 1200 mg

Completed: 11/14/23 Expires: 11/14/24 Sample Method: SOP Client Method

Page 4 of 5

Reviewed On: 11/14/23 10:10:11

Batch Date: 11/11/23 13:46:24

Microbial

PASSED

Mycotoxins

SOP.T.30.102.FL (Davie), SOP.T.40.102.FL (Davie)

Analytical Batch : DA066327MYC

Analyzed Date: 11/12/23 17:23:50

Pipette: DA-093; DA-094; DA-219

Instrument Used : N/A

Consumables: 326250IW

Dilution: 250

110823.R03

PASSED

Action

Level

0.02

0.02

0.02

0.02

0.02

Pass /

PASS

PASS

PASS

PASS

PASS

Extracted by:

Result

Analyte		LOD	Units	Result	Pass / Fail	Action Level	Analyte		LOD	Units	Result	Pas: Fail
ASPERGILLUS TERR	REUS			Not Present	PASS		AFLATOXIN B2		0.002	ppm	ND	PAS
ASPERGILLUS NIGE	R			Not Present	PASS		AFLATOXIN B1		0.002	ppm	ND	PAS
ASPERGILLUS FUMI	IGATUS			Not Present	PASS		OCHRATOXIN A		0.002	ppm	ND	PAS
ASPERGILLUS FLAV	/US			Not Present	PASS		AFLATOXIN G1		0.002	ppm	ND	PAS
SALMONELLA SPEC	IFIC GENE			Not Present	PASS		AFLATOXIN G2		0.002	ppm	ND	PAS
ECOLI SHIGELLA				Not Present	PASS		Analyzed by:	Weight:	Extractio	n date:		Extr
TOTAL YEAST AND	MOLD	10	CFU/g	<10	PASS	100000	4056, 3379, 585, 1440	0.2184g	11/11/23			405
Analyzed by:	Weight:	Extr	action date:		Extracted	by:	Analysis Method : SOP.T.30.	.101.FL (Gainesv	ille), SOP.T.4	10.101.FL	(Gainesv	ille),

Analyzed by: Weight: **Extraction date:** Extracted by: 3336, 585, 1440 0.8824g 11/11/23 11:27:42

Analysis Method: SOP.T.40.056C. SOP.T.40.058.FL. SOP.T.40.209.FL

Analytical Batch: DA066290MIC

Reviewed On: 11/14/23

Extracted by:

3621

12:25:41 Batch Date: 11/11/23

Instrument Used: PathogenDx Scanner DA-111.Applied Biosystems Thermocycler DA-010, fisherbrand Isotemp Heat Block 10:05:29

DA-020, fisherbrand Isotemp Heat Block DA-049, Fisher Scientific Isotemp Heat Block DA-021

Analyzed Date: 11/11/23 17:32:39

Reagent: 083123.134; 083123.146; 100423.R40; 081023.02; 081023.07

Weight:

0.8824g

Consumables: 7566004033

Analyzed by: 3336, 3963, 585, 1440

Pipette: N/A

	ng utilizing Liquid Chromatography with Triple F.S. Rule 64ER20-39.	e-Quadrupole Mass Spectrometry in
Hg	Heavy Metals	PASSED

Reagent: 110823.R01; 040423.08; 110723.R28; 110823.R02; 110923.R03; 101023.R01;

Analysis Method: SOP.T.40.208 (Gainesville), SOP	.T.40.209.FL
Analytical Batch : DA066292TYM	Reviewed On: 11/14/23 10:10:24
Instrument Used : Incubator (25-27C) DA-097	Batch Date: 11/11/23 10:09:04
Analyzed Date : 11/11/23 17:36:12	
Dilution: N/A	

Extraction date:

11/11/23 11:27:42

Reagent: 083123.134; 083123.146; 101723.R10 Consumables : N/A Pipette : N/A

Total yeast and mold testing is performed utilizing MPN and traditional culture based techniques in accordance with F.S. Rule 64ER20-39.

Metal		LOD	Units	Result	Pass / Fail	Action Level
TOTAL CONTAMINANT LO	AD METALS	0.080	ppm	ND	PASS	5
ARSENIC		0.020	ppm	ND	PASS	1.5
CADMIUM		0.020	ppm	ND	PASS	0.5
MERCURY		0.020	ppm	ND	PASS	3
LEAD		0.020	ppm	ND	PASS	0.5
Analyzed by: 1879, 1022, 585, 1440	Weight: 0.2956a	Extraction date: 11/13/23 10:36:10			Extracte 1022	ed by:

Analysis Method: SOP.T.30.082.FL, SOP.T.40.082.FL

Reviewed On: 11/14/23 10:43:42 Analytical Batch: DA066306HEA Instrument Used : DA-ICPMS-004 Analyzed Date: 11/14/23 10:04:33

Dilution: 50

Reagent: 102723.R12; 111023.R05; 110123.R33; 111023.R03; 111023.R04; 110123.R34; 110123.49; 111023.R06

Consumables: 179436; 210508058; 12594-247CD-247C

Pipette: DA-061; DA-191; DA-216

Heavy Metals analysis is performed using Inductively Coupled Plasma Mass Spectrometry in accordance with F.S. Rule 64ER20-39.

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors

Vivian Celestino

Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature 11/14/23

CBG+CBD 1200MG

N/A

Matrix : Edible Type: Other Edible Product

PASSED

Page 5 of 5

Certificate of Analysis

2615 state Road 7 Wellington, FL, 33414, US Telephone: 9543050078 Email: iohnnv@pharmacanna.us Sample : DA31110011-002 Harvest/Lot ID: J-1200-23 Batch#: I-1200-23

Sampled: 11/10/23 Ordered: 11/10/23

Sample Size Received: 1200 mg Total Amount: 1200 mg Completed: 11/14/23 Expires: 11/14/24 Sample Method: SOP Client Method

Filth/Foreign **Material**

PASSED

Analyte LOD Units Result P/F **Action Level** Filth and Foreign Material 0.100 % ND PASS 1

Analyzed by: 1879, 1440 Extraction date: Extracted by: NA N/A N/A

Analysis Method: SOP.T.40.090

Analytical Batch : DA066301FIL
Instrument Used : Filth/Foreign Material Microscope Reviewed On: 11/12/23 21:35:03 Batch Date: 11/11/23 11:13:19

Analyzed Date: 11/12/23 20:50:47

Dilution: N/AReagent: N/A Consumables : N/A Pipette: N/A

Filth and foreign material inspection is performed by visual inspection utilizing naked eye and microscope technologies in accordance with F.S. Rule 64ER20-39.

Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature 11/14/23