
Multiverse Developers Guide

Version 1.1 - Release
Apr. 24, 2023

1

Revision History
v0.1 - (Mar 11, 2023) - Early Access release
v1.0 - (Mar 22, 2023) - Release
V1.1 - (Apr, 24, 2023) - Fix EfxPrint.h header name in debugging section

2

Table Of Contents
Overview 3

Bold and Italics Text 3
Introduction To Arduino, Teensy, and Multiverse 4
Open-source vs. Open-platform 5
The Multiverse Framework 5

Teensy AudioStream 5
Effect Creator Flow and EFX Packages 6
Multiverse Designer Flow 7
How is the Multiverse Framework Different From Teensy Audio 8

C/C++ and the Compiler 11
Developing Audio Effects - Part 1 - Effect Creator 12

Step 1 - Entering General Information in the EFX Editor 12
Step 2 - Creating Effect Controls 13
Step 3 - Generate and Customize the Boilerplate Code 15

Generating Code 15
Public Header File - <ClassName>.h 16
Base Cpp File - <ClassName>Base.cpp 21
Primary Cpp File - <ClassName>.cpp 22

Developing Audio Effects - Part 2 - Writing the Source Code 22
Step A - Control Parameter Update Functions and Normalization 22
Step B - Writing the update() function 25

Enable and Bypass 25
Peak Processing 26
Getting Input Audio 27

receiveWritable(), receiveReadOnly() and allocate() 27
CRITICAL: checking for errors 28

Audio Processing Loop and Vector Processing 28
Transmit Output Audio 29
Putting It All Together 30

Developing Audio Effect - libAviate Library 31
Logo, Pedal Icon and Pedal Base Image 32
EFX Development Checklist 33
Performance Tips and Floating-Point 34

Multi-instance vs. Singleton Effects 34
Using Floating-Point 35
Audio Sampling Rate 35
Using the Keil CMSIS Accelerated Library (arm_math.h) 36
Memory Types (RAM0 and RAM1) 37

RAM0 Contents 37

3

RAM1 Contents 37
Audio Block Buffers 38

Avoiding Memory Copies 38
Using External SRAM 39
Expensive Math Functions 40

Avoiding Audio Pops and Clicks 41
Debugging Your Code 42

Debugging with Arduino/Teensyduino 43
Security and Protecting Your Source Code 43

Source Files 44
EFX Builds 44

Developer / Debug Builds 44
Release Builds 44

Disclaimer 45
References 45
Glossary 45

4

Overview
The Multiverse Developers Guide provides information on how to develop audio effects for the
Multiverse platform using C++.

In this guide we will cover the following topics:

● Open-platform vs. Open-source.
● The Teensy Audio framework and its relationship to Multiverse.
● Key concepts of the Multiverse Framework.
● Supported coding language, compiler and libraries.
● Auto-generation of the necessary boilerplate code for your effect.
● Performance tips for floating-point, memory and math acceleration.
● Porting existing audio effects to Multiverse.
● Debugging your code.

Bold and Italics Text
Throughout this User Guide, bold text is used to draw your attention to an important element
and italic text is used to indicate a word or phrase that is covered in the Glossary section.
Some words are both bold and italic. Bold and italics will only be used the first time the word
appears in a paragraph or section since they are often repeated.

Introduction To Arduino, Teensy, and Multiverse
Before programming for Multiverse, it’s helpful to understand a bit about the nature of
programming on microcontrollers, and that starts with Arduino.

What Is Arduino?

Arduino is an open-source software ecosystem designed to make it easy for new programmers
to begin writing code for microcontrollers without the need to learn complex compilers, or
programming low-level hardware devices. Arduino is general purpose and not specialized for
audio. The biggest drawback of Arduino is the devices have very little compute power and are
not suitable for any compute intensive audio signal processing.

What is Teensy?

Teensy by PJRC is Arduino compatible hardware and software (called Teensyduino) specifically
intended for high-performance applications using high-end microcontrollers. You get the benefits
of a massive Arduino community, along with powerful signal processing microcontrollers. These
microcontrollers provide a sweet spot for audio as they are capable of significant amounts of
audio processing in real-time. Because they are still microcontrollers and not complex multi-core

5

CPUs, they remain easier to program and do not require bulky operating-systems (OS).
Running without an OS (a.k.a bare-metal) means deterministic audio performance without risk
of unpredictable pops or clicks caused by OS overhead and performance variability. Teensy is
general purpose, with a lot of non-audio related software components. However, Teensy does
provide the Teensy Audio library, a simple framework for realtime streaming audio. The Teensy
Audio library makes it very easy to get started in audio programming, but lacks the audio
hardware needed for professional quality audio effects.

What is Multiverse?

Multiverse takes Teensy to the next level by starting with a hardware platform specifically
designed for high-quality audio and stompbox format. We then strip away everything not
essential for streaming audio, and add in a custom backend that brings powerful plugin-style
audio routing and presets capabilities, while maintaining OS-free bare-metal performance on the
hardware.

Multiverse represents the fastest, easiest way to develop audio effects for the stompbox format
in the industry, regardless of whether you are an expert audio plugin developer, or just beginning
your journey into audio programming.

The Effect Creator application lets you build VST-like plugins (all without the complicated VST
SDK), and the Designer application gives you a DAW-like experience to use effects and build
virtual pedalboards.

Open-source vs. Open-platform
The primary goal of Mutliverse is democratize audio effect development. Multiverse is
open-platform, meaning unlike the other digital stompboxes on the market, anyone can create
audio effects on the Multiverse. Multiverse is just like the app store for your smartphone. You
can develop software for your own personal use, or publish them on the Multiverse Web Store
as free or premium effects.

Multiverse supports open-source (more on this in a minute) but is not open-source itself. By
keeping the Multiverse framework code proprietary, it enhances security to keep developers
source code and algorithms proprietary and secure.

Multiverse supports open-source by not locking down programming of the device and
remains fully compatible with Teensyduino (Arduino+Teensy) software and tools. In other words,
you are not limited to only run the Multiverse Framework on your hardware. You can easily
switch back and forth between Teensyduino and Multiverse programs at any time. BALibrary by
Blackaddr Audio provides some open-source demos for getting started with the Multiverse
hardware using Teensyduino.

6

https://github.com/Blackaddr/BALibrary

Using the general purpose Arduino and Teensy libraries for directly programming the Multiverse
hardware is beyond the scope of this guide which focuses on how to create audio effects
compatible with the Multiverse Framework.

The Multiverse Framework
In this section we will cover:

● Teensy AudioStream class
● Effect Creator workflow and EFX Packages
● Multiverse Designer workflow

Teensy AudioStream
Multiverse uses a customized implementation of the Teensy Audiostream class for audio flow. It
maintains the same interface as the original, so this makes it easier for developers to work both
in the open-source community driven Teensyduino environment, and in the Multiverse
environment.

The Teensy AudioStream base class is an extremely simple and elegant audio streaming
interface. The developer need only provide the class with an array to store pointers for input
audio buffers and implement an update() function that performs the effect processing itself.

The AudioStream class provides a few additional functions (these will be reviewed in detail in
the later section Developing Audio Effects):

● Requesting the next input audio block for a given input channel.
● Allocating and freeing (i.e. releasing) temporary audio buffers.
● Transmitting an audio buffer to a given output audio channel.

If you are already familiar with using the Teensy Audio library, it is strongly suggested you read
the section “How Is Multiverse Framework different from Teensy Audio” later in this guide.
This will aid you in porting any work from Teensy Audio to the Multiverse Framework.

Effect Creator Flow and EFX Packages
The Multiverse Framework is built around the use of EFX packages. A package is a single
binary that contains the following:

● Information metadata, such as names, descriptions, control types and definitions, etc.
● Graphic files for logos, pedal artwork, effect controls, etc.
● Compiled C++ code for the audio effect.
● Effect public header file(s) needed by the Designer application to build a monolithic

program for the hardware.

7

As an owner of the Multiverse Developer Edition, you have access to the Effect Creator tool.
This tool takes audio effect source code and turns it into runnable EFX packages on the
Multiverse hardware.

If you are not a software developer, but wish to have access to building effects that other
developers have posted as open-source code, you can still use the Effect Creator tool to build
EFX packages that will run on your Developer Edition hardware.

Note: the Player Edition of the hardware can only use EFX packages from the Multiverse Web
Store.

For detailed information about all aspects of the Effect Creator tool, please see the Effect
Creator Quick Start Guide and the comprehensive Effect Creator Users Guide. The general
workflow for creating new effects in the application is as follows:

1. Fill out all general information about the effect such as its name, number of input/output
channels, and optionally adding logo and pedal graphics.

2. Create a Control Entry for every user adjustable control you want to have on the audio
effect. Each entry covers name, min/max/step values, type of control (pot, switch, etc.),
and any graphic files for the control.

3. Generate the boilerplate code. In this step, the application will automatically create the
C++ class for your effect, including declaration of all the necessary variables and
functions needed for your effect controls. Most of the code to interface with the
Multiverse Framework is written for you!

The following steps are where you start actually editing source files and writing new code.

4. Using the generated files as a starting point, edit and customize as needed to add any
additional class variables and custom functions.

5. Write the contents of the update() function. This is where the magic happens! This
function generally requests the next input audio block, performs the audio algorithm,
then transmits the results.

For full details on writing effects and using the Aviate Library API, see the later sections titled
Developing Audio Effects.

Multiverse Designer Flow
Multiverse Designer is the end user-application that lets you create and arrange virtual
pedalboards (signal chains) into a number of different presets. The application then analyzes
your pedalboards, all effect parameters and presets. The application’s internal code generation
engine generates a custom C++ program for this collection of presets, compiles it, then uploads
the program to the hardware pedal. Multiverse Designer is literally code that writes code!

8

Because your virtual pedalboards are automatically translated to custom C++ code and
compiled as a monolithic program, you get fast bare-metal performance with no need for a bulky
operating system or virtual memory management as you would normally have in a plugin
(dynamic library) based system.

Note 1: there is no firmware that permanently lives on the pedal as would be the case with most
DSP pedals. Multiverse creates a complete, custom, self-contained program and uploads it
each time.

Note 2: a portion of the on-board flash memory is reserved as virtual EEPROM for some data
items that are not erased during program load. E.g. expression pedal calibration settings, etc. If
the developer is also writing their own programs using Teensyduino, they should avoid writing to
the EEPROM.

The general flow user flow for Designer is:
1. User imports their EFX into their Effects Library.
2. User creates their presets containing virtual pedalboard arrangements and the settings

for each effect.
3. Build the custom Multiverse program (one-click code gen and build).
4. Upload to the hardware pedal (one-click program flashing).

The following diagram summarizes the Designer workflow.

How is the Multiverse Framework Different From Teensy Audio
If you are already familiar with using the Teensy Audio Library, there are some differences you
should be aware of.

Teensy Audio consists of many components. First and foremost is the AudioStream class
which is used to create audio objects. Multiverse is similar in this way as it keeps the

9

AudioStream class API, and adds some additional features via
Aviate::AudioEffectWrapper from the libAviate Library.

AUDIO_BLOCK_SAMPLES and AUDIO_SAMPLE_RATE_EXACT

Teensy Audio defines the number of audio samples in an audio block to be 128, and the sample
rate to 44100 Hz.

#define AUDIO_BLOCK_SAMPLES 128

#define AUDIO_SAMPLE_RATE_EXACT 44100.0f

This method has a drawback in that any changes to these numbers would require recompiling
all program code. Multiverse runs its codec at 48.0 KHz, not 44.1 KHz.

In the Multiverse Framework, two new const global variables are created as substitutes and
should be used in lieu of the original compile-time macros.

#define AUDIO_BLOCK_SAMPLES_MAX 256 // max supported block size

extern const unsigned AUDIO_SAMPLES_PER_BLOCK; // actual block size

extern const float AUDIO_SAMPLE_RATE_HZ;

The reason for using const variables instead of macros is once an EFX is compiled, if the
original macro is used those values are now fixed. If the system is actually using any other
value, the EFX will no longer work correctly. By instead referencing the const global variable, the
EFX will obtain these values externally at runtime, instead of having them fixed and compiled
internally. This allows the EFX to be reusable across different block sizes and sample rates in
the future.

One drawback of using runtime values for audio block size instead of an EFX compile-time
value is you cannot create arrays on the stack based on audio block size. You must either
allocate them on the heap in your constructor, or you must create a stack array of max possible
buffer size.

The max possible size that will be supported in the future is
AUDIO_SAMPLES_PER_BLOCK=256 with 128 being the default value. Block sizes larger than
256 are not supported due to higher latency.

No .ino Sketches or AudioConnection Class

When using the Teensy Audio library with the Teensyduino IDE, you create a top-level sketch
(.ino file), instantiate your audio objects, and connect them with the AudioConnection class.
You are also required to instantiate and configure your audio codec and audio input/outputs.

10

None of this is necessary with Multiverse. All you do is develop your audio effect itself
and compile it into an EFX package file (.efx). Everything else is handled by the Multiverse
Designer application.

Multiverse Audio Effects Are Self-Contained

Audio effects are often made up of several audio building blocks. For example, a distortion
effect would likely have some input IIR filters, a waveshaper to model the saturating
non-linearity, and more output filters for tone control.

The Teensy Audio Library provides these sub-components as standalone ‘audio effects’ that you
then string together with AudioConnection instances. An ‘audio effect’ in this context is
actually a chain of pieces of an audio effect, as if each piece was its own independent pedal on
a pedalboard. Another way to think of this would be like having the distortion diode and the tone
control for a distortion effect as two separate pedals linked by a patch cable.

This strategy is very helpful for beginners to get something to play with without having to write
code, but clearly it doesn’t scale well to real pedalboard effect chains consisting of distortion
pedals, modulation pedals, delays, reverb and EQ. There would be many tens of these building
blocks, with a lot of manual connections and routing necessary.

One hurdle that beginner developers often struggle with when first getting started is they use the
PJRC Audio System Design Tool to graphically create and link together pre-existing audio
objects as opposed to writing the instantiation and routing code themself. An example of the tool
is shown below. This tool then generates the snippet of C++ code needed to instantiate the
objects, and make the connections between them.

Audio System Design Tool by PJRC

This is an amazing way to ease complete beginners into audio programming. However, this only
takes you so far, and any complex audio project will require manually instantiating the objects
and channel connections.

Multiverse takes a different approach to letting developers focus on audio algorithms, and not
audio routing. With the Multiverse Framework, the entire audio effect must have all its

11

processing contained in a single audio class object. This is similar to writing audio plugins for
desktop DAWs. Neither the developer, nor the end-user is ever required to write code
stitching together a signal chain. Once a working EFX is built and installed in your Designer
application, you only interact with the rich graphical interface it provides.

Creating a signal chain with Multiverse Designer

Dynamic Routing and Presets

The standard Teensy Audio Library itself does not support dynamic routing of instantiated
effects. In other words, the order of effects is fixed for a given program at compile time. The
effect processing order is determined by the order they are defined in the code. Not the order
they are connected in. Luckily, this issue can be overcome.

One of the enhancements provided by the Multiverse Framework is its audio backend
handles the real-time flow of audio blocks between effects and can support dynamic
routing changes.

When you build a virtual pedalboard (signal chain) in the Designer application, Multiverse
creates an audio graph of all the effects and their connections in a given preset. The runtime
engine on hardware performs multi-entrant traversal of this graph ensuring all audio effects are
processed in the correct order. This allows complex multi-channel graphs with multiple inputs,
outputs and crossovers. In practice, this means the players' presets can use completely
different effect orderings for each one.

At Aviate Audio, we are huge fans of PJRC, Teensy and the Teensy Audio Library. The huge
Teensy community is a great way to experiment with audio programming and get support on the
fundamentals. This is why our hardware still supports direct use of these open-source tools
alongside the Multiverse Framework, while providing rugged hardware that can go instantly from
a programmers computer desk to the floor to be used with your amps and guitars.

Our goal is to take audio effect development to the next level on an open-platform that focuses
on audio quality and audio algorithms rather than struggling with debouncing switches and

12

reading pot voltages. And if you can throw in some awesome digital boutique graphics, all the
better!

C/C++ and the Compiler
As covered in the previous section, The Multiverse Framework (MVF), the final build artifact
for the MVF is an EFX package file.

In order to ensure correct compatibility between all audio effects and MVF, the compiler is built
into the Effect Creator application. This ensures that the correct version of the compiler and
build flags are used for all effects. The one-click build and packaging process provided by Effect
Creator ensures you spend your time working on your audio effect, not dealing with complex
cross-compilation and packaging tools.

Under the hood, MVF uses GCC v5.4.1 and is compiled to standard GNU++14, so your source
code must be compatible with this toolchain and language standard.

Do you need to know C++ well to use MVF? No.While the MVF is built upon C++, and so
audio effects must be C++ classes, you are free to use most C programming syntax and
concepts in the audio effect code you write. Furthermore, most of the mandatory C++ code is
auto-generated for you as part of the boilerplate code. Most C programmers find it easy to work
with Multiverse and pick up the few C++ concepts that are needed fairly easily.

Developing Audio Effects - Part 1 - Effect Creator
This section will go through the details of making a new audio effect, with focus on the
mandatory tasks that must be performed in Effect Creator application before starting to edit and
write the source code. This section will refer to parts of the Effect Creator application, but the
focus will only be on the parts that impact source code. For a full manual on the Effect Creator
application and its features, see the Effect Creator Users Guide.

Step 1 - Entering General Information in the EFX Editor
When creating a new effect, the information you enter in the EFX Editor will be used to generate
boilerplate source code in a later step. As an example, let’s take a look at the Blackaddr Audio
Analog Delay.

13

EFX Editor information for Blackaddr Audio Analog Delay

The fields that affect source code require special attention and are discussed below.

Namespace
The C++ namespace for your effect is a non-editable field because it is automatically generated
using the Company/Developer name and the Effect Name. Those two fields are sanitized first
to make a legal namespace by removing all non-alphanumeric characters. This ensures every
EFX has a unique namespace.

If you are a C programmer and not familiar with C++ namespaces, do not worry. It’s just a
symbolic prefix in your code to ensure your functions and variables have a unique name for the
compiler. I.e. they won’t have name collisions with other EFX.

cppClass
This is where you can choose the C++ class name for your audio effect. You can use any legal
name for your class, but we highly recommend using the sanitized effect name from the
namespace. E.g. In the example above, the generated namespace was
‘BlackaddrAudio_AnalogDelay’, so ‘AnalogDelay’ would be a good name to choose for the
cppClass in this instance.

constructorParams
For most effects, using a default constructor signature (i.e. no parameters) for your class is fine
and this field can be left blank. However, if you do want to have a custom constructor, you must
enter the values that will be passed to it here. The MVF will ensure the value(s) are passed to
your class when it is constructed. Note: You will declare your custom constructors later when
you edit your source files, this field is only used to supply the instantiation values passed to the
constructor.

Another reason to use a custom constructor is if you are porting code from another platform and
the custom constructor is required. In the example shown above, the Blackaddr Audio Analog

14

Delay was ported from another platform, where its constructor had two parameters, the max
delay in ms and a boolean to determine if external or internal memory is being used. Hence, this
EFX has constructor params “3000.0f,true” for 3000.0 ms of delay and external memory
enabled.

Num Inputs / Num Outputs
This defines the number of audio channel inputs and outputs your effect will have. It is also
possible for an effect to have zero audio inputs (a synth for example) or zero outputs (a VU
meter). The Teensy AudioStream class requires an array of pointers to the input buffer for
each input channel, so this number will be used in the boilerplate code to create and correctly
size that array for you.

Other Fields
The other fields in the EFX Editor are used in creating the metadata for the EFX but do not have
any impact on the source code. For details on these other fields, see the Effect Creator Users
Guide.

Step 2 - Creating Effect Controls
In order for the Effect Creator application to generate all the MVF interface code for you, you
must first define each audio effect control. Similar to the previous step, in this guide we will
focus only on the fields relevant to source code.

In the image below, we see an example of each type of control: a switch, a pot, and an encoder.

Example of several Effect Control Blocks in Effect Creator

15

When generating boilerplate code, each control you define here will result in the creation of
- a class variable to hold the current value of the parameter
- a function to update the parameter

The fields that impact source code are discussed below.

min / max
This sets the minimum and maximum value the parameter can take. For a switch, these should
always be 0 and 1 respectively as basic switches can only have two valid states.

For a pot, a very common scenario is to set these to min=0, max =10 for a knob that goes from
0 to 10. However, you can set these to anything you want as long as min < max. For example, a
stereo pan knob might go from min=-1.0 to max=+1.0 with 0 as the natural midpoint. These
numbers can also be in whatever units you want because it all gets normalized in the
boilerplate code anyway (see details in Step A - Control Parameter Update Functions and
Normalization).

For example, a gain control might represent -60dB to +10dB. You would set min=-60 and
max=10.

A selection encoder is similarly flexible. You can use whatever min/max you want. It will be
normalized in the boilerplate code, and the developer will be required to convert this into
whatever format they need. Most commonly, encoders have min=0, max=N-1 where N is the
number of selections. For more meaningful labels, use the enums field.

The best way to think of min/max is simply the start and stop points for your control’s range.

def / step
These do not actually get used in the EFX source code, they instead are part of the metadata
that gets passed to the Designer application and the hardware pedal.

enum
These are used only by the Designer application and the hardware pedal to provide text labels
for encoder selections. They are not used in the EFX source code.

Other Fields
The other fields in an EFX Control Block are used in creating the metadata for the EFX but do
not have any impact on the source code. For details on these other fields, see the Effect
Creator Users Guide.

16

Step 3 - Generate and Customize the Boilerplate Code

Generating Code

Click the button, then button in the Effect Creator application to create or
update the boilerplate code. The code generator will use the information you have entered in the
applications EFX Editor and Effect Control Block sections to write all the structural code for you.

There are three boilerplate files created for you the first time you generate code. You should
always confirm that after this first generation step, you can successfully compile and build the
project.

Subsequent clicks of the button will recognize that files already exist, and present a
popup choice window. Code generation will always safely update the <ClassName>.h header
file and overwrite <ClassName>Base.cpp file (which you should never edit). The prompt will
ask how it should handle the existing primary <ClassName>.cpp file, the one that contains
your update() function.

Prompt regarding what to do with existing primary .cpp file

DON’T TOUCH will perform the necessary updates to the public header and base cpp file, and it
will leave the <ClassName>.cpp file untouched. If you have made any changes to the effect
controls in Effect Creator since the primary .cpp file was first generated, you will need to make
all appropriate and required changes to this file yourself.

OVERWRITE will delete your <ClassName>.cpp file and create a new one. All your work in
this file will be lost. Only choose this option when you need to start over from scratch.
Just in case you are reading this warning after clicking the button (whoops!), check your ‘src’

17

directory, a backup file should have been created before deleting the original.

CANCEL will leave the files unchanged and close the window.

On first start of Effect Creator, or after clicking , the application has all its fields
defaulted to create a working volume pedal as a working reference. We will use the generated
files from this default configuration to describe the contents of each file.

Public Header File - <ClassName>.h
The public header file contains the declaration of your audio effect. The structural components
are all generated for you by the code generator. However, you will also need to further
customize this file yourself, adding any necessary #include statements, additional member
variables and member functions, etc.

Pro Tip: software development good practices have two important guidelines that are highly
recommended for audio effect development.

Guideline #1 - do not define member function bodies in the public header file. Declare the
functions in the class, but put the implementation bodies in the private <ClassName>.cpp file.

Guideline #2 - the public header file should contain only the bare minimum of what it needs.
#include statements needed only by .cpp files should go in those files, rather than in the
public header files. Constants can often be declared global (but within the EFX namespace) in
the .cpp file, instead of the public header file.

Let’s now turn our attention to the public header file generated for the default Volume Effect.

/*

* Company: Multiverse Community

* Effect Name: Volume Pedal DEMO

* Description: A basic volume control with bypass

*

* This file was auto-generated by Aviate Audio Effect Creator for the Multiverse.

*/

#pragma once

#include <Audio.h>

#include <arm_math.h>

#include "Aviate/AudioEffectWrapper.h"

//!s - START_USER_INCLUDES - put your #includes below this line before the matching END

18

//!e - END_USER_INCLUDES

The comment header at the top is populated with information you provided in the EFX Editor
section of Effect Creator. The pragma is a standard header guard.

There are three header files always included:
● Audio.h - provides the Teensy AudioStream class
● arm_math.h - provides access to the Keil CMSIS math acceleration library
● Aviate/AudioEffectWrapper.h - provides AudioEffectWrapper, the class that provides the

interfaces to the Multiverse Framework.

The next lines of code are special comment markers. Comment markers indicate special
regions where the developer can insert their own custom code. The boilerplate generated
sections of code are updated by the Effect Creator application automatically during the build
processes. It will preserve any code it finds between these markers, but if you edit outside of
them, your code will be overwritten. The start of a region is always indicated by //!s and the
end is indicated by //!e.

In particular, this first set of comment markers are provided for you to add any custom
#includes you may need for the public header file. It is best only to include files that are
actually needed for this public header file as all public files in your project ‘inc’ folder will be
packaged with the EFX. If headers are only needed by the .cpp files, it’s better to include them
there so only their compiled code goes in the EFX package.

namespace MultiverseCommunity_VolumeEffect {

//!s - START_USER_EFFECT_TYPES - put your effect types below this line before the

// matching END

//!e - END_USER_EFFECT_TYPES

The namespace declaration is very important. Everything for your particular audio effect
must be declared inside your custom namespace. This ensures no naming collisions with
any other effects that might use similar variable or function names. There is also another
comment start/stop pair here for you to declare any public types you may want outside your
class scope.

Next up is the class definition for your audio effect.

class VolumeEffect : public AudioStream, public Aviate::AudioEffectWrapper {

public:

static constexpr unsigned NUM_INPUTS = 1;

19

static constexpr unsigned NUM_OUTPUTS = 1;

// List of effect control names

enum {

Bypass_e = 0,

Volume_e = 1,

NUM_CONTROLS

};

//!s - START_USER_CLASS_TYPES - put your custom class types below this line

// before the matching END

//!e - END_USER_CLASS_TYPES

VolumeEffect();

//!s - START_USER_CONSTRUCTORS - put your custom constructors below this line

// before the matching END

//!e - END_USER_CONSTRUCTORS

virtual ~VolumeEffect();

Your class will inherit from AudioStream to get the Teensy Audio API, and from
Aviate::AudioEffectWrapper to get the Multiverse API.

The NUM_INPUTS and NUM_OUTPUTS are set based on the number of input and output audio
channels you specified in Effect Creator.

All the controls you defined in Effect Creator have their names sanitized (made legal for C++
syntax) and are added to an enum. The ‘_e’ suffix is added to indicate these are enum labels for
the parameter index.

There is a comment marker pair for adding any additional custom public types. Reserved for
future use. It is unlikely you will need any custom ‘public’ types as only the Multiverse
Framework needs access to the public members of your class. Customs types should almost
always be private.

There is a comment marker pair for adding custom constructors. You cannot remove the default
constructors, but you can add a custom one. If you do, you can pass parameters to it using the
‘constructorParams’ field in the EFX Editor.

In general, the destructor ~VolumeEffect() will never be called on the Multiverse hardware
as effect instances are global and will not go out of scope. However, this is defined here for
completeness and ensure future compatibility for things like hardware simulators, etc.

20

// Standard EFX interface functions - do not change these declaration

virtual void update(); // main audio processing loop function

void mapMidiControl(int parameter, int midiCC, int midiChannel = 0) override;

void processMidi(int channel, int midiCC, int value) override;

void setParam(int paramIndex, float paramValue) override;

float getUserParamValue(int paramIndex, float normalizedParamValue);

const char* getName() override;

const uint8_t* getRblk() override;

After the constructors, the code generation will declare the mandatory functions that make up
the Multiverse AudioEffectWrapper API. Two functions are of particular interest to the
developer: update()which you will write your audio algorithm in, and
getUserParamValue(), which is a convenience function provided to you for de-normalizing
parameters. Full details on these two functions are provided in the chapters on ‘Developing
Audio Effects’. The remaining functions are used by the Multiverse Framework when
interacting with your audio effect.

After the standard EFX interface functions, there is a parameter update function for each Effect
Control Block you have defined in Effect Creator with the exception of bypass (already handled
in the AudioEffectWrapper library code).

// control value set functions, must take floats between 0.0f and 1.0f - do not

// change these declarations

void volume(float value) override;

//!s - START_USER_PUBLIC_MEMBERS - put your public members below this line before

// the matching END

//!e - END_USER_PUBLIC_MEMBERS

In this trivial case, we only have one other effect control, and that was volume. Normally you will
have multiple effect controls, and each one will have a function declared here that takes in a
float. The developer is required to implement the functions in the primary .cpp file.

There is also another pair of comment markers that provide a place to add any custom public
member functions you may need. Again, this is mostly reserved for future use as your custom
functions are more likely to be private and should not be public. The only user of public
functions on the AudioEffectWrapper classes is the Multiverse Framework itself.

Finally, we come to private member definitions, and the terminating braces for the class and
namespace.

21

private:

audio_block_t *m_inputQueueArray[1]; // required by AudioStream base class, array

// size is num inputs

int m_midiConfig[NUM_CONTROLS][2]; // stores the midi parameter mapping

// m_bypass and m_volume are already provided by the base class AudioEffectWrapper

audio_block_t* m_basicInputCheck(audio_block_t* inputAudioBlock, unsigned

outputChannel);

//!s - START_USER_PRIVATE_MEMBERS - put your private members below this line before

// the matching END

//!e - END_USER_PRIVATE_MEMBERS

};

}

The m_inputQueueArray is required by the Teensy AudioStream class and is sized equal to
the number of audio input channels on the effect. The m_midiConfig[] array is used to store
MIDI CC mappings for external MIDI control.

Every effect control in the project will have a private member variable generated for it. They are
private variables with the prefix ‘m_’. m_bypass and m_volume are already provided by the
AudioEffectWrapper class. Since this example effect only has those two, no others appear
here. With a real effect, there will be a corresponding ‘m_’ variable for each parameter
(excluding bypass and volume).

A function m_basicInputCheck() is always provided as a convenient way for single-channel
(1 in, 1 out) effects to have input audio blocks and enable/bypass behavior checked properly.
Details for this function are provided in the section Enable and Bypass. Even though it can’t be
used directly for multi-channel effects, this function can be used as a reference to adapt and
write your own function to perform input checking. For custom input checking functions, put
them in your primary or other .cpp file. Recall that attempting to edit the base .cpp file will be
overwritten.

Finally, we have one last pair of comment markers for you to declare your own private members,
both variables and functions. Most of the code customizations you make to your class
declaration will be here.

22

Base Cpp File - <ClassName>Base.cpp
The base .cpp file is completely generated and updated for you by Effect Creator every time you
run code generation or build. This file should never be edited, there are no user-editable
comment markers in this file. Any changes you make to this file will be overwritten when you
build.

Since you do not need to edit this file, a very brief summary of its contents is sufficient.

mapMidiControl() - this function is used by the Multiverse Framework to update effect
control parameters via MIDI messages.

setParam() - this function is used by the Multiverse Framework to update effect control
parameters via the USB interface to the Designer application.

getUserParamValue() - this function is used by the developer to pass in the control
parameter index (the enum defined in the public header file) and a normalized value.
Normalized values are provided to the effect control update functions by the MVF. Often the
developer may wish to convert back to the original min/max range they defined in Effect
Creator. This function will do this conversion for them.

processMidi() - this function is used by the Multiverse Framework to process MIDI updates
of control parameters.

m_basicInputCheck() - this function is used for single-channel effects. It provides
automated checking of input audio blocks, and ensures the required behavior for enable and
bypass modes. It can also be used as a reference to write your own check function for
multi-channel effects. See the section CRITICAL: checking for errors for more details.

Primary Cpp File - <ClassName>.cpp
The primary .cpp file is where most of your software development will occur. The very first time
you generate boilerplate code, this file is created for you. It is a functional, but fairly skeleton file,
consisting mostly of placeholders for critical functions you must complete.

The constructors and destructors are defined, but have empty bodies. Often you will need to
add your own appropriate initialization code for your effect to the constructor. It is good practice
to deallocate in the destructor any resources you allocate in the constructor. While the
destructor will never be called on the Multiverse hardware at this time, it may be used in the
future.

A basic, minimal update() function is provided that does all the mandatory tasks. It is a very
handy starting point for you to begin editing for your real audio algorithm. For more details, see
the section Audio Processing Loop.

23

Placeholder functions for all your effect control update functions are defined, but have trivial
bodies. These functions take in normalized values, and you must provide the necessary code to
apply the update to your processing algorithm. For complete details, see the section Step A -
Control Parameter Update Functions and Normalization.

Developing Audio Effects - Part 2 - Writing the
Source Code

Step A - Control Parameter Update Functions and Normalization
One very important characteristic of the Multiverse Framework is that all parameters are
normalized before being passed to the control parameter update functions.

The parameter range determined by your entries in the min and max fields will be mapped into
the range [0.0, 1.0]. This is necessary to support various internal mechanisms in the Multiverse
Framework.

Placeholder versions of the control parameter update functions are created for you by
the boilerplate generators. In most cases, you will need to modify them to convert the
values back into the range you need for your algorithm.

In these cases, your audio effect source code will likely want to convert the normalized values it
is given back to the original min/max range defined in the Effect Control Block.

The boilerplate code provides you with a premade function to do this for you! You may ask why
doesn’t the default parameter update function do the entire conversion for you? As you will see
in the examples below, the conversions while fairly simple are often case specific.

// This function is always provided to you to convert a normalized

// value back to the original value defined by the original min/max range.

float getUserParamValue(int paramIndex, float normalizedParamValue);

The paramIndex comes from the auto-generated enum constants defined for you in the public
header file. The normalizedParamValue is a value between [0.0,1.0] and the function will
return a new float corresponding to the originally defined min/max range.

The best way to illustrate these concepts is through actual code examples.

Example 1 - Wet mix control on a delay effect

24

It is common in a delay to mix a dry signal with a wet (delayed) signal. Let’s say the Effect
Control Block defines a min/max of (0,10) for the delay parameter, which gets normalized to
[0.0,1.0] by the boilerplate. In our audio effect algorithm, we have

𝑜𝑢𝑡𝑝𝑢𝑡𝑀𝑖𝑥 = 𝑑𝑟𝑦𝐼𝑛𝑝𝑢𝑡 * 𝑑𝑟𝑦𝐶𝑜𝑒𝑓𝑓 + 𝑤𝑒𝑡𝐼𝑛𝑝𝑢𝑡 * 𝑤𝑒𝑡𝐶𝑜𝑒𝑓𝑓

where we also have the requirement that

𝑑𝑟𝑦𝐶𝑜𝑒𝑓𝑓 + 𝑤𝑒𝑡𝐶𝑜𝑒𝑓𝑓 = 1. 0

This is typically simplified to

𝑜𝑢𝑡𝑝𝑢𝑡𝑀𝑖𝑥 = 𝑑𝑟𝑦𝐼𝑛𝑝𝑢𝑡 * (1. 0 − 𝑤𝑒𝑡𝐶𝑜𝑒𝑓𝑓) + 𝑤𝑒𝑡𝐼𝑛𝑝𝑢𝑡 * 𝑤𝑒𝑡𝐶𝑜𝑒𝑓𝑓

where wetCoeff is in the range [0.0, 1.0].

So our parameter update function is trivial, because the normalized range is the same as what
the algorithm needed anyway, and no further conversion is needed.

void mix(float value) {

m_mix = value; // m_mix is the wetCoeff in the algo

}

Example 2 - A gain control from -60dB to +20dB

In this example our Effect Control Block defined the volume min/max knob to be (-60,20). The
boilerplate code will normalize this to the range [0.0,1.0]. The actual value for the volume
parameter our algorithm needs is going to be a simple multiplication factor where values < 1.0
reduce volume and values > 1.0 increase volume.

We must perform two conversions here. The first is mapping the normalized value back to
original min/max ranged dB, the second is mapping the dB value into a final multiplier value.

void gain(float value) {

// convert the normalized value back to original dB range

float dbValue = getUserParamValue(Volume_e, value);

// convert dB value to amplitude multiplication value

m_gain = powf(10.0f, dbBalue/20.0f);

}

Example 3 - A filter selection encoder with 3 possible selections

25

In this example, our Effect Control Block is a position encoder with min=0, max=2, step=1 in
order to have three possible values (0,1,2) representing filters (Low,Med,High)

Keep in mind these values will be converted to the normalized range [0.0,1.0] so we will actually
see the following mapping: 0 → 0.0, 1→ 0.5, 2→1.0

Our filter() function will need to map the normalized values back to the integer selections.

void filter(float value) {

int numFilters = 3; // we have 3 possible selections

int filterSelect = std::roundf(value * (NUM_FILTERS-1)); // *(3-1)

switch(filterSelect) {

case 2 : /* set appropriately for High filter */ break;

case 1 : /* set appropriately for Med filter */ break;

case 0 :

default: /* set appropriately for Low filter */ break;

}

}

In the above code, multiplying the normalized value by NUM_FILTERS-1 then rounding will
recover the original integer selection value.

Step B - Writing the update() function
The AudioStream class requires you implement an update() function for your effect. This is
the primary audio processing function that takes in input audio blocks, does the magic, then
transmits the processed audio out. All routing to and from your effect is handled behind the
scenes by the Multiverse Framework.

Each EFX in the system will have its update() function called by the audio backend in the
correct order based on the audio routing derived from the user's virtual pedalboard preset.

Audio is passed to and from your effect using pointers to audio_block_t structures. The
relevant constants and structure is declared below.

extern const unsigned AUDIO_SAMPLES_PER_BLOCK;

extern const float AUDIO_SAMPLE_RATE_HZ;

typedef struct audio_block_struct {

uint8_t ref_count;

uint8_t reserved1;

uint16_t memory_pool_index;

26

int16_t *data;

} audio_block_t;

In general, the only member you will need to deal with is the data field, which is a pointer to an
array of int16_t audio samples. The size of the array (number of audio samples in the block)
is the same for every block, and is defined by AUDIO_SAMPLES_PER_BLOCK. The audio
sample rate in Hz is AUDIO_SAMPLE_RATE_HZ.

Note: in the original Teensy Audio Library, the data field is a fixed-sized array. It is modified to a
pointer in order to allow MVF to put the audio buffer data into DMA addressable memory and
maintain cache-line alignment.

Enable and Bypass
All EFX inherit the class Aviate::AudioEffectWrapper which provides the common
interface to the Multiverse Framework required by all audio effects.

An audio effect must always correctly handle enable and bypass behavior. The most common
case is for a mono effect with one input and one output. In this situation, the boilerplate code
always provides a function m_basicInputCheck() to perform all the necessary checks and
actions for you. It will either return the valid input audio block pointer for processing, or a
nullptr to indicate you should not perform any processing and return from the update()
function immediately.

audio_block_t* m_basicInputCheck(audio_block_t* inputAudioBlock,

unsigned outputChannel)

The function is passed the input audio block pointer, and the channel you wish to transmit out
on if bypassed. The details of the required behavior for enable and and bypass are discussed
next.

Enable / Disable
Making calls to enable or disable the audio effect is handled entirely in the Multiverse
Framework backend. However, it is still possible that the update() function might be called,
even when the EFX is disabled. Thus, it is important to ensure the update() function
implements the correct behavior when disabled.

The correct update() behavior for a disabled effect (m_enable is false) is to not
process or transmit any audio, and return as quickly as possible after releasing any input
blocks that were received.

27

Bypass
Bypass is a mandatory user accessible control on every effect. When an effect is bypassed, it is
required to transmit valid audio on all of its outputs. In general it should transmit out any input
audio it receives and return without any further processing to minimize CPU load. However, the
exact behavior of what ‘bypass’ means is up to the effect developer. For example, a tone
generator with no inputs would likely transmit a silent buffer, i.e. all audio samples set to zero.
Even for silence, valid audio samples must be transmitted in bypass mode to keep the audio
stream running properly. You should never transmit a buffer with invalid (rand or garbage) data
values as this could cause sudden noise and volume changes in a loudspeaker.

Peak Processing
All effects are required to make a call to update input and output peak level detection in their
update() functions. For effects with one or more inputs, this is typically done on input channel
0. For effects with one or more outputs, this is typically done on output channel 0.

The purpose of this is to drive level meters in the Multiverse Designer Effect Control Window.
These level meters are essential for users to properly control gain levels (a.k.a. gain staging)
between their effects for optimal sound.

// You must call m_updateInputPeak() before processing the audio

m_updateInputPeak(inputAudioBlock);

// you must call m_upateOutputPeak() at the end of update()

m_updateOutputPeak(inputAudioBlock);

Failure to call these functions will result in the level meters not working for your effect in the
Multiverse Designer application.

Getting Input Audio
Inside your update() function, the first thing you usually do is request a pointer to the next
available audio block. There are two functions available to you for this, depending on whether
you intend to modify the input audio blocks contents directly, or will only read them.

All receive and transmit functions take in an optional parameter to specify the audio channel. If
no channel is provided, the default is channel 0. For stereo effects, the L channel is 0, and the R
channel is 1.

receiveWritable(), receiveReadOnly() and allocate()
Simpler audio algorithms that do not need to maintain a copy of the original dry audio can
modify the audio block in place. A writable block is dedicated for use by your EFX, hence why it
is safe to modify its contents. You can transmit the audio block once you are done modifying it.

28

For example, if you have a mono (single channel) audio effect, and will modify the audio block in
place, you would use:

audio_block_t* inputAudioBlock = receiveWritable();

For an EFX with stereo inputs, and you need to keep a copy of the original (dry) input, you
would request read-only instead of writable blocks. In this case you will need to allocate()
one block for each output channel that you will be transmitting. The allocate() function takes
no parameters and returns a pointer to the allocated audio block.

audio_block_t* inputAudioBlockLeft = receiveReadOnly(0);

audio_block_t* inputAudioBlockRight = receiveReadOnly(1);

audio_block_t* outputAudioBlockLeft = allocate();

audio_block_t* outputAudioBlockRight = allocate();

You should always check returned pointers are valid (not nullptr). If an allocation fails, this
would be a good place to print an error messaging using the EFX_PRINT() macro. See
Debugging Your Code for more details.

CRITICAL: checking for errors
During system startup, not all EFX may start producing audio immediately, so it is possible you
may get nullptr returned when requesting an input audio block. The function
m_basicInputCheck() mentioned earlier handles this for you in the case of a mono, 1-input,
1-output effect. But for more complex, multi-channeled effects you will need to perform your own
checks and handle enable/bypass modes appropriately.

Note that it is also possible that an allocate() call could fail and return a nullptr instead of
a valid pointer to an audio block. In this case, it is likely some rogue EFX has not been releasing
audio blocks and the memory pool has run dry. In this case you should still try to transmit valid
audio if possible. Failure to do so could result in gross disruptions in the audio stream, resulting
in loud pops.

Audio Processing Loop and Vector Processing
The audio processing loop typically iterates over each sample in the audio block and runs the
audio algorithm to generate a new sample.

Alternatively, for simple operations, a vector operation can be done on the audio block. In this
section, we’ll look at examples of both. Note: it is also normal to have a mix of vector operations
and loops in your update() function. E.g. Run some vector operations, then a for-loop, then

29

more vector operations, etc. Don’t make assumptions about which provides better performance.
The Multiverse Designer reports CPU and memory utilization in real-time so you can iterate and
observe the performance impacts of different strategies.

For-Loop Processing
The boilerplate generated update() includes a for-loop over the samples in the input audio
block.

for (auto idx=0; idx<AUDIO_SAMPLES_PER_BLOCK; idx++) {

float sample = (float)inputAudioBlock->data[idx];

// do your processing ...

// last task should be to apply the mandatory volume control

sample = sample * m_volume;

inputAudioBlock->data[idx] = (int16_t)sample; // we re-use the input audio block

}

This code example steps through each audio sample in the audio blocks data[] array and
processes each one, one at a time. This is an excellent approach when each sample needs a
number of different operations performed, or if the result for one sample depends on other
samples or some other criteria like thresholding.

Vector Processing
Vector processing takes advantage of the DSP optimized math operations in the included
CMSIS DSP Library. It’s often best to get your audio effect working correctly first, using the
simplest code (often for-loops), then later perform one optimization strategy at time (such as
converting to vector processing) and check to make sure it will work properly, and if it actually
results in any meaningful performance improvement.

For more details see the section Using the Keil CMSIS Accelerated Library (arm_math.h). Note:
the 16-bit integer audio data is compatible with the q15 datatype in the DSP library

Some commonly used examples of vector processing from the CMSIS Library include:
● void arm_float_to_q15 (const float32_t *pSrc, q15_t *pDst, uint32_t

blockSize)
● void arm_q15_to_float (const q15_t *pSrc, float32_t *pDst, uint32_t

blockSize)
● void arm_mult_f32 (const float32_t *pSrcA, const float32_t *pSrcB,

float32_t *pDst, uint32_t blockSize)
● void arm_add_f32 (const float32_t *pSrcA, const float32_t *pSrcB,

float32_t *pDst, uint32_t blockSize)

30

For example, to convert the audio block int16_t data to float in a heap buffer you would do
the following:

// In your constructor allocate the necessary buffer

dataBuffer = (float*)malloc(AUDIO_SAMPLES_PER_BLOCK * sizeof(float));

// in update(), we can use vector processing to convert our input block

// from int16 to float.

arm_q15_to_float((const float32_t*)&inputAudioBlock->data[0],

dataBuffer, AUDIO_SAMPLES_PER_BLOCK);

Transmit Output Audio
Once your you have finished all your audio processing magic, the last thing you will do before
ending your update() function is

● Transmit the final audio block(s) on the appropriate output channel(s)
● Release the necessary audio blocks that are no longer needed.

The transmit() function takes in an audio_block_t* pointer, and optionally the output
channel number to transmit on. If the channel number is not provided, it is assumed to be
channel 0.

transmit(outputAudioBlock); // Ex. 1, transmit on channel 0

And for a stereo-output effect,

transmit(outputAudioBlockLeft, 0);

transmit(outputAudioBlockRight, 1);

Any audio blocks that have either been received or allocated, must eventually be released. In
most cases, you will release a block of audio in the same update() call as the one that
obtained it. However, in some special cases you might release an audio block in a subsequent
call. A delay is a good example of this scenario, where you might keep a queue of block
pointers, pushing the new block in and popping the oldest out from the queue during each
update() call.

It should be obvious that you do not release an audio block until you are done with it. This
includes audio blocks you transmit as an output. Transmit first, then release. Typically you
release all of your audio blocks as a group at the end of your update() function.

31

release(inputAudioBlock);

release(outputAudioBlock);

Putting It All Together
Below is a complete code example of the update() function that is provided by the boilerplate
code as a starting point. This code is a working example of a volume effect (basically a volume
pedal) with all the required sections.

It is a great way to start with something that can compile and run on the hardware immediately
(even if all it does is change the volume). As you begin to write and develop your audio effect,
it's a good idea to occasionally build and test on the hardware to ensure you don’t have compile
or audio issues. If you do, it will be easier to find the problem as you know it will be related to
changes since the last test run.

void VolumeEffect::update(void)

{

audio_block_t *inputAudioBlock = receiveWritable(); // get an input audio block

inputAudioBlock = m_basicInputCheck(inputAudioBlock, 0); // perform pre-made checks

if (!inputAudioBlock) { return; } // if check returns nullptr, return

// You must call m_updateInputPeak() before processing the audio

m_updateInputPeak(inputAudioBlock);

// DO AUDIO EFFECT PROCESSING

for (auto idx=0; idx<AUDIO_SAMPLES_PER_BLOCK; idx++) {

float sample = (float)inputAudioBlock->data[idx];

// do your processing ...

// last task should be to apply the mandatory volume control

sample = sample * m_volume;

inputAudioBlock->data[idx] = (int16_t)sample;

}

m_updateOutputPeak(inputAudioBlock); // must update output peak before transmit

transmit(inputAudioBlock); // transmit the modified audio block

release(inputAudioBlock); // release the audio block

}

32

Developing Audio Effect - libAviate Library
Effect developers gain access to the Multiverse Framework via the libAviate Library. In addition
to the AudioEffectWrapper class inherited by all audio effects, it also provides access to the
external SRAM and a few convenience classes and functions that are useful building blocks
when creating effects.

For details on external SRAM, see the section Using External SRAM.

For details on the EFX_PRINT() macro and debugging in general, see the section Debugging
Your Code.

The library API documentation for libAviate can be found online at:
www.aviateaudio.com/manuals/multiverse/libAviate/html/namespaceAviate.html

The library provides classes for:
● AudioDelay class for delaying audio. Useful for delays, chorus/flangers, etc. This is

used in the reference example Blackaddr Audio Analog Delay.
● IIR biquad filters for integer and float. This is a wrapper around the cascadable CMSIS

DSP biquads.
● Parameter automation and parameter Sequencing. This class allows you to program a

value controller that can automate effect control changes when triggered.
● LowFrequencyOscillatorVector - programmable LFO. This is used in the reference

example Blackaddr Audio Tremolo.
● …plus more…

The library provides functions for:
● Converting between time (milliseconds) and number of samples based on the audio

sampling rate.
● Alpha blending and applying gain to audio_block_t using CMSIS DSP acceleration.
● Fast (acceleration) implementations for log2(), log10()
● Converting absolute values to dbFS
● …plus more…

Logo, Pedal Icon and Pedal Base Image
Adding graphic files to your EFX is completely optional. Your EFX will be fully functional and
controllable without adding any graphics as defaults for all of these are provided. In fact, it’s
probably a good idea to get your audio effect programmed and working as you want before
spending effort on graphics customization.

33

http://www.aviateaudio.com/manuals/multiverse/libAviate-v1.0.0/html/namespaceAviate.html

For full details on how to use custom graphics with your EFX, refer to the section Using
Graphic Files in the Effect Creator Users Guide.

Logo
If no custom logo is provided, the default Multiverse Community logo is used. Custom logos are
probably the easiest graphics to create as there are lots of free logo generators on the Internet.
We highly recommend you consider creating a custom logo for yourself, even if that’s the only
graphics you add.

Pedal Icon
If no custom pedal icon is provided, the default icon will be used. The disadvantage here is if
you have a lot of EFX you write yourself, they will be harder to distinguish in the Designer
application’s Effect Library as they will all look the same. Check the Multiverse Graphics Gallery
(see aviateaudio.com) for some premade ones to add some variation if you do not want to
provide your own.

Pedal Base Image
This image is the high resolution artwork for your effect pedal and is completely optional. If no
image is provided, your EFX will use the ARRAY view to arrange your controls.

EFX Development Checklist
The following is a handy checklist of tasks when creating an EFX.

Effect Creator - Mandatory Fields
Effect Name
Developer/Company
Effect Short Name
Effect Description
Version
cppClass
Num Inputs / Outputs

Effect Creator - Optional Fields
Logo graphic
Pedal icon graphic
Pedal base image graphic

Effect Control List - Mandatory Fields
All necessary controls added
Control name
Control shortName

34

http://www.aviateaudio.com

Control description
Control type
min/max/def/step

Effect Control List - Optional Fields
Icon graphic for controls
Xpos, Ypos, scale
SVL ticked for controls that should not show value label
Enums for selection encoders
IS ticked for switches that report status with inverted polarity

Effect Creator General
Build type is set correctly. Developer/Debug vs. Release.
Project is saved to desired location
Boilerplate files have been generated

Source Code Tasks
Public header file has all necessary custom #includes added
Public header file has all necessary public/private types and members added
Primary cpp file has all parameter update functions edited
Primary cpp file has input check function
Primary cpp file has input peak update function called
Primary cpp file has output peak update function called
All files have declared types, variables and functions inside the custom effect
namespace
No variables or memory declared outside of class context (this prevents multiple
instances of your effect. See details here.

Performance Tips and Floating-Point
The Multiverse hardware comes with a powerful 600 MHz Cortex-M7 processor, with DSP
acceleration instructions. This microprocessor is capable of a significant amount of audio
processing, but you still should aim to be as efficient as possible in terms of CPU processor
usage and memory utilization. The fewer resources your audio effects need, the more likely they
will show up on other players' virtual pedalboards!

Multi-instance vs. Singleton Effects
One important thing to strive for when developing your audio effects is to ensure the user can
put multiple instances on their pedalboard if they wish to. If all variables and memory are part of
the class, then this is automatically achieved. However, if you create variables that live outside

35

the class (we can consider these global, even though they are not technically global as long as
they are in your namespace), then if a user creates multiple instances of the effect, both
instances will try to use the same global variables/memory and you will likely get audio
corruption or other errors.

An effect that can be instantiated once and only once in a given pedalboard preset is called a
singleton. In some cases, a singleton might be pragmatic, or even necessary. An example
might be a very complicated effect that uses up a huge amount of CPU or RAM resources. In
such rare cases, the hardware might not support two instances anyway.

If an effect is being developed for personal use only, and is not intended to be shared with
others or published to the Multiverse Web Store, then having a singleton might also be
acceptable since it is for personal use and you are aware of the limitation.

In general, we recommend avoiding any global-like variables or memory structure that would
force an effect to be a singleton.

Using Floating-Point
The Teensy AudioStream class is based around 16-bit integer audio. 16-bit audio has long
been known to be more than enough bits for audio transport. Audio transport refers to moving
audio around, or for playback. This is why audio CDs use 16-bit integer audio samples.

However, 16-bits is often insufficient for audio processing. This is because repeated math
operations can accumulate rounding errors if done entirely in the 16-bit domain. Luckily the
Cortex-M7 has a built-in FPU and in particularly is very fast at integer ←→ float conversions.

Understanding the compute cost of parts of your effect is always helpful when it comes to
optimizing for performance. We can use the default Effect Creator effect (Volume Pedal) to
easily test the performance cost of int16_t to float conversion and back.

The VolumePedal example has a loop that converts the int16_t sample to float, does a
floating-point multiply, then converts the result back to int16_t to store the same. By turning
the bypass control on and off, and monitoring the change in CPU load reported in the Designer
application, we can see the cost of these two conversions plus 1 multiply. The difference
between bypass and not bypass can be seen to be about 0.3% CPU load.

In other words, the compute cost to convert the incoming 16-bit audio blocks to float, and back
to 16-bit after your algorithm is done is less than 0.3% of the CPU because that also included an
FPU multiply. This is so low, you will find most effect developers just always do all of their
processing in floating point.

36

Audio effect developers can also choose to use dithering techniques when going back to 16-bit
if they are concerned about quantization noise. This significantly reduces or eliminates
quantization distortion in the audible signal content in exchange for a small amount of added
random (e.g. white) noise. This added digital noise is typically far less than the other sources of
overall noise in an analog sound system so it's virtually imperceptible.

So why not use floating-point for the audio transport as well? The goal for the initial launch of
Multiverse is to be as easy to use as possible, and one part of that goal was to leverage the
familiarity and community support around the standard Teensy Audio Library interface
(AudioStream) which uses 16-bit transport. And as you have seen, using floating point for
processing inside the update() loop is easy and very low compute cost for conversion.
Non-standard floating-point transport extensions have been developed (OpenAudio) by
community members, and we may choose to add floating point transport to Multiverse in a
future release.

Audio Sampling Rate
In the previous section, we covered how the audio transport between audio effects in the
Multiverse backend uses 16-bit audio samples. We also covered how audio processing is very
easily done in floating point.

There is a similar situation with regards to sampling rate. The Multiverse audio backend runs at
a 48 KHz sampling rate. This is more than adequate for audio transport as frequencies above
20 KHz cannot be heard by humans anyway. Any appropriately filtered 20 KHz audio signal is
perfectly represented digitally by twice the frequency, hence why audio CDs were 44.4 KHz.
Having a higher audio sampling rate doesn’t add more quality because audio frequencies above
20 KHz are not audible by humans. If we release a Multiverse specifically for dogs who can hear
higher frequencies, we may consider increasing the transport rate!

However, just like 16-bits not being enough for audio processing due to accumulated
rounding errors, 48 KHz is not enough for audio effects that require highly non-linear
processing such as distortion and saturation effects.

This is because the math required to model these non-linear effects tend to create intermediate
higher frequency harmonics. These harmonics are often above the 20 KHz humans can hear,
but they still interact with other frequencies and fold back into the audible range in ways that
impact the final sound. How high in frequency these generated harmonics will be determines
what oversampling rate you need to prevent aliasing during computation.

Thus, when creating such non-linear, high harmonic content effects, in addition to conversion to
float, you must also upsample (called oversampling). For example, a typical Multiverse audio
block is 128 samples. Upsampling simply means interpolating new samples between the
original ones. A 2x upsample would yield a new 256 sample audio block from one originally

37

https://github.com/chipaudette/OpenAudio_ArduinoLibrary

having 128 samples. There is lots of information on the web about various techniques for
upsampling audio which is outside the scope of this document.

Most audio effects (delay, modulation, EQ, etc.) do not generate high-frequency harmonics and
do not benefit from upsampling. By keeping the transport stream at a lower sampling rate, it
leaves more compute power available for doing more audio processing, and also leaves more
compute power for those very complex distortion and gain effects which can upsample when it’s
actually needed, and is beneficial to audio fidelity. Basically, you get the best of both worlds with
lower transport sampling rates and using oversampling in your update() processing on an
as-needed basis.

Audio Sampling Rate Summary
Multiverse transports audio between effects using 16-bit, 48 KHz audio. It is very common to
convert to floating point and back to integer inside your update() loop as this actually requires
very little compute power.

For non-linear effects that generate harmonics, it is recommended to upsample the audio block
inside your update() loop to whatever ratio of oversampling is needed for your algorithm, then
downsample back to the original to transmit to the next effect.

Using the Keil CMSIS Accelerated Library (arm_math.h)
Multiverse includes the ARM CMSIS DSP Library, v1.5.1 (part of CMSIS 5.0.1) built in. Note:
newer versions of CMSIS DSP are released that are actually less memory efficient then the
version included. This is the reason for keeping the version at 1.5.1.

The DSP library has pre-optimized math functions that make use of the Cortex-M7 accelerated
DSP assembly instructions.

The library contains math functions of particular interest to audio effect developers including
● vector operations like add, subtract, multiply that are great for working on the data arrays

in audio blocks
● sin and cos operations
● square root operation
● FIR and IIR biquad filters
● FFT

Most analog filters involving resistors, capacitors and inductors can be mathematically described
by cascading stages of biquad filters. This is the most common method of audio filtering in
digital signal processing. Filter design is outside the scope of this guide but a good reference is
the well known Audio EQ Cookbook.

38

https://www.keil.com/pack/doc/CMSIS/DSP/html/index.html
https://www.w3.org/TR/audio-eq-cookbook/

Memory Types (RAM0 and RAM1)
The Cortex-M7 processor has 1 MiB of very fast on-chip RAM. The 1MB of RAM is split into two
512 KiB banks called RAM0 and RAM1. RAM0 is special because the CPU is capable of
executing program code from here instead of using the slower external flash the program code
is stored in during upload.

Different types of data and memory are stored/allocated in either RAM0 or RAM1. Knowing what
goes where can help you write code that is efficient with memory resources.

RAM0 Contents
The following are stored in RAM0:

● All executable program code
● Initialized and uninitialized variables
● stack memory

The compiler will first allocate the needed memory for program code and variables in RAM0. All
remaining memory in RAM0 becomes the primary stack. Audio effects that store large amounts
of data on the stack will consume more RAM0.

RAM1 Contents
The following are stored in RAM1:

● DMA buffers. The Multiverse Framework uses DMA low-overhead data movement
between the external CODEC (audio data) and external SRAM (general user data).

● static user variables and arrays defined with the attribute DMAMEM can be forced into
RAM1 where without this attribute they would have ended up in RAM0.

● heap memory

The compiler will first allocate all the needed memory for DMA buffers and variables. All
remaining memory in RAM1 becomes available as heap memory. Audio effects that allocate
large amounts of data from the heap will consume more RAM1.

// Create a float audio buffer on the local stack in RAM0

void foo() {

float tempBuffer[AUDIO_SAMPLER_PER_BLOCK_MAX];

// ...

}

// Create a float audio buffer on the heap in RAM0

float* tempBuffer = (float*)malloc(AUDIO_SAMPLER_PER_BLOCK*sizeof(float));

39

// Create a float audio buffer in the DMA memory in RAM1

DMAMEM float tempBuffer[AUDIO_SAMPLER_PER_BLOCK_MAX];

Audio Block Buffers
The buffers used with AudioStream functions like receiveReadOnly(),
receiveWritable(), allocate(), release() are all buffers that come from a fixed sized
static pool managed by the MVF audio backend. These buffers are in DMA accessible memory,
so they are part of the RAM1 allocations.

Avoiding Memory Copies
Any time you copy data you are using at least two machine instructions, a LOAD and a STORE.
Ignore cache misses and just looking at instructions, compare that to many math operations are
a single instruction like ADD, or MUL. In other words, copying data can be more CPU intensive
than the math in some circumstances.

Thinking carefully about when you can operate on data in-place, and when you really have to
make another copy of the data, can have a significant impact on your CPU utilization. In
general, it’s best to get your algorithm working first, then start trying to optimize it by reducing
data copies. Eliminating a copy doesn’t always result in improved efficiency. Sometimes the
compiler has already optimized the copy for you.

What we can say is that failure to be mindful of how often you copy data is more likely to result
in your algorithm not running as efficiently as it could.

Using External SRAM
The Multiverse hardware contains an external 8 MiB SRAM that can be used storing large
amounts of data that would otherwise consume too much on-chip RAM.

The maximum transfer speed of the external SPI SRAM is about 4 MiB/s. External SRAM
access is much slower than fast on-chip RAM, so the data to and from the SRAM is handled by
background DMA processes. This means that instead of tying up the entire CPU while a data
transfer is in progress, a background transfer request is made. The CPU is free to perform other
tasks while the DMA transfer continues in the background. However, in order for this to be
efficient, your audio effect must be doing productive CPU work while waiting for the DMA
transfer to complete. The easiest way to do this is prefetching. You can do this by requesting
data in one update() call that you won’t need until the next time update() is called. This is
called data scheduling. In other words, you are requesting data one update() call in advance.
This allows the CPU to process one round of every EFX’s audio block before you actually need
the transfer to have completed.

40

Some good examples where a prefetch strategy works are effects that require audio delay, or
playback (loopers, etc.) as you can easily predict exactly which audio data you will need to
retrieve before you need it.

In order to use the external SRAM, you will use two classes, SramManager and SramMemSlot.

The general steps to request a slot (block) of external SRAM are:
1. #include “Aviate/SramManager.h” in your public header file.
2. Add a pointer to SramMemSlot to your class’s private variables.

Aviate::SramMemSlot* m_slot = nullptr;
3. Check if SRAM is ready with isSramReady() and ensure the number of available

bytes meets your needs with SramManage::availableMemory().
4. Use m_slot = SramManger::requestMemory() to request a memory slot. You can

request a number of bytes, or in milliseconds of audio. Refer to the libAviate API for
details.

Once you have a valid memory slot, you can use various functions to read, write or zero data to
the memory. Your memory block will always start with position 0, and go up to your requested
size.

To keep the DMA transfer overhead low, only one outstanding transfer is permitted per memory
slot. Use the functions isWriteBusy() and isReadBusy() to determine if your request has
finished or is pending. Once you reach the point in your code where your requested data must
be used, you have no choice but to busy loop if it is not ready, wasting CPU cycles. This is why
scheduling your requests in a previous update() call if possible significantly reduces the
likelihood you will need to waste cycles on waiting.

// Example: wait until previously requested write transfer is complete

before proceeding

while (isWriteBusy()) {} // Loop until needed data is ready.

You can also perform data transfers as raw bytes, or as 16-bit integers which is handy when
working with transport stream audio blocks. There are also ‘*Advance’ functions that will
automatically advance the write and read pointers in the memory slot for you. Use
setWritePosition() and setReadPosition() to set the starting points, then use advance
functions for all read/write access. This is very handy when you want your memory to act as a
circular buffer.

For full details, please view the SramMemSlot class in the libAviate Library API documentation.

41

Expensive Math Functions
The Cortex-M7 is a very powerful microcontroller with excellent floating point and DSP
instructions. However, certain types of math functions are going to be compute intensive no
matter what.

Some of these functions include
● pow(), exp(), and log()
● sin(), cos()
● sqrt()

Using compute intensive math as part of a parameter update (something that doesn't happen
very often with respect to the audio rate) is unlikely to be a serious problem.

Likewise, using one of these functions a few times per update() call is probably okay too.
Where you will run into problems is running these compute intensive functions once, or more
than once for every audio sample. This can very quickly use up all the available CPU time.

In instances where you do need per-audio-sample calculations, consider if there are
approximations available that are much simpler to compute, but still precise enough for your
needs.

Example 1 - x^4 is a reasonable approximation to exp() in certain circumstances. See this Ref.

Example 2 - sin() and cos() can often be replaced with a precomputed lookup table of some
reasonable size (say 512 entries) then use linear interpolation between the samples. This is
typically how efficient LFOs work for modulation effects.

Avoiding Audio Pops and Clicks
The difference between a truly professional sounding audio effect and an amateur one can
sometimes come down to distracting pops and clicks whenever changing controls or
parameters.

As discussed earlier, the transport audio rate for Multiverse is 48 KHz, and you are of course
free to upsample to higher sample rates (lower sample period) when needed in your update()
function. Regardless of what rate you are at, you still must ensure at all times that you are not
violating the Nyquist Frequency.

The Nyquist Frequency is defined as half your sample rate. Meaning you can’t have any audio
content containing any audible frequencies (spectral content) above this. The problem is that in
many cases, simply adjusting a control parameter, even a volume knob, between to discrete
values will likely result in a small, instantaneous jump in the audio signal that will result in a

42

https://www.dr-lex.be/info-stuff/volumecontrols.html#ideal3

small audible tick. If it's a more moderate jump, you’ll get a solid click sound. If it’s a big jump,
you’ll get a loud pop and your loudspeakers won’t be very happy with you.

The truth is most users don’t mind some subtle ticking as they turn a control knob. They are
usually not overly concerned with perfect audio while they are making knob adjustments to their
effect. But if the parameter is intended to be controlled by something like an expression pedal,
the issue needs to be addressed. Nobody wants a wah pedal that ticks whenever the treadle is
moving.

In cases like this it’s best to add either some simple filtering, or some slew-limiting to the
parameters value to ensure they are changing slowly enough to avoid any Nyquist violations in
the output audio signal.

Example 1 - Filtering

Filtering can be done with as little as two additional variables for a given parameter. The set
value, and the previous value. You can create a 1st order IIR filter by doing an alpha-blend
between the new value and the previous value to calculate the set value. A typical value for
alpha might be 0.9. The more you blend the previous value, the slower the control will respond.
The more you blend the new value, the more snappy the control will be. Find a value that is a
good balance between responsiveness without creating ticking sounds when the control is
changed rapidly.

𝑠𝑒𝑡𝑉𝑎𝑙𝑢𝑒 = 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑉𝑎𝑙𝑢𝑒 * 𝑎𝑙𝑝ℎ𝑎 + (1. 0 − 𝑎𝑙𝑝ℎ𝑎) * 𝑛𝑒𝑤𝑉𝑎𝑙𝑢𝑒.

Example 2 - Slewing

With this method, when a new param update comes in, rather than updating the real parameter,
update a ‘target’ variable instead. Then, in your audio loop, if the current value is not equal to
the target value, increment (or decrement) in small steps towards it each sample without
overshooting. This causes the parameter to change slowly and smoothly towards the target
value eliminating ticking or clicking in most situations.

In the code example below, let’s assume the parameter currentValue normally ranges from
0.0 to 1.0. With a maximum step of 0.001 per audio sample, it would take a minimum of 1000
audio samples to slew from its min value to its max value. Note that this example is purely
illustrative. You would need to find a good step value that ensures param changes are slow
enough to prevent ticking, but fast enough to feel responsive.

constexpr float stepValue = 0.001f;

for (int i=0; i < AUDIO_SAMPLERS_PER_BLOCK; i++) {

float diff = (targetValue - currentValue);

if (abs(diff) > stepValue) {

43

if (diff > 0) { step = stepValue; } // incrementing

else { step = -stepValue; } // decrementing

} else { step = diff; }

currentValue += step;

// do audio processing ...

}

Pop and Click Summary
Think of yourself as a bank teller, and there is an armed robbery in progress. You want to reach
down to press the silent alarm button as quickly as possible, but you don’t want to startle the
robbers with any fast movements. So, you do everything just slowly enough not to draw
attention.

Your audio waveform is the bank teller and Nyquist is the armed robber. No fast movements!
Parameter changes should be slow and smooth, but still responsive.

Debugging Your Code
When connected via USB to your computer, a USB serial device will appear in your system.
This serial terminal can be used to print console messages the same way you would on a
desktop console application.

Multiverse supports the Teensy/Arduino Serial class object. This object can be used to access
printf() functionality. However, attempting to print via this object when no USB serial is
connected, or while no terminal program is receiving the data can result in program error, either
due to a nullptr, or overflowing a serial device buffer.

In order to use the feature safely, you must wrap it in the EFX_PRINT() macro. This macro will
ensure the print statements only occur in a build of type ‘Debug’. Builds of type ‘Development’ or
‘Release’ will not execute contents passed to it.

Directly calling Serial methods in a Release build will result in an EFX being rejected from
submission to the Multiverse Web Store due to the risk of program crash.

Some examples of its usage are shown below. Note: in the underlying serial library, a newline
character \n does not automatically include the carriage return, so you must provide both a
newline and carriage return with \n\r.

#include "Aviate/EfxPrint.h" // include this in your primary .cpp file

44

// you can safely leave EFX_PRINT() statements in your build. They will

// be removed from Developer and Release builds and retained in Debug.

// Make sure you have a serial terminal connected when using them in

// Debug builds to avoid causing buffer overflows on the hardware.

EFX_PRINT(Serial.printf("Hello Worldn\n\r"));

EFX_PRINT(Serial.printf("The volume is set to %f\n\r", m_volume));

Debugging with Arduino/Teensyduino
Because Multiverse hardware can also be directly used with the Arduino/Teensyduino IDE, you
can also develop the main contents of your audio effect in those environments if you wish to
take advantage of community support with debugging, then port into the Multiverse Framework
when you are ready.

For GDB debugging, a community library for Teensyduino is available to support this when
using Arduino/Teensyduino directly with the hardware.
https://github.com/ftrias/TeensyDebug

Security and Protecting Your Source Code
Audio effect developers who wish to keep their work proprietary and confidential should have a
good understanding of what practices they can use to protect their work.

This focuses primarily around two areas:
● How to optimally separate code between private source files and public header files
● How Developer and EFX Product keys work

Source Files
Private .cpp files are not packaged in your EFX as readable source code. Only the compiled
object file is. However, the public header files in your ‘inc’ directory are included as necessary
plain-text source headers.

Public headers should only contain the bare minimum code needed by that file. Algorithms and
implementation code (function bodies) should always be in the private .cpp files. You should
also avoid putting any comments revealing your secret sauce in the public headers.

Even if you choose to publish your audio effect source code as open-source on the Internet, you
should still follow the above guideline of separating public and private as an API programming
‘good practice’.

45

https://github.com/ftrias/TeensyDebug

EFX Builds
Multiverse uses various keys to protect the work of audio effect authors.

Developer / Debug Builds
When developing an effect, you will be creating a “Developer Build” package. This package will
be made using your unique Developer Key. Once built, this EFX will only run on your
particular Multiverse Developer Edition unit. It will not run on other Multiverse Developer
units (they would require a different developer key).

If you wish to run your Developer Build EFX on different hardware units, you must create a
separate EFX build for each unit, using the correct Developer Key for that unit. If you wish to
share your EFX such that it can run on units you do not have the key for (i.e. share your code
with other developers), you must share your project files and source code. The owner of any
Developer Edition can then use their own developer key with your project files to build an EFX
that runs on their hardware unit.

Release Builds
In order for you to provide a compiled packaged EFX for others to generally use, you set the
build type to “Release” when compiling and packaging the EFX. A release build has no keys
associated with it and is not usable on any hardware until it has been properly keyed for the
target unit. When the release EFX package is ready and finalized, you submit it to the
Multiverse Web Store for others to download. As part of their purchase they will receive a valid
EFX Product Key to enable the EFX.

You have the choice of either making your audio effects free (a Web Store price of $0.00), or
you may set a non-zero price for your premium effect. In either case, when a user completes a
purchase (even a $0.00 no-cost purchase), Aviate Audio will generate the necessary EFX
Product Key for the buyer specific to their registered hardware unit. This helps to protect the
rights (including revenue rights) of the audio effect developer.

Disclaimer
No software or hardware security is 100% secure. Security is applied in layers on a best
effort basis in order to discourage and reduce the ease of unauthorized use. However,
the risk of unauthorized use cannot be completely eliminated. By distributing an EFX
package of any build type, in any form, the developer/author is accepting these risks. The
developer/author is responsible for their own due diligence in understanding these risks
before publishing or releasing any work. Algorhythm Technologies Inc. (a.k.a Aviate
Audio) is not responsible for any loss or damages related to the distribution of the
developer/author’s work or the unauthorized use of that work by others.

46

References
Arduino - https://www.arduino.cc/
Teensy by PJRC - https://www.pjrc.com/teensy/
Teensy Audio API - https://www.pjrc.com/teensy/td_libs_AudioNewObjects.html
GCC - https://gcc.gnu.org/gcc-5/

47

https://www.arduino.cc/
https://www.pjrc.com/teensy/
https://www.pjrc.com/teensy/td_libs_AudioNewObjects.html
https://gcc.gnu.org/gcc-5/

Glossary
Application Programming Interface - the various data types and functions provided by Multiverse
and Teensy and allows you to program effects on the platform.

API - see Application Programming Interface.

Arduino - an open-source electronics and software ecosystems focusing on easy to use
prototyping hardware and software tools. Generally very low compute capability, with the
exception of the Arduino-compatible Teensy.

.efx - the file extension of package audio effects for Multiverse.

.png - Effect Creator only supports Portable Network Graphic (PNG) type for image files.

.prj - the file extension for Effect Creator project files.

Build - in order to use your collection of pedalboard patches on the hardware you must first build
them. This creates a custom program for the Multiverse Pedal.

Category - all EFX are assigned a category so they can be easily filtered in the Effect Library.

Comment Markers - special C++ comments in the generated public header file that indicate
areas where the developer can safely insert custom code without it being overwritten the next
time the boilerplate code is updated.

Control Editor- an area in the Effect Creator application that contains a scrollable list of Effect
Control Blocks.

Control Entry - see Effect Control Block.

Core - the base software used by the Multiverse pedals and all EFXs is called the ‘core’. A
version of this is built into the Multiverse Designer / Effect Creator software.

Debug Build - one of the possible EFX build types. This is the same as a Developer build,
except the EFX_PRINT() macro is enabled. See the Debugging Your Code section in this guide
for details.

Designer Application - then primary software application used to build virtual pedalboards and
program them to the Multiverse pedal.

Developer Build - one of the possible EFX build types. A developer build is meant for testing,
and will only run on the Multiverse Pedal it is keyed for. For other types, see Release Build and
Debug Build.

48

Developer Key - every individual Developer Edition of the Multiverse pedal has a Developer Key
in addition to a Device Key. The Developer Key is used with Effect Creator to compile EFX
packages.

Developer Key Table - a list of all UID / Developer Key pairs installed in the application. You can
select which particular unit you are targeting for a Developer Build using this table.

Device Key - every individual Multiverse pedal has a unique Device Key. This key is used for
authentication and is required to build any pedalboards for the Multiverse.

Device Key Table - a table containing the device keys for all the Multiverse pedals you own.

Effect Control - knobs and switches on an effect are referred to as ‘effect controls’.

Effect Control Block - an entry in the Control Editor, containing the definition for a single user
control on an effect.

Effect Control Window - the GUI for real-time control of EFX parameters in the Designer
application.

Effect Creator - an application used to compile and package an audio effect into an EFX file.

Effect Creator Quick Start Guide - an abbreviated guide for using the Effect Creator tool,
covering the bare essentials.

Effect Creator Users Guide - a comprehensive users guide / manual covering all aspects of the
application.

Effects Library - a sub-panel located on the right-side of the Designer application. This is where
the effects you have downloaded are located.

EFX - The name given to the effect packages you use with the Multiverse. Their file extension is
.efx.

EFX Editor - this area of the Effect Creator application window contains details about the effect
such as Developer / Effect name, effect description, number of inputs/outputs, and more.

EFX Key - a.k.a. ‘Product’ key. Each EFX downloaded from the Aviate Audio Web Store will
require an EFX key to run on the Multiverse Pedal.

Filmstrip - in the context of graphic files, a filmstrip is a single graphic file containing individual
pictures of all possible positions (frames) for an effect control.

49

EFX Package - see EFX.

Enum - a command separated list of strings used to assign names to the different positions on a
Selection Encoder.

Frame - in the context of graphic files, a frame is one picture of an effect control in one particular
position. A graphics file will typically contain all possible positions (frames) as a filmstrip.
Import - before a downloaded .efx will appear in the Effect Library, it must first be imported by
clicking the IMPORT button and selecting the file.

Hardware Unique Identifier - see UID.

libAviate Library - the library that provides the developer API for using the Multiverse
Framework.

List View Mode - a mode in the Multi-function Viewport. This view lists public header files and
private source/headers files in the EFX project.

Multi-function Viewport - the area on the right-hand side of the Effect Creator application. Can
be used to display views of the EFX pedal, project files and build messages.

Multiverse - a programmable effects pedal.

Multiverse Developer Edition - a premium version of the Multiverse hardware, this version
supports compiling audio effects from source building EFX packages to run on the unit, without
needing to publish them to the Multiverse Web Store.

Multiverse Developers Guide - a document providing development and debug details for EFX
creators.

Multiverse Framework - defines the construction and interfaces for EFX packages, which can be
used to plug into the Multiverse real-time audio processing system.

MVF - See Multiverse Framework.

Open-platform - an open platform is one on which anyone is free to develop software. An
open-platform is not necessarily open-source though.

Open-source - software that makes all source code available to the user for free and has use
and distribution rights specified in the software license.

Pedalboard Designer - a.k.a just ‘Designer’. This is the primary application used for building
signal chains and programming them to the Multiverse.

50

Patch - see Preset.

Preset - stores all the configuration information for a given virtual pedalboard in the Designer
application including effects used, their routing, and their individual settings.

Product Key - see EFX Key.

Program - in order to use your collection of pedalboard patches on the hardware, after building
you must upload (program) them to the Multiverse pedal via USB.

RAM0 - the CPU uses this RAM region for program code, stack and global variables. See also
‘RAM1’.

RAM 1 - the CPU uses this RAM region for DMA memory and program heap. See also ‘RAM0’.

Release Build - one of the EFX build types. This is the type required in order for an EFX to be
published to the Multiverse Web Store.

Selection Encoder - a control type used to select between a finite number of options, as
opposed to a continuously variable control like a pot.

Singleton - an effect that can be instantiated once and only once per pedalboard preset.

Teensy - a family of Arduino-style microprocessors that focus on maximum performance.

Teensyduino - the Teensy specific extensions to Arduino to support Teensy processors.

Teensy Audiostream - an abstract C++ class that provides the interface for streaming audio
between effects in the Multiverse Framework.

UID - Hardware Unique Identifier. A long string of letters and numbers used to uniquely identify
your Multiverse unit.

Virtual Pedalboard - the area in the Multiverse Designer application where you arrange and
connect your EFXs into patches/presets.

WebKnobMan - online (free) web tool for creating filmstrip graphic files for custom audio
interfaces including knobs, switches, meters, etc.

Web Store - the online marketplace to download Multiverse effects.

51

