SECTION 4 - TECHNICAL

4.A. Initial Assembly
4.B. Handlebars
4.C. Wheels
 4.C.1. Wheel Quick Release
 4.C.2. Removing and installing quick release wheels
4.D. Brakes
4.E. Seatposts
4.F. Gears
4.G. Pedals
4.H. Tyres and Tubes
4.I. Tightening of Fasteners

SECTION 5 - SERVICE

5.A. Service Intervals
5.B. Sustaining an Impact
5.C. Replacement Parts

CONTENTS

3 CONTENTS
4 General Warning
4 Note to Parents
4 E-Bike Warning
5 SECTION 1 - FIRST
 5 1.A. Bike Fit
 5 1.B. Safety First
 5 1.C. Mechanical Safety Check
 7 1.D. First Ride
8 SECTION 2 - SAFETY
 8 2.A. The Basics
 9 2.B. Riding Safety
 10 2.C. Wet Weather Riding
 10 2.D. Riding at Night
 11 2.E. Competition
 12 2.F. Changing Components
 12 2.G. Maximum Weight
 12 2.H. Electric Bikes
15 SECTION 3 - FIT
 15 3.A. Standover Height
 15 3.B. Saddle Position
 17 3.C. Handlebar Height and Angle
 18 3.D. Control Position Adjustments
 18 3.E. Brake Reach
18 SECTION 4 - TECHNICAL
 18 4.A. Initial Assembly
 19 4.B. Handlebars
 19 4.C. Wheels
 19 4.C.1. Wheel Quick Release
 20 4.C.2. Removing and installing quick release wheels
 22 4.D. Brakes
 24 4.E. Seatposts
 24 4.F. Gears
 26 4.G. Pedals
 27 4.H. Tyres and Tubes
 29 4.I. Tightening of Fasteners
30 SECTION 5 - SERVICE
 30 5.A. Service Intervals
 32 5.B. Sustaining an Impact
 32 5.C. Replacement Parts

NOTE
This manual is not intended as a comprehensive assembly, use, service, repair, or maintenance manual. Please consult with your Approved Retailer for all assembly, service, repairs, or maintenance. Your Approved Retailer may also be able to refer you to classes, clinics or books on bicycle use, service, repair, or maintenance.

IMPORTANT
This manual contains important safety, performance, and service information. Read it before you take the first ride on your new bicycle and keep it for reference. Additional safety, performance, and service information for specific components such as pedals, or for accessories such as helmets or lights that you purchase, may also be available from your Approved Retailer.

Ensure your Approved Retailer has given you all the manufacturer's literature that was included with your bicycle or accessories. If you have any questions or do not understand something, take responsibility for your safety, and consult with your Approved Retailer as a first point of contact.
GENERAL WARNING

Like any sport, cycling involves risk of injury and damage. By choosing to ride a bicycle, you assume the responsibility for that risk, so you need to know – and to practice – the rules of safe and responsible riding and of proper use and maintenance. Proper use and maintenance of your bicycle reduces risk of injury. This manual contains many "warnings" and "cautions" concerning the consequences of failure to maintain or inspect your bicycle and of failure to follow safe cycling practices.

• The combination of the safety alert symbol and the word "warning" indicates a potentially hazardous situation which, if not avoided, could result in serious injury or death.

• The combination of the safety alert symbol and the word "caution" indicates a potentially hazardous situation which, if not avoided, may result in minor or moderate injury, or is an alert against unsafe practices.

• The word "caution" used without the safety alert symbol indicates a situation which, if not avoided, could result in serious damage to the bicycle or the voiding of your warranty.

• Many of the warnings and cautions say, "you may lose control and fall," because any fall can result in serious injury or even death, we do not always repeat the warning of possible injury or death. Because it is impossible to anticipate every situation or condition which can occur while riding, this manual makes no representation about the safe use of the bicycle under all conditions. There are risks associated with the use of any bicycle which cannot be predicted or avoided, and which are the sole responsibility of the rider.

E-BIKE WARNING

Any manipulation, modification or tuning of E-Bike motors will void warranty and carries a severe risk of injury and damage. If the motor is modified, your E-Bike may no longer be approved for use on public roads and forest trails. Please check your local legislation to ensure you are riding legally.

A SPECIAL NOTE FOR PARENTS

As a parent or guardian, you are responsible for the activities and safety of your child, and that includes making sure that the bicycle is properly fitted to the child; that it is in good repair and safe operating condition; that you and your child have learned and understand the safe operation of the bicycle; and that you and your child have learned, understand and obey not only the applicable local motor vehicle, bicycle and traffic laws, but also the common sense rules of safe and responsible cycling. As a parent, you should read this manual, as well as review its warnings and the bicycle's functions and operating procedures with your child, before letting your child ride the bicycle.

Warning: Make sure your child always wears an approved bicycle helmet when riding; but also make sure that your child understands that a bicycle helmet is for cycling only and must be removed when not riding. A helmet must not be worn while playing, in play areas, on playground equipment, while climbing trees, or at any time while not riding a bicycle. Failure to follow this warning could result in serious injury or death.

SECTION 1 - FIRST

Note: We strongly urge you to read this manual in its entirety before your first ride. At the very least, read and make sure that you understand each point in this section, and refer to the cited sections on any issue which you don’t completely understand.

Please note that not all bicycles have all the features described in this manual. Ask your Approved Retailer to point out the features of your bicycle.

1.A. BIKE FIT

1.A.1. Is your bike the right size? To check, see Section 3.A. If your bicycle is too large or too small for you, you may lose control and fall. If your new bike is not the right size, ask your Approved Retailer to exchange it before you ride it.

1.A.2. Is the saddle at the right height? To check, see Section 3.B. If you adjust your saddle height, follow the minimum insertion instructions in Section 3.B.

1.A.3. Are the stem and handlebars at the right height for you? If not, see Section 3.C.

1.A.4. Are the stem and handlebars at the right height for you? If not, see Section 3.C.

1.A.5. Can you comfortably operate the brake levers? If not, you may be able to adjust their angle and reach. See Section 3.D. and Section 3.E.

1.B. SAFETY FIRST

1.B.1. Always wear an approved helmet when riding your bike, and make sure the helmet manufacturer’s instructions for fit, use and care, if a helmet is damaged, do not use and replace immediately.

1.B.2. Do you have all the other required and recommended safety equipment? (See Section 2). It’s your responsibility to familiarize yourself with the laws of the areas where you ride, and to comply with all applicable laws.

1.B.3. Do you know how to correctly operate your wheel quick release? Check Section 4.C.1., to make sure. Riding with an improperly adjusted wheel quick release can cause the wheel to wobble or disengage from the bicycle and cause serious injury or death.

1.B.4. If your bike has toe clips and straps or clipless “step-in” pedals, make sure you know how they work (see Section 4.G.). These pedals require special techniques and skills. Follow the pedal manufacturer’s instructions for use, adjustment, and care.

1.B.5. Do you have "toe overlap"? On smaller framed bicycles your toe or toe clip may be able to contact the front wheel when a pedal is all the way forward and the wheel is turned. Read Section 4.G. to check whether you have toe overlap.

1.B.6. Do you fully understand how to operate your new bicycle? If not, before your first ride, have your Approved Retailer explain any functions or features which you do not understand.
1.C. MECHANICAL SAFETY CHECK

Routinely check the condition of your bicycle before every ride. Nuts, bolts, screws, and other fasteners: because manufacturers use a wide variety of fastener sizes and shapes made in a variety of materials, often differing by model and component, it is not possible for this manual to specify correct torque (tightening force) for each specific fastener on your bicycle. We can tell you the importance of correct torque, but not the specific torque required for each fastener on your bicycle (see Section 4.C.). To correctly torque a fastener, a torque wrench must be used. A professional bicycle mechanic with a torque wrench should torque the fasteners on your bicycle. If you choose to work on your own bicycle, you must get correct tightening torque specifications from the bicycle or component manufacturer or from your Approved Retailer. If you need to make an adjustment at home or in the field, we urge you to exercise care. If the fasteners you worked on checked by a professional bicycle mechanic as soon as possible.

1.C.1. Tyres and Wheels

Make sure Tyres are correctly inflated (see Section 4.H.1.). Check by putting one hand on the saddle, one on the intersection of the handlebars and stem, then bouncing your weight on the bike while looking at tyre deflection. Compare what you see with how it looks when you know the tyres are correctly inflated; and adjust if necessary. Are both tyres in good condition? Spin each wheel slowly and look for cuts in the tread and sidewall. Replace damaged tyres before riding the bike. Are both wheels true? Spin each wheel and check for brake clearance and side-to-side wobble. If a wheel wobbles side to side even slightly, or rubs against or hits the brake pads, take the bike to a qualified bike shop to have the wheel trued.

Caution: Wheel must be true to ensure stability of the bike. Wheel truing is a skill which requires special tools and experience. Do not attempt to true a wheel unless you have the knowledge, experience and tools needed to do the job correctly.

1.C.2. Brakes

Check the brakes for proper operation (see Section 4.D.). Squeeze the brake levers. Are the brake quick releases closed?

Are both wheel rims clean and undamaged? Make sure the rims are clean and undamaged along the braking surface, and check for excess rim wear. (See Section 5. A. 4.).

1.C.3. Quick Release

Make sure the front wheel, rear wheel and seat post quick releases are properly adjusted and in the locked position. See Section 4.C.

1.C.4. Handlebar and Saddle Alignment

Make sure the saddle and handlebar stem are parallel to the bike’s centre-line and clamped tight enough so that you can’t twist them out of alignment. See Section 3.B. and Section 3.C.

1.C.5. Handlebar Ends

Make sure the handlebar grips are secure and in good condition. If not, have them replaced. Make sure the handlebar ends and aerobar extensions are properly adjusted by a professional bicycle mechanic. If not, have them adjusted. Are all control cables seated and securely engaged? Do the brake cables contact the wheel rim squarely and make full contact with the rim? Do the brake pads touch the wheel rim within an inch of brake lever movement? Can you apply full braking force at the levers without having them touch the handlebar? If not, your brake needs adjustment. Do not ride the bike until the brakes are properly adjusted by a professional bicycle mechanic.

1.C.6. Rear Derailleur Hanger

Make sure the rear derailleur hanger is straight and undamaged. If bent or broken, have it replaced before you ride. (See Section 5.B.)

1.D. FIRST RIDE

When you buckle on your helmet and go for your first familiarization ride, be sure to pick a controlled environment, away from cars, other cyclists, obstacles, or other hazards. Ride to become familiar with the controls, features, and performance of your new bike. Familiarize yourself with the braking action of the bike (see Section 4.D.).

Test the brakes at slow speed, putting your weight toward the rear and gently applying the brakes, rear brake first. Sudden or excessive application of the front brake could pitch you over the handlebars. Applying brakes too hard can lock up a wheel, which could cause you to lose control and fall. Skidding is an example of what can happen when a wheel locks up. If your bicycle has toe clips or clipless pedals, practice getting in and out of the pedals. See Section 8.B. above and Section 4.G.4.

Practice shifting the gears (see Section 4.F.). Remember to never move the shifter while pedalling backward, nor pedal backwards immediately after having moved the shifter. This could jam the chain and cause serious damage to the bicycle.

Check out the handling and response of the bike for fit and comfort. If you have any questions, or if you feel anything about the bike
2.A. Always do the mechanical safety check (Section 4.C.) before you get on a bike.
2.A.3. Be thoroughly familiar with the controls of your bicycle:
 • Brakes (Section 4.D.)
 • Pedals (Section 4.E.)
 • Shifting (Section 4.F.)
2.A.4. Be careful to keep body parts and other objects away from the sharp teeth of chainrings, the moving chain, the turning pedals and cranks, and the spinning wheels of your bicycle.
2.A.5. Always wear:
 • Shoes that will stay on your feet and will grip the pedals. Make sure that shoelaces cannot get into moving parts and never ride barefoot or in sandals.
 • Bright, visible clothing that is not so loose that it can be tangled in the bicycle or snagged by objects at the side of the road or trail.
 • Protective eyewear, to protect against airborne dirt, dust, and bugs - tinted when the sun is bright, clear when it's not.
2.A.6. Don't jump with your bike. Jumping a bike can be fun; but it can put huge and unpredictable stress on the bicycle and its components. Riders who insist on jumping their bikes risk serious damage, to their bicycles as well as to themselves.
2.A.7. Before you attempt to jump or race with your bike, read, and understand Section 2.E. - Competition.
2.A.8. Ride at a speed appropriate for current conditions and surroundings. Increased speed means higher risk.
2.B. Ridding Safety
2.B.1. You are sharing the road or the path with others - motorists, pedestrians, and other cyclists. Respect their rights.
2.B.2. Ride defensively. Always assume that others do not see you.
2.B.3. Look ahead, and be ready to avoid:
 • Vehicles slowing or turning, entering the road or your lane ahead of you, or coming up behind you.
 • Parked car doors opening.
 • Pedestrians stepping out.
 • Children or pets playing near the road.
 • Pedestrians, bicyclists, or motorists entering the road or your lane.
2.B.4. Ride in designated bike lanes, on designated bike paths or to the edge of the road, as close to the edge of the road as possible, in the direction of traffic flow or as directed by local governing laws.
2.B.5. Stop at stop signs and traffic lights; slow down and look both ways at street intersections. Remember that a bicycle always loses in a collision with a motor vehicle, so be prepared to yield even if you have the right of way.
2.B.6. Use approved hand signals for turning and stopping.
2.B.7. Never ride with headphones. They mask traffic sounds and emergency vehicle sirens, distract you from concentrating on what is going on around you, and their wires can tangle in the moving parts of the bicycle, causing you to lose control.
2.B.8. Never carry a passenger, unless it is a small child wearing an approved helmet and secured in a correctly mounted child carrier or a child carrying trailer.
2.B.9. Never carry anything which obstructs your vision or your complete control of the bicycle, or which could become dangerous.
2.B.10. Never hitch a ride by holding on to another vehicle.
2.B.11. Don't do stunts, wheelies, or jumps. If you intend to do stunts, wheelies, jumps or go racing with your bike despite our advice not to then read Section 2.E. - Competition. Think carefully about your skills before deciding to take the large risks that go with this kind of riding.
2.B.12. Don't weave through traffic or make any moves that may surprise people with whom you are sharing the road.
2.B.13. Observe and yield the right of way.
2.B.14. Never ride your bicycle while under the influence of alcohol or drugs.
2.B.15. If possible, avoid riding in bad weather, when visibility is obscured, at dawn, dusk or in the dark, or when extremely tired. Each of these conditions increases the risk of accident.
2.B.16. Always carry some form of identification, so that people who know you who are in case of an accident; and take along some
Section 2.C. WET WEATHER RIDING

2.C.1. Under wet conditions, the stopping power of your brakes (as well as the brakes of other vehicles sharing the road) is dramatically reduced and your tires don't grip nearly as well. This makes it harder to control speed and easier to lose control. To make sure that you can slow down and stop safely in wet conditions, ride more slowly and apply your brakes earlier and more gradually than you would under normal, dry conditions. (See Section 2.D.)

2.C.2. While riding at dawn, at dusk or at night:

- Avoid dark areas and areas of heavy or fast-moving traffic.
- Avoid road hazards.
- Ride slowly.
- Be predictable. Ride so that drivers can see you and predict your movements.
- Be alert. Ride defensively and expect the unexpected.

2.C.3. If you choose to ride under conditions of poor visibility, check and be sure you comply with all local laws about night riding, and take the following strongly recommended additional precautions:

- Purchase and install battery or generator powered head and taillights which meet all regulatory requirements and provide adequate visibility.
- Wear light coloured, reflective clothing and accessories, such as a reflective vest, reflective arm, and leg bands, reflective stripes on your helmet, flashing lights attached to your body and/or your bicycle. Any reflective device or light source that moves will help you get the attention of approaching motorists, pedestrians, and other traffic.
- Make sure clothing or anything you may be carrying on the bicycle does not obstruct a reflector or light.
- Be aware. Use caution if riding to an unfamiliar area at night. Be sure to take advantage of all available lights, reflectors, and streetlights in a way that may help you to be seen and recognized as a moving cyclist.
- Make sure that your bicycle is equipped with correctly positioned and securely mounted reflectors.

Warning: Reflectors are not a substitute for required lights. Riding at dawn, at dusk, at night or at other times of poor visibility without an adequate bicycle lighting system is dangerous and may result in serious injury or death.

2.C. RIDING AT NIGHT

2.D.1. Riding a bicycle at night is many times more dangerous and therefore face higher risks due to reduced reaction time.

2.D.2. Bicycle reflectors are designed to pick up and reflect car lights and streetlights in a way that may help you to be seen and recognized as a moving cyclist.

2.D.3. If you choose to ride under conditions of poor visibility, check and be sure you comply with all local laws about night riding, and take the following strongly recommended additional precautions:

- • Purchase and install battery or generator powered head and taillights which meet all regulatory requirements and provide adequate visibility.
- • Wear light coloured, reflective clothing and accessories, such as a reflective vest, reflective arm, and leg bands, reflective stripes on your helmet, flashing lights attached to your body and/or your bicycle. Any reflective device or light source that moves will help you get the attention of approaching motorists, pedestrians, and other traffic.
- • Make sure clothing or anything you may be carrying on the bicycle does not obstruct a reflector or light.
- • Make sure that your bicycle is equipped with correctly positioned and securely mounted reflectors.

Warning: Reflectors are not a substitute for required lights. Riding at dawn, at dusk, at night or at other times of poor visibility without an adequate bicycle lighting system is dangerous and may result in serious injury or death.

2.D.4. While riding at dawn, at dusk or at night:

- • Avoid dark areas and areas of heavy or fast-moving traffic.
- • Avoid road hazards.
- • If possible, ride on familiar routes.

2.D.5. If riding in traffic:

- • Be predictable. Ride so that drivers can see you and predict your movements.
- • Be alert. Ride defensively and expect the unexpected.
- • If you plan to ride in traffic often, ask your Approved Retailer about traffic safety classes or a good book on bicycle traffic safety.

Warning: Although many catalogues, advertisements and articles advocate riding in traffic, don’t ride with others engaged in various forms of racing, this activity can be extremely dangerous, increases your risk of injury or death, and increases the severity of any injury. Remember that the action depicted is being performed by professionals with many years of training and experience. Know your limits and always wear a helmet and other appropriate safety gear. Even with state-of-the-art protective safety gear, you could be seriously injured or killed when riding downhill at speed or in competition.

2.E. COMPETITION

2.E.1. By engaging in racing or aggressive riding you voluntarily assume an increased risk of injury or death.

Not all bicycles are designed for these types of riding, and those that may not be suitable for all types of aggressive riding. Check with your Approved Retailer or the bicycle’s manufacturer about the suitability of your bicycle before engaging in competition.

When riding fast downhill, you can reach excessive speeds and therefore face higher risks due to reduced reaction time.

- • Have your bicycle and equipment carefully inspected by a qualified mechanic and be sure it is in perfect condition.
- • Take your bicycle to a qualified mechanic if anything breaks or bends. Do not ride your bicycle when any part is damaged.
- • Consult with expert riders and race officials on conditions and equipment advisable at the site where you plan to ride.
- • Wear appropriate safety gear. Ultimately, it is your responsibility to have proper equipment and to be familiar with course conditions.

Warning: Wet weather impairs traction, braking and visibility, both for the cyclist and for other vehicles sharing the road. The risk of an accident is dramatically increased in wet conditions.

2.D. RIDING AT NIGHT

2.D.1. Riding a bicycle at night is many times more dangerous and therefore face higher risks due to reduced reaction time.

2.D.2. Bicycle reflectors are designed to pick up and reflect car lights and streetlights in a way that may help you to be seen and recognized as a moving cyclist.

2.D.3. If you choose to ride under conditions of poor visibility, check and be sure you comply with all local laws about night riding, and take the following strongly recommended additional precautions:

- • Purchase and install battery or generator powered head and taillights which meet all regulatory requirements and provide adequate visibility.
- • Wear light coloured, reflective clothing and accessories, such as a reflective vest, reflective arm, and leg bands, reflective stripes on your helmet, flashing lights attached to your body and/or your bicycle. Any reflective device or light source that moves will help you get the attention of approaching motorists, pedestrians, and other traffic.
- • Make sure clothing or anything you may be carrying on the bicycle does not obstruct a reflector or light.
- • Make sure that your bicycle is equipped with correctly positioned and securely mounted reflectors.

Warning: Reflectors are not a substitute for required lights. Riding at dawn, at dusk, at night or at other times of poor visibility without an adequate bicycle lighting system is dangerous and may result in serious injury or death.

2.D.4. While riding at dawn, at dusk or at night:

- • Avoid dark areas and areas of heavy or fast-moving traffic.
- • Avoid road hazards.
- • If possible, ride on familiar routes.

2.D.5. If riding in traffic:

- • Be predictable. Ride so that drivers can see you and predict your movements.
- • Be alert. Ride defensively and expect the unexpected.
- • If you plan to ride in traffic often, ask your Approved Retailer about traffic safety classes or a good book on bicycle traffic safety.

Warning: Although many catalogues, advertisements and articles advocate riding in traffic, don’t ride with others engaged in various forms of racing, this activity can be extremely dangerous, increases your risk of injury or death, and increases the severity of any injury. Remember that the action depicted is being performed by professionals with many years of training and experience. Know your limits and always wear a helmet and other appropriate safety gear. Even with state-of-the-art protective safety gear, you could be seriously injured or killed when riding downhill at speed or in competition.

2.E. COMPETITION

2.E.1. By engaging in racing or aggressive riding you voluntarily assume an increased risk of injury or death.

Not all bicycles are designed for these types of riding, and those that may not be suitable for all types of aggressive riding. Check with your Approved Retailer or the bicycle’s manufacturer about the suitability of your bicycle before engaging in competition.

When riding fast downhill, you can reach excessive speeds and therefore face higher risks due to reduced reaction time.

- • Have your bicycle and equipment carefully inspected by a qualified mechanic and be sure it is in perfect condition.
- • Take your bicycle to a qualified mechanic if anything breaks or bends. Do not ride your bicycle when any part is damaged.
- • Consult with expert riders and race officials on conditions and equipment advisable at the site where you plan to ride.
- • Wear appropriate safety gear. Ultimately, it is your responsibility to have proper equipment and to be familiar with course conditions.

Warning: Wet weather impairs traction, braking and visibility, both for the cyclist and for other vehicles sharing the road. The risk of an accident is dramatically increased in wet conditions.
2.F. CHANGING COMPONENTS

2.F.1. There are many components and accessories available to enhance the comfort, performance, and appearance of your bicycle. However, if you change components or add accessories, you do so at your own risk. Vitus may not have tested that component or accessory for compatibility, reliability, or safety on your bicycle.

Before installing any component or accessory, including a different size tyre, make sure that it is compatible with your bicycle by checking with your Approved Retailer. Be sure to read, understand and follow the instructions that accompany the products you purchase for your bicycle.

Caution: Bicycles and bicycle parts have limitations regarding strength and integrity, and this type of riding can increase the likelihood of exceeding those limitations.

2.G. MAXIMUM WEIGHT

2.G.1 Vitus frames have been designed and tested to withstand very high loads, and as a result we have not traditionally assigned maximum weight restrictions for our frames. However, your bicycle is also made up of numerous individual components, all of which have their own unique weight limits. As a result, Vitus recommends that you consult your Approved Retailer to ensure that all components selected for use on your bicycle are suitable and safe for your intended use.

Caution: Changing the components on your bike may void the warranty. Refer to your warranty, and check with your Approved Retailer before changing the components on your bike.

2.H. ELECTRIC BIKE

This section contains information about the basic properties and components of E-Bike customers. Please read any accompanying manufacturer’s instructions for the components and operation of your E-Bike.

Caution: The electric motor assist is only designed to power an E-Bike and should not be used for any other purpose.

2.H.1. Differences between an E-Bike and Bicycle

Compared to a pedal-operated bicycle, an E-Bike will feature the following additional components:

- Electric Assist Motor
- Battery
- Operating Control Unit
- Display
- Charger

The additional components of an E-Bike translate into significant differences between an E-Bike and pedal-operated bicycle. Please read Section 2 – Safety fully and consider the following when riding your E-Bike:

- An E-Bike is much heavier, and weight is distributed differently, which will change the E-Bikes handling. You should familiarise yourself with the bikes handling in a safe and traffic free environment.
- The electric assist of an E-Bike will influence the braking behaviour, please familiarise yourself with the braking characteristics compared to a regular bike. An E-Bike being heavier can increase braking distances, please ensure you are familiar with the braking distances of your E-Bike in different conditions and speeds.
- The electric motor assist will increase the rider’s average speed. Adopt an appropriate prudent riding style that will ensure your safety and other trail and road users safety considering the higher average speed of an E-Bike.
- Only qualified mechanics with accredited training can maintain and repair an E-Bike electrical system. Please take note of Section 5 - Service, as your E-Bike will need to be strictly maintained to ensure safety and longevity.
- Modified your E-Bike electrical motorsystem will void warranty and may break local legislative laws.

2.H.2. Electric Motor Assist

The electric motor assist is only designed to power an E-Bike and:

- You selected assistance setting
- Your pedal force
- Load
- Speed

The electric motor only assists when you pedal up to the legislative speed restriction in your country. If you reach a speed higher than the limit the electric motor will switch off automatically. If your speed drops below the limit, the electric motor will switch on again automatically.

Caution: The cranks and pedals will turn automatically when using the pushing/walking aid, maintain a safe distance from the pedals to ensure you are not struck and to avoid injury.
2.H.5. Battery Safety

2.H.5.A. Handling the Battery
Use the specified battery charger for charging and observe the specified charging conditions. Doing otherwise may cause overheating, bursting, or ignition.

- Do not leave the battery near sources of heat such as heaters. Doing so may cause bursting or ignition.
- Do not heat the battery or throw it into a fire. Doing so may cause burning or ignition.
- Do not deform, modify, disassemble, or apply solder directly to the battery. Doing so may cause leakage, overheating, bursting, or ignition.
- Do not connect the terminals with metallic objects. Doing so may cause them to short circuit or overheat and result in burns or injury.
- Do not carry or store the battery together with metallic objects such as necklaces or hairpins. Doing so may cause them to short circuit or overheat and result in burns or injury.
- Do not place the battery into fresh water or seawater. Do not allow the battery terminals to get wet. Doing so may cause them to short circuit or overheat and result in burns or injury.
- Do not connect the terminals with metallic objects. Doing so may cause them to short circuit or overheat and result in burns or injury.
- Do not heat the battery or throw it into a fire. Doing so may cause bursting or ignition.

2.H.5.B. Handling the Charger
- Do not allow the battery charger to get wet. If it is wet or water is allowed inside, it could cause a fire, ignition, overheating, or electric shock.
- Do not use the battery charger when it is covered with a cloth or other material. Doing otherwise may cause the heat to build up and the case may become deformed, or fire, ignition, or overheating may occur.
- Do not disconnect or modify the battery charger. If this is not observed, electric shocks or injury may occur.
- Use the battery charger at the specified power supply voltage only. If a power supply voltage other than that specified is used, fire, destruction, smoke, overheating, electric shocks, or burns may occur.
- Use the specified battery and battery charger combination for charging and observe the specified charging conditions. Doing otherwise may cause overheating, bursting, or ignition.

2.H.5.C. Transporting your Bike
- Remove your battery and store safely when travelling with your bike.
- It is recommended not to carry your bike on the outside of your vehicle during rain unless protected/covered. All steps components are protected from water but travelling at speed can cause water ingress.
- Check if there are any local battery restrictions or regulations while travelling by vehicle.
- If flying with bike, please check battery policies with airlines.

SECTION 3 - FIT

3.A. STANDOVER HEIGHT
Standover height is the basic element of bike fit. It is the distance from the ground to the top of the bicycle frame at the point where your crotch is when straddling the bike. To check for correct standover height, straddle the bike while wearing the kind of shoes in which you’ll be riding, and bounce vigorously on your heels. If your crotch touches the frame, the bike is too big for you. Don’t even ride the bike around the block. A bike which you ride only on paved surfaces and never take offroad should give you a minimum standover height clearance of two inches (5cm). A bike that you’ll ride on unpaved surfaces should give you a minimum of three inches (7.5cm) of standover height clearance. And a bike that you’ll use off road should give you four inches (10cm) or more of clearance.

Warning: If you ride your bike for jumping or competition, read Section 2.E. Competition, again.

3.B. SADDLE POSITION
Correct saddle adjustment is an important factor in getting the most performance and comfort from your bicycle. If the saddle is not comfortable for you, see your Approved Retailer. The saddle can be adjusted in three directions:

Note: Correct fit is an essential element of cycling safety, performance, and comfort. To adjust your bicycle, which result in correct fit for your body and riding conditions, requires experience, skill, and special tools. Always have a qualified mechanic make the adjustments on your bicycle; or, if you have the experience, skill, and tools, have a qualified mechanic check your work before riding. The fit suggestions below are based solely on safety concerns. They specify the absolute minimum standards to ride the bike, but by no means do they guarantee optimal performance. Much more elaborate fit requirements are necessary to ensure optimal performance. For additional performance fitting requirements, consult with your Approved Retailer.

3.B.3. SADDLE HEIGHT
Standover height is the basic element of bike fit. It is the distance from the ground to the top of the bicycle frame at the point where your crotch is when straddling the bike. To check for correct standover height, straddle the bike while wearing the kind of shoes in which you’ll be riding, and bounce vigorously on your heels. If your crotch touches the frame, the bike is too big for you. Don’t even ride the bike around the block. A bike which you ride only on paved surfaces and never take offroad should give you a minimum standover height clearance of two inches (5cm). A bike that you’ll ride on unpaved surfaces should give you a minimum of three inches (7.5cm) of standover height clearance. And a bike that you’ll use off road should give you four inches (10cm) or more of clearance.

Warning: If you ride your bike for jumping or competition, read Section 2.E. Competition, again.

3.B.4. SADDLE POSITION
Correct saddle adjustment is an important factor in getting the most performance and comfort from your bicycle. If the saddle is not comfortable for you, see your Approved Retailer. The saddle can be adjusted in three directions:
3.1. Up and Down Adjustment

To check for correct saddle height:

- Sit on the saddle.
- Place one heel on a pedal.
- Rotate the crank until the pedal with your heel on it is in the down position and the crank arm is parallel to the seat tube.

Once the saddle is at the correct height, make sure that the seatpost does not project from the frame beyond its "Minimum Insertion" mark, which means that the minimum insertion mark should never be visible above the frame once adjusted to your correct position. If the "Minimum Insertion" mark is visible once your saddle is properly adjusted, contact your Approved Retailer to have the seatpost replaced with a longer one.

Note that some seatposts also have a second insertion mark entitled "Maximum Insertion". If present on your bicycle, your saddle is properly adjusted, contact your Approved Retailer to have the seatpost replaced with a shorter one.

Minimum saddle height is defined as the smallest possible distance between the centre of the bottom bracket and the top of the saddle on a given bicycle. It can be measured along the plane of the seat tube from the top of the saddle to the centre of the crank axle. Several factors can influence the minimum saddle height including thickness of the saddle, design of the seatpost clamp, seatpost length, frame size, and frame design. For example, a longer frame length or smaller frame size will result in smaller minimum saddle height.

The saddle can be adjusted forward or back to help you get the optimal position on the bike. Ask your Approved Retailer to set the saddle for your optimal riding position and to show you how to make this adjustment. When adjusting the saddle:

- The saddle must be correctly adjusted before you ride the bicycle.
- To adjust the saddle angle, your Approved Retailer can change the angle of the handlebar or aero bar extensions.

3.2. Front and Back Adjustment

The saddle can be adjusted forward or back to help you get the optimal position on the bike. Ask your Approved Retailer to set the saddle for your optimal riding position and to show you how to make this adjustment.

3.3. Saddle Angle Adjustment

Most people prefer a horizontal saddle; but some riders like the saddle nose angled up or down just a little. Your Approved Retailer can adjust saddle angle or teach you how to do it. Small changes in saddle position can have a substantial effect on performance and comfort. To find your best saddle position, make only one adjustment at a time.

Warning: After any saddle adjustment, be sure that the saddle adjusting mechanism is properly tightened before riding. A loose saddle clamp or seat post binder can cause damage to the seat post, or can cause you to lose control and fall. A correctly tightened saddle adjusting mechanism will allow no saddle movement in any direction. Periodically check to make sure that the saddle adjusting mechanism is properly tightened.

If, despite carefully adjusting the saddle height, tilt and fore-and-aft position, your saddle is still uncomfortable, you may need a different saddle design. Saddle, like people, come in many different shapes, sizes and resilience. Your Approved Retailer can help you select a saddle which, when correctly adjusted for your body and riding style, will be comfortable.

Warning: Some people have claimed that extended riding with a saddle, which is incorrectly adjusted, or which does not support your pelvic area correctly can cause short-term or long-term injury to nerves and blood vessels, or even impotence. If your saddle causes you pain, numbness, or other discomfort, listen to your body and stop riding until you see your Approved Retailer about saddle adjustment or a different saddle.

Warning: The top of the stem, where fitted over the fork steerer tube must not extend more than 5mm above the top of the steerer. If the stem is extended beyond this height the stem may break or damage the fork's steerer tube, which could cause you to lose control and fall. Your Approved Retailer can also change the angle of the handlebar or aero bar extensions.

3.C. HANDLEBAR HEIGHT AND ANGLE

Your bike is equipped with a "threadless" stem, which clamps on to the outside of the steerer tube. Your Approved Retailer may be able to change handlebar height by moving height adjustment spacers from below the stem to above the stem, or vice versa. Otherwise, you’ll have to get a stem of different length or rise. Consult your Approved Retailer.

Warning: Exceeding the maximum spacer height can result in damage to the fork's steerer tube, which could cause you to lose control and fall.

Warning: On some bicycles, changing the stem or stem height can affect the tension of the front brake cable, locking the front brake or creating excess cable slack which can make the front brake ineffective. If the front brake moves in towards the wheel rim or out away from the wheel rim when the stem or stem height is changed, the brake must be correctly adjusted before you ride the bicycle.

Warning: The top of the stem, where fitted over the fork steerer tube must not extend more than 5mm above the top of the steerer. If the stem is extended beyond this height the stem may break or damage the fork's steerer tube, which could cause you to lose control and fall. Your Approved Retailer can also change the angle of the handlebar or aero bar extensions.

Warning: An insufficiently tightened stem binder bolt, handlebar binder bolt or aero bar extension clamping bolt may compromise steering action, which could cause you to lose control and fall. Face the front wheel weight of the bicycle between your legs and attempt to twist the handlebar stem.
assembly: if you can twist the stem in relation to the front wheel, turn the handlebars in relation to the stem, or turn the aerobar extensions in relation to the handlebar, the bolts are insufficiently tightened.

3.D. CONTROL POSITION ADJUSTMENTS

The angle of the brake and shift control levers and their position on the handlebars can be changed. Ask your Approved Retailer to make the adjustments for you.

3.E. BRAKE REACH

Many bikes have brake levers which can be adjusted for reach. If you have small hands or find it difficult to squeeze the brake levers, your Approved Retailer can either adjust the reach or fit shorter reach brake levers.

Warning: The shorter the brake lever reach, the more critical it is to have correctly adjusted brakes, so that full braking power can be applied within available brake lever travel.

3.F. WHEELS

Wheels installed.

Seat and seatpost installed.

Brakes and derailleur adjusted.

Brake and shifter cables threaded and attached.

Front brake installed on fork.

Brake/shift levers installed onto handlebars.

Handlebars clamped into stem.

Headset and stem installed and adjusted.

Fork cut to appropriate length.

Warning: Braking lever travel insufficient to apply full braking power can result in loss of control, which may result in serious injury or death.

4.A. INITIAL ASSEMBLY

Vitus bicycles are shipped from the factory to the Approved Retailer only partially assembled. Your Approved Retailer will complete the assembly of the bicycle, and perform any adjustments required to make it fit you. It is strongly recommended that you allow your Approved Retailer to perform the assembly and fitting operations, as it requires specific knowledge of each part, appropriate tools, and understanding of the interactions of various materials. Your bicycle is a high-performance machine, much like a racing car, and as such requires skilled maintenance to ensure your bike functions safely and effectively.

Your Approved Retailer will perform the following assembly operations before your bicycle is delivered to you:

- Fork cut to appropriate length.
- Headset and stem installed and adjusted.
- Handlebars clamped into stem.
- Brake/shift levers installed onto handlebars.
- Front brake installed on fork.
- Brake and shifter cables threaded and attached.
- Brakes and derailleurs adjusted.
- Handlebars wrapped with tape and plugged.
- Seat and seatpost installed.
- Wheels installed.

4.B. HANDLEBARS

Handlebars clamped into stem. If you can twist the stem in relation to the handlebar, the bolts are insufficiently tightened.

4.C. WHEELS

4.C.1. Wheel Quick Release

Warning: Riding with an improperly adjusted wheel quick release can allow the wheel to wobble or fall off the bicycle, which can cause serious injury or death. Therefore, it is essential that you:

- Ask your Approved Retailer to help you make sure you know how to install and remove your wheels safely.
- Understand and apply the correct technique for clamping your wheel in place with a quick release.
- Each time, before you ride the bike, check that the wheel is securely clamped.

The wheel quick release uses a cam action to clamp the bike's wheel in place. Because of its adjustable nature, it is critical that you understand how it works, how to use it properly, and how much force you need to apply to secure the wheel.

Warning: An insufficiently tightened stem binder bolt may allow the wheel to wobble or fall off the bicycle, which can cause serious injury or death. Therefore, it is essential that you:

- Tighten the stem binder bolt so that it is secure and will not come loose.
- Ensure that the wheel is securely clamped.

The full force of the cam action is needed to clamp the wheel securely, holding the nut with one hand and turning the lever like a wing nut with the other hand until everything is as tight as you can get it. If not, the wheel may come loose.

Warning: The full force of the cam action is needed to clamp the wheel securely, holding the nut with one hand and turning the lever like a wing nut with the other hand until everything is as tight as you can get it. If it does not clamp the wheel safely in the dropouts.
4.C.1.A. Adjusting the Quick Release Mechanism

The wheel hub is clamped in place by the force of the quick release cam pushing against the dropout. Pulling the tension adjustment nut, by way of the skewer, acts as a back-up for a critical adjustment. If the quick release is not adjusted correctly, the secondary retention device can reduce the risk of the wheel disengaging from the fork. Removing or disabling the secondary retention device may also void the warranty. Secondary retention devices are not a substitute for correct quick release adjustment.

Warning: If your front fork has a clip-on type of secondary retention device, disengage it, and go to Section 4.C.2.B.4. If your front fork has an integral secondary retention device, loosen the tension adjusting nut enough to allow removing the wheel; then go to the next step.

Secondary retention devices are not a substitute for correct quick release adjustment. Failure to properly adjust the quick release mechanism can cause the wheel to wobble or disengage which could cause you to lose control and fall, resulting in serious injury or death.

Warning: Do not remove or disable the secondary retention device. As its name implies, it serves as a back-up for a critical adjustment. If the quick release is not adjusted correctly, the secondary retention device can reduce the risk of the wheel disengaging from the fork. Removing or disabling the secondary retention device may also void the warranty. Secondary retention devices are not a substitute for correct quick release adjustment.

4.C.1.B. Front Wheel Secondary Retention Devices

Most bicycles have front forks which utilize a secondary wheel retention device to reduce the risk of the wheel disengaging from the fork if the quick release is incorrectly adjusted. Secondary retention devices are not a substitute for correct quick release adjustment.

Warning: Securing the chainring teeth on the inside of the wheel should never be sufficient for leverage, and the lever does not leave a clear imprint in the palm of your hand. The tension is insufficient. Open the lever; turn the tension adjusting nut clockwise a quarter turn; then try again.

4.C.2. Removing and Installing Quick Release Wheels

4.C.2.A. Removing a Quick Release Front Wheel

4.C.2.A.1. If your bike has rim brakes, disengage the brake’s quick release mechanism to increase the clearance between the tire and the brake pads.

4.C.2.A.2. Move the wheel’s quick-release lever from the locked or CLOSED position to the OPEN position.

4.C.2.A.3. Quick release levers should be embossed with the words “OPEN” and “CLOSED” to indicate the current position of the lever.

4.C.2.A.4. If your front fork does not have a secondary retention device go to Section 4.C.2.B.

4.C.2.A.5. If your front fork has a clip-on type of secondary retention device, disengage it, and go to Section 4.C.2.B. If your front fork has an integral secondary retention device, loosen the tension adjusting nut enough to allow removing the wheel; then go to the next step.

4.C.2.B. Installing a Quick Release Front Wheel

4.C.2.B.1. Move the quick-release lever so that it curves away from the wheel. This is the OPEN position.

4.C.2.B.2. With the steering fork facing forward, insert the wheel between the fork blades so that the axle seats firmly at the top of the slots which are at the tips of the fork blades – the fork dropouts. The quick-release lever should be on the left side of the bicycle. If your bike has a clip-on type of secondary retention device, engage it.

4.C.2.B.3. Holding the quick release lever in the OPEN position with your right hand, tighten the tension adjusting nut with your left hand until it is finger tight against the fork dropout.

4.C.2.B.4. While pushing the wheel firmly to the top of the slots in the steering fork and keeping the quick-release lever upwards and swung into the CLOSED position. The lever should now be parallel to the fork blade and curved toward the wheel. To apply enough clamping force, you should have to wrap your fingers around the fork blade for leverage, and the lever should leave a clear imprint in the palm of your hand.

Warning: If the lever cannot be pushed all the way to a position parallel to the fork blade, return the lever to the OPEN position. Then turn the tension adjusting nut anti-clockwise one-quarter turn and try tightening the lever again.

4.C.2.B.5. Re-engage the brake quick release mechanism to restore correct brake pad-to-rim clearance; spin the wheel to make sure that it is centered in the frame and clears the brake pads; then squeeze the brake lever and make sure that the brakes are operating correctly.

4.C.2.C. Removing a Quick Release Rear Wheel

4.C.2.C.1. Shift the rear derailleur to high gear (the smallest, outermost rear sprocket).

4.C.2.C.2. If your bike has rim brakes, disengage the brake’s quick release mechanism to increase the clearance between the wheel rim and the brake pads.

4.C.2.C.3. Pull the derailleur body back with your right hand.

4.C.2.C.5. Lift the rear wheel off the ground a few inches and, with the derailleur still pulled back, push the wheel forward and down
4.C.2.D. Installing a Quick Release Rear Wheel
4.C.2.D.1. Make sure that the rear derailleur is still in its outermost, high gear, position.

4.C.2.D.2. Pull the derailleur body back with your right hand, turn off the clutch if the derailleur has this feature, engage the clutch again once it is fully reinstalled.

4.C.2.D.3. Move the quick release lever to the OPEN position. The lever should be on the side of the wheel opposite the derailleur and freewheel sprockets.

4.C.2.D.4. Put the chain on top of the smallest freewheel sprocket. Then, insert the wheel up and back into the frame dropouts and pull it all the way into the dropouts.

4.C.2.D.5. Tighten the quick release adjusting nut until it is finger tight against the frame dropout; then swing the lever toward the front of the bike until it is parallel to the frame’s chainstay or seatstay and is curved toward the wheel. To apply enough clamping force, you should have to wrap your fingers around a seatstay or chainstay tube for leverage, and the lever does not leave a clear imprint wrapping your fingers around the seatstay or chainstay tube.

4.C.2.D.6. If the lever cannot be pushed all the way to the position parallel to the chainstay or seatstay tube, return the lever to the OPEN position. Then turn the adjusting nut anti-clockwise one-quarter turn and try tightening again.

4.C.2.D.8. Re-connect the brake quick release mechanism to restore correct brake pad-to-rim clearance; spin the wheel to make sure that it is centred in the frame and clears the brake pads, then squeeze the brake lever and make sure that the brakes are operating correctly.

4.D. BRAKES

4.D.1 Brake Controls and Features

Warning: Riding with improperly adjusted brakes or worn brake pads is dangerous and can result in serious injury or death.

Apply brakes too hard or too suddenly can lock up a wheel, which could cause you to lose control and fall. Sudden or excessive application of the front brake may pinch the rider over the handlebars, which may result in serious injury or death. To make sure that your hands can reach and squeeze the brake levers comfortably, if your hands are too small to operate the levers may be adjustable; or you may need a different brake lever design.

Most brakes have some form of quick-release mechanism to allow the brake pads to clear the tire when a wheel is removed or reinstalled. When the brake quick release is in the open position, the brakes are inoperative.

Ask your Approved Retailer to make sure that you understand the way brake levers work. Make sure that you have maximum friction available, rotate just short of lockup. It’s important to develop a feel for brake lever pressure required to get each brake to stop, and the mental look or feel the brake lever pressure.

The braking action of a bicycle is a function of the friction between the brake surfaces - usually the brake pads and the wheel rim or disc. To make sure that you have maximum friction available, keep your wheel rims and brake pads clean and free of dirt, lubricants, wax, or polishes. Brakes are designed to control your speed, not just to stop the bike. Maximum braking force for each wheel occurs at the point just before the wheel “locks up” (stops rotating) and starts to skid. Once the tire skids, you lose most of your stopping force and all directional control. You need to practice slowing and stopping smoothly without locking up a wheel. The technique is called progressive brake modulation. Instead of jerking the brake lever to the position where you think you’ll generate appropriate braking force, squeeze the lever progressively increasing the braking force. If you feel the wheel begin to lock up, release pressure just a little to keep the wheel rotating just short of lockup. It’s important to develop a feel for brake lever pressure required to get each brake to stop, and the mental look or feel the brake lever pressure.

When you apply one or both brakes, the bike begins to slow, but your body wants to continue at the speed at which it was going. This causes a transfer of weight to the front wheel (or, under heavy braking, around the front wheel hub, which could send you flying over the handlebars).

A wheel with more weight on it will accept greater brake pressure before lockup, a wheel with less weight will lock up under greater brake pressure. So, as you apply brakes, and your weight is transferred forward, you need to shift your body toward the rear of the bike, or that the right-hand brake lever controls the rear brake, and the left-hand brake lever controls the front brake (UK specification).

4.D.2.3.2. Pull the derailleur body back with your right hand, turn off the clutch if the derailleur has this feature, engage the clutch again once it is fully reinstalled.

4.D.2.3.1. Pull the derailleur body back with your right hand, turn off the clutch if the derailleur has this feature, engage the clutch again once it is fully reinstalled.

4.D.2.3.4. Pull the derailleur body back with your right hand, turn off the clutch if the derailleur has this feature, engage the clutch again once it is fully reinstalled.

4.D.2.3.5. Pull the derailleur body back with your right hand, turn off the clutch if the derailleur has this feature, engage the clutch again once it is fully reinstalled.

4.D.2.3.6. Pull the derailleur body back with your right hand, turn off the clutch if the derailleur has this feature, engage the clutch again once it is fully reinstalled.
Everything changes when you ride on loose surfaces or in wet weather. Tire adhesion is reduced, so the wheels have less cornering and braking traction and can lock up with less brake force. Moisture or dirt on the brake pads reduces their ability to grip. The way to maintain control on loose or wet surfaces is to go more slowly to begin with.

4.F. SEATPOSTS

Apply grease to the outside of the seatpost if you're fitting to an alloy or steel frame, or carbon assembly paste if you're fitting to a carbon frame. Insert seatpost to required depth and tighten seat clamp to the correct torque. (See section 3.B.1. for correct saddle height).

Warning: If your seatpost projects from the frame beyond the Minimum Insertion mark, the seat post may break, which could cause you to lose control and fall.

Warning: If your seatpost is inserted into the frame beyond the Maximum Insertion mark, the seat post may break, which could cause you to lose control and fall.

4.F. GEARS

Your multi-speed bicycle will have a derailleur drivetrain.

4.F.1. How a Derailleur Drivetrain Works

The parts of the gear-shifting mechanism include:

- A rear cassette or freewheel sprocket cluster
- A rear derailleur
- Usually, a front derailleur
- One or two shifters
- One, two or three front sprockets called chainrings
- A drive chain

The combination of largest rear and smallest front sprockets is for the greatest speed. It is not necessary to shift gears in sequence. Instead, find the “starting gear” which is right for your level of ability – a gear which is hard enough for quick acceleration but easy enough to let you start from a stop without wobbling – and experiment with upshifting and downshifting to get a feel for the different gear combinations. At first, practice shifting immediately after having moved the shifter. This could jam the chain and cause serious damage to the bicycle.

Warning: Never move the shifter while pedalling backward, nor pedal backwards immediately after having moved the shifter. This could jam the chain and cause serious damage to the bicycle.

4.F.1.A. Shifting Gears

There are several different types and styles of shifting controls: levers, twist grips, combination shift/brake controls and push-buttons. Ask your Approved Retailer to explain the type of shifting controls that are on your bike, and to show you how they work. The vocabulary of shifting can be confusing:

- A downshift is a shift to a “lower” or “slower” gear, one which is easier to pedal. A downshift is a shift to a “lower” or “slower” gear, one which is easier to pedal.
- An upshift is a shift to a “higher” or “faster”, harder to pedal gear.
- A downshift is a shift to a “lower” or “slower” gear, one which is easier to pedal. A downshift is a shift to a “lower” or “slower” gear, one which is easier to pedal.

What’s confusing is that what’s happening at the front derailleur is the opposite of what’s happening at the rear derailleur (for details, read the instructions on Shifting the Rear Derailleur and Shifting the Front Derailleur below). For example, you can select a gear which will make pedalling easier on a hill (make a downshift) in one of two ways: shift the chain down the gear “steps” to a smaller gear at the front, or up the gear “steps” to a larger gear at the rear. So, at the rear gear cluster, what is called a downshift looks like an upshift. The way to keep things straighforward is to remember that shifting the chain in towards the centreline of the bike is for accelerating and climbing and is called a downshift. Moving the chain out or away from the centreline of the bike is for speed and is called an upshift. Whether upshifting or downshifting, the bicycle derailleur system design requires that the drive chain be moving forward and be under at least some tension. A derailleur will shift only if you are pedaling forward.

Warning: Never move the shifter while pedalling backward, nor pedal backwards immediately after having moved the shifter. This could jam the chain and cause serious damage to the bicycle.

4.F.1.B. Shifting the Rear Derailleur

The rear derailleur is controlled by the right shifter. The function of the rear derailleur is to move the drive chain from one gear sprocket to another. The smaller sprockets on the gear cluster produce lower gear ratios. Pedalling in the higher gears requires greater pedalling effort but takes you a greater distance with each revolution of the pedal cranks. The larger sprockets produce lower gear ratios. Using them requires less pedalling effort but takes you a shorter distance with each pedal crank revolution. Moving the chain from a smaller sprocket of the gear cluster to a larger sprocket result in a downshift. Moving the chain from a larger sprocket to a smaller sprocket result in an upshift. For the derailleur to move the chain from one sprocket to another, the rider must be pedalling forward.

Warning: Never shift a derailleur onto the largest or the smallest sprockets if the derailleur is not shifting smoothly. The derailleur may be out of adjustment and the chain could jam, causing you to lose control and fall.

4.F.1.C. Shifting the Front Derailleur

The front derailleur, which is controlled by the left shifter, shifts the chain between the larger and smaller chainrings. Shifting the chain onto a smaller chainring makes pedalling easier (a downshift). Shifting to a larger chainring makes pedalling harder (an upshift).

4.F.1.D. Which Gear Should I Be In?

The combination of largest rear and smallest front gears is for the steepest hills. The smallest rear and largest front combination is for the greatest speed. It is not necessary to shift gears in sequence. Instead, find the “starting gear” which is right for your level of ability – a gear which is hard enough for quick acceleration but easy enough to let you start from a stop without wobbling – and experiment with upshifting and downshifting to get a feel for the different gear combinations. At first, practice shifting immediately after having moved the shifter. This could jam the chain and cause serious damage to the bicycle.

4.F.2. Shifting Controls

The vocabulary of shifting can be confusing:

- A downshift is a shift to a “lower” or “slower” gear, one which is easier to pedal.
- An upshift is a shift to a “higher” or “faster”, harder to pedal gear.

4.F.3. Choosing the Correct Starting Gear

Learn to anticipate the need to shift, and shift to a lower gear before the hill gets too steep. If you have difficulties with shifting, the problem could be mechanical adjustment. See your Approved Retailer for help.

Cross-chain gears should be avoided as these will quickly wear out the chain, and possibly also the derailleurs, chainrings and sprockets. Cross-chain gears occur when the chain is on both the largest chainring at the front and the largest sprocket at the rear, or alternately both the smallest chainring at the front and the smallest sprocket at the rear. These positions orient the chain at an angle with respect to the centreline of the bicycle, which places greater stress on the drive train components.

There should be no need to resort to cross-chain gears as equivalent ratios can be found by using other combinations of front and rear gears.

Warning: Never shift a derailleur onto the largest or the smallest sprocket if the derailleur is not shifting smoothly. The derailleur may be out of adjustment and the chain could jam, causing you to lose control and fall.
Note that component changes to your bicycle (cranks, tyres, pedals) can result in a reduction of toe-clearance; consult your Approved Retailer about any component changes and use caution when first riding the bicycle following a component change. Whether you have overlap or not, you must keep the inside pedal up and the outside pedal down when making sharp turns.

4.G.3. Toe clips and straps are a means to keep feet correctly positioned and engaged with the pedals. The toe clip positions the ball of the foot over the pedal spindle, which gives maximum pedalling power. The toe strap, when tightened, keeps the foot engaged throughout the rotation cycle of the pedal. While toe clips and straps give some benefit with any kind of shoe, they work most effectively with cycling shoes designed for use with toe clips. Your Approved Retailer can explain how toe clips and straps work. Shoes with deep treaded soles or wells which might make it more difficult for you to remove your foot should not be used with toe clips and straps.

Practice is required to learn to engage and disengage the foot safely. Until engaging and disengaging the foot becomes a reflex action, the technique requires concentration which can distract your attention and cause you to lose control and fall. Practice engaging and disengaging clipless pedals in a place where there are no obstacles, hazards, or traffic; and be sure to follow the pedal manufacturer's instructions and service instructions. If you do not have the manufacturer's instructions, see your Approved Retailer, or contact the manufacturer for advice. Practice the use of toe clips and straps where there are no obstacles, hazards, or traffic; Keep the straps loose, and don't tighten them until your technique and confidence in getting in and out of the pedals warrants it. Never ride in traffic with your toe straps tight.

4.G.4. Clipless pedals (sometimes called "step-in pedals") are another means to keep feet securely in the correct position for maximum pedaling efficiency. They have a plate, called a "cleat," on the sole of the shoe, which clicks into a mating spring-loaded fixture on the pedal. They only engage or disengage with a very specific motion which must be practiced until it becomes instinctive. Clipless pedals require shoes and cleats which are compatible with the make and model pedal being used. Many clipless pedals are designed to allow the rider to adjust the amount of force needed to engage or disengage the foot. Follow the pedal manufacturer's instructions or ask your Approved Retailer to show you how to make this adjustment. Use the easiest setting until engaging and disengaging becomes a reflex action, but always make sure that there is sufficient tension to prevent unintended release of your foot from the pedal. Practice is required to learn to engage and disengage the foot safely. Until engaging and disengaging the foot becomes a reflex action, the technique requires concentration which can distract your attention and cause you to lose control and fall. Practice engaging and disengaging clipless pedals in a place where there are no obstacles, hazards, or traffic; and be sure to follow the pedal manufacturer's instructions and service instructions. If you do not have the manufacturer's instructions, see your Approved Retailer, or contact the manufacturer for advice. Practice the use of toe clips and straps where there are no obstacles, hazards, or traffic; Keep the straps loose, and don't tighten them until your technique and confidence in getting in and out of the pedals warrants it. Never ride in traffic with your toe straps tight.

Caution: Never pedal for long periods in cross-chain gears as these combinations place unnecessary stress on your (-chain) gearing and may result in premature wear out and decreased performance.

4.H. TYRES AND TUBES

4.H.1. Tyres Bicycle tyres are available in many designs and specifications, ranging from general-purpose designs to tyres designed to perform best under very specific weather or terrain conditions. If, since you've gained experience with your new bike, you feel that a different tyre might better suit your riding needs, your Approved Retailer can help you select the most appropriate design. The size, pressure rating, and on some high-performance tyres the specific recommended toe clips and straps work. Shoes with deep treaded soles or wells which might make it more difficult for you to remove your foot should not be used with toe clips and straps.

Note that component changes to your bicycle (cranks, tyres, pedals) can result in a reduction of toe-clearance; consult your Approved Retailer about any component changes and use caution when first riding the bicycle following a component change. Whether you have overlap or not, you must keep the inside pedal up and the outside pedal down when making sharp turns.

4.G.2. Some bicycles come equipped with pedals that have sharp and potentially dangerous surfaces. These surfaces are designed to add safety by increasing grip between the rider's shoe and the pedal. If your bicycle has this type of high-performance pedal, you must take extra care to avoid serious injury from the pedal's sharp surfaces. Based on your riding style or skill level, you may prefer a less aggressive pedal design, or choose to ride with shin pads. Your Approved Retailer can show you several options and make suitable recommendations.

4.G.3. Toe clips and straps are a means to keep feet correctly positioned and engaged with the pedals. The toe clip positions the ball of the foot over the pedal spindle, which gives maximum pedalling power. The toe strap, when tightened, keeps the foot engaged throughout the rotation cycle of the pedal. While toe clips and straps give some benefit with any kind of shoe, they work most effectively with cycling shoes designed for use with toe clips. Your Approved Retailer can explain how toe clips and straps work. Shoes with deep treaded soles or wells which might make it more difficult for you to remove your foot should not be used with toe clips and straps.

Practice is required to learn to engage and disengage the foot safely. Until engaging and disengaging the foot becomes a reflex action, the technique requires concentration which can distract your attention and cause you to lose control and fall. Practice engaging and disengaging clipless pedals in a place where there are no obstacles, hazards, or traffic; and be sure to follow the pedal manufacturer's instructions and service instructions. If you do not have the manufacturer's instructions, see your Approved Retailer, or contact the manufacturer for advice. Practice the use of toe clips and straps where there are no obstacles, hazards, or traffic; Keep the straps loose, and don't tighten them until your technique and confidence in getting in and out of the pedals warrants it. Never ride in traffic with your toe straps tight.

4.G.4. Clipless pedals (sometimes called "step-in pedals") are another means to keep feet securely in the correct position for maximum pedaling efficiency. They have a plate, called a "cleat," on the sole of the shoe, which clicks into a mating spring-loaded fixture on the pedal. They only engage or disengage with a very specific motion which must be practiced until it becomes instinctive. Clipless pedals require shoes and cleats which are compatible with the make and model pedal being used. Many clipless pedals are designed to allow the rider to adjust the amount of force needed to engage or disengage the foot. Follow the pedal manufacturer's instructions or ask your Approved Retailer to show you how to make this adjustment. Use the easiest setting until engaging and disengaging becomes a reflex action, but always make sure that there is sufficient tension to prevent unintended release of your foot from the pedal. Practice is required to learn to engage and disengage the foot safely. Until engaging and disengaging the foot becomes a reflex action, the technique requires concentration which can distract your attention and cause you to lose control and fall. Practice engaging and disengaging clipless pedals in a place where there are no obstacles, hazards, or traffic; and be sure to follow the pedal manufacturer's instructions and service instructions. If you do not have the manufacturer's instructions, see your Approved Retailer, or contact the manufacturer for advice. Practice the use of toe clips and straps where there are no obstacles, hazards, or traffic; Keep the straps loose, and don't tighten them until your technique and confidence in getting in and out of the pedals warrants it. Never ride in traffic with your toe straps tight.

Caution: Never pedal for long periods in cross-chain gears as these combinations place unnecessary stress on your (-chain) gearing and may result in premature wear out and decreased performance.
Ask your Approved Retailer to recommend the best tyre pressure for the kind of riding you will most often do, and have the Approved Retailer inflate your tyres to that pressure. Then, check inflation as described in Section 4.C, so you'll know how correctly inflated tyres should look and feel when you don't have access to a gauge.

Some tyres may need to be brought up to pressure every week or two. Some special high-performance tyres have unidirectional treads. Their tread pattern is designed to work better in one direction than in the other. The sidewall marking of a unidirectional tyre will have an arrow showing the correct direction of travel. If your bike has unidirectional tyres, be sure that they are mounted to rotate in the correct direction.

4.H.2. Tyre Valves

There are primarily two kinds of bicycle tube valves: The Schrader valve and the Presta valve. The bicycle pump you use must have the fitting appropriate to the valve stems on your bicycle.

The Schrader valve is the valve on a car tyre. To inflate a Schrader valve tube, remove the valve cap and clamp the pump fitting onto the end of the valve stem. To let air out of a Schrader valve tube, depress the pin in the end of the valve stem with the end of a key or other appropriate object.

The Presta valve has a narrower diameter and is only found on bicycle tubes. To inflate a Presta valve tube using a Presta headed bicycle pump, remove the valve cap, unscrew (anti-clockwise) the valve stem lock nut, and push down on the valve stem to free it up. Then push the pump head on to the valve head and inflate. To deflate a Presta valve with a Schrader pump fitting, you’ll need a Presta adapter (available at your local bike shop) which screws on to the valve stem once you’ve freed up the valve. The adapter fits into the Schrader pump fitting. Close the valve after inflation. To let air out of a Presta valve, open the valve stem lock nut and depress the valve stem.

Warning: Patching a tube is an emergency repair. If you do not apply the patch correctly or apply several patches, the tube can fail, resulting in possible tube failure, which could cause you to lose control and fall, resulting in injury or death.

4.H.3. Clincher and Tubular Tyres

There are basically two kinds of bicycle tubes: The clincher tyre and the tubular tyre. Clincher tyres are shaped like a “U” in cross section, with wire or Kevlar beads on the outer edge of both sides that hook onto the rim and hold the tire in place on the wheel over the inner tube. Tubular tyres do not have beads – the outer edges of the tire are sewn together around the inner tube, which is then glued to the rim to hold it in place.

Your Vitus bicycle will be equipped with clincher tyres from the factory; however, many riders may wish to purchase a second set of wheels utilising tubular tyres. If you install wheels with tubular tyres on your bicycle, it is very important that you obtain and read the safety information about tubulars from the wheel and tyre manufacturers, in particular the information on the proper technique for gluing the tubes to the rim. Improperly glued tubular tyres can separate from the rim causing a serious crash. It is up to the rider to take responsibility for ensuring their tubular wheels and tyres are safe to use.
 SECTION 5 - SERVICE

Warning: Technological advances have made bicycles and bicycle components more complex, and the pace of innovation is increasing. It is impossible for this manual to provide all the information required to properly repair and maintain your bicycle. In order to help minimize the chance of an accident and possible injury, it is critical that you have any repair or maintenance which is not specifically described in this manual performed by your Approved Retailer. Equally important is that your individual maintenance requirements will be determined by everything from your riding style to geographic location. Consult your Approved Retailer for help in determining your maintenance requirements.

If you want to learn to do major service and repair work on your bike:

- Ask your Approved Retailer for copies of the manufacturer's installation and service instructions for the components on your bike or contact the component manufacturer.
- Ask your Approved Retailer to recommend a book on bicycle repair.
- Ask your Approved Retailer about the availability of bicycle repair courses in your area. We recommend that you ask your Approved Retailer to check the quality of your work and that you have any repair or maintenance which is not specifically described in this manual performed by your Approved Retailer. If you feel a clunk with each forward or backward movement of the bike, you probably have a loose headset. Have your Approved Retailer check it.
- Lift the front wheel off the ground and swing it from side to side. Does it feel smooth? If you feel any binding or roughness in the steering, you may have a tight headset. Have your Approved Retailer to check it.
- Inspect both rims for damage. Check the spoke holes on the rim for any cracks that may have formed due to fatigue. If cracks are found, do not ride it – take the wheel to your Approved Retailer for replacement. Also inspect the brake surface for wear (relative to other surfaces). If a noticeable amount of wear has occurred, do not ride it – take the wheel to your Approved Retailer for inspection and possible replacement. Ignoring these signs of wheel wear or damage can lead to failures of the rim.
- Grab one pedal and rock it toward and away from the centre line of the bike; then do the same with the other pedal. Anything feel loose? If so, have your Approved Retailer check it.
- Look at the brake pads. If they are starting to look worn or not hitting the wheel rim squarely then have your Approved Retailer replace them.

The following are examples of the type of service you should perform yourself. All other service, maintenance and repair should be performed in a properly equipped facility by a qualified bicycle mechanic using the correct tools and procedures specified by the manufacturer.

5.A.1. Break-in Period:
Your bike will last longer and work better if you break it in before riding it hard. Control cables and wheel spokes may stretch or "seat" when a new bike is first used and may require readjustment by your Approved Retailer. Your Mechanical Safety Check (Section 5.C) will help you identify some things that need readjustment.

5.A.2. Before every ride:
Mechanical Safety Check (Section 5.C)

5.A.3. After every long or hard ride; if the bike has been exposed to water or grit; or at least every 100 miles:
Clean the bike thoroughly and lightly oil the chain. Wipe off excess oil. Lubrication is a function of climate. Talk to your Approved Retailer about the best lubricants and the recommended lubrication frequency for your area.

5.A.4. After every long or hard ride or after every 10 to 20 hours of riding:
- Squeeze the front brake and rock the bike forward and back. Does everything feel solid? If you feel a clunk with each forward or backward movement of the bike, you probably have a loose headset. Have your Approved Retailer check it.
- Lift the front wheel off the ground and swing it from side to side. Does it feel smooth? If you feel any binding or roughness in the steering, you may have a tight headset. Have your Approved Retailer to check it.
- Inspect both rims for damage. Check the spoke holes on the rim for any cracks that may have formed due to fatigue. If cracks are found, do not ride it – take the wheel to your Approved Retailer for replacement. Also inspect the brake surface for wear (relative to other surfaces). If a noticeable amount of wear has occurred, do not ride it – take the wheel to your Approved Retailer for inspection and possible replacement. Ignoring these signs of wheel wear or damage can lead to failures of the rim.
- Grab one pedal and rock it toward and away from the centre line of the bike; then do the same with the other pedal. Anything feel loose? If so, have your Approved Retailer check it.
- Look at the brake pads. If they are starting to look worn or not hitting the wheel rim squarely then have your Approved Retailer replace them.

Warning: Like any mechanical device, a bicycle and its components are subject to wear and stress. Different materials and mechanisms wear or fatigue from stress at different rates and have different life cycles. If a component's life cycle is exceeded, the component can suddenly and catastrophically fail, causing serious injury or death to the rider.

Scratches, cracks, fraying, and discoloration are signs of stress caused fatigue and indicate that a part is at the end of its useful life and needs to be replaced. While the materials and workmanship of your bicycle or of individual components may be covered by a warranty for a defined period of time by the manufacturer, this is no guarantee that the product will last the
term of the warranty. Product life is often related to the kind of riding you do and to the treatment to which you submit the bicycle.

The bicycle’s warranty is not meant to suggest that the bicycle cannot be broken or will last forever. It only means that the bicycle is covered subject to the terms of the warranty.

5.A.5. As required:
If either brake lever fails the Mechanical Safety Check (Section 1.C.), don’t ride the bike. Have your Authorised Retailer check the brake. If the chain won’t shift smoothly and quietly from gear to gear, the derailleur is out of adjustment. See your Approved Retailer.

5.A.6. Every 25 (hard off-road) to 50 (on-road) hours of riding:
Take your bike to your Approved Retailer for a complete check-up.

5.B. IF YOUR BICYCLE SUSTAINS AN IMPACT

• First, check yourself for injuries, and take care of them as best you can. Seek medical help if necessary.
• Next, check your bike for damage on the spot.
• Following any crash, take your bike to a qualified mechanic for a thorough check.

Warning: A crash or other impact can put extraordinary stress on bicycle components, causing them to fatigue prematurely. Components suffering from stress fatigue can fail suddenly and catastrophically, causing loss of control, serious injury or death.

5. C. REPLACEMENT PARTS

Over time due to wear out of components or a desire to upgrade, it is likely that one or more components of your bicycle will need to be replaced. Please consult your Approved Retailer when choosing replacement parts – it is very important that suitable, genuine parts are selected and properly installed to maintain the safety and performance characteristics of your Vitus bicycle.

Warning: Failure to select and properly install suitable, genuine replacement parts may lead to unforeseen changes in the safety and performance characteristics of your bicycle.

It is recommended that you use recommended OEM replacement parts for any components of your bicycle that require replacement. Your Vitus bicycle was carefully designed and tested with the components provided, and changes to these parts can result in different performance characteristics.