

LTspice Model LED Driver ROHM BD18364EFV-M

Model Information

Model	A macro model					
Call Name	MDC_BD18364EFV-M_LT					
	1:IS 2:GL 3:BOOT 4:VIN 5:EN 6:VDRV5 7:ADIM 8:RT 9:COMP 10:GND 11:MONIAD					
	12:FAULT_B 13:CS 14:RX 15:TX 16:CH0 17:CH1 18:CH2 19:CH3 20:CH4 21:CH5					
Pin Assign	22:CH6 23:CH7 24:CH8 25:PGATE 26:SNSN 27:SNSP 28:PCLIM 29:PSW 30:PGND					
	31:EXP-PAD					
	32-39:LEDEN[0:7] 40-47:LEDFC[0:7]					
File List	Model Library MDC_BD18364EFV-M_LT.lib					
	Model Report MDC_BD18364EFV-M_LT.pdf(this file)					
Verified Simula	tor Version LTspice XVII					
Note	Can be controlled by parameters and analog terminals instead of UART					

Using 。OPTION Method=Gear is highly recommended

References

The information which was used for modeling is as follow:

[Data Sheet]

Date/VersionProduct nameCompany name

2022.05.23 Rev.001/TSZ02201-0T1T0B400430-1-1 BD18364EFV-M ROHM Co., Ltd.

[Characteristics listed] • Characteristics

> PWM Dimming Analog Dimming LEDFC Control

Simulation Condition

This table shows the range of evaluated simulation range that was not occurs any convergence problems in this area.

Item	Condition	Unit
Temperature	25	deg C

O:Implemented

× : Not Implemented

Model Functions Table	RANK=1	— : Not applicable
Functions	RANK	Implemented
Control Method(PWM,PFM)	1	0
Enable Function	1	0
Soft Start	1	—
Line Regulation	1	—
Load Reguration	1	—
Synchronous External Oscillation	1	—
UVLO	1	0
Line Transient	2	—
Load Regulation	2	—
Light Load Current Mode	2	—
Spread Spectrum	2	—
Over Current Protection	2	—
Over Voltage Protection	2	—
Forard/Flyback Other Device in Circuit	3	—
Brown IN/OUT Function	—	—
ZT Pin OVP Function	—	—

controlled by parameters and analog terminals instead of UART

Register	Descriptions	Implement	Parameter	Terminal	Value
SWRST	Reset digital circuit, enabled functions	×			
SYSSET1	Set BoostEnable,SSCG、VINDIM , VINDIM Implement	Δ	VINDIM		0-7
SYSSET2	Set OVPSET,COMPDIS、LEDOPSET , OVPSET Implement	Δ	OVPSET		0,5,10,15
LEDOPSET	Set LED Open Detect	0	LEDOPSET[0:7]		0,1
SYSSET3	Set FPWM,PHEN	0	FPWM[0:7]		0-15
		0	PHEN		0,1
ADCTRL	Unknown	×			
ADSTORE	Unknown	×			
рсрімн	Set DCDIM	0	DCDIM		1-1024
DCDIML	SetDCDIM,OCLIM	Δ	OCLIM		0-7
PWMDIMO	Set LightingDuty:SW0	0	PWMDIM[0:7]		0-255
LEDEN	Set LED Enable(=1:MOS=OFF)	0		LEDEN[0:7]	0,1
LEDFC	LED Dimming、=1,PWM Duty=100%	0		LEDFC[0:7]	0,1
ERRDET	Already ON	×			
LEDOPEN	Already ON	×			
LEDSHORT	Already ON	×			

SPICE is an analog simulator. Therefore, when dealing with digital signals, it takes a lot of simulation time. In this model, terminals and parameters are provided as alternatives.

PWM Dimming Test bench

Referred to Data Sheet

JAAAN WANDING-127 PARDING-127 PANDING-127 PANDING-127

Simulation results are following. Explanatory notes -: simulated

PWM Dimming

DC Dimming Test bench

Referred to Data Sheet

LEDOPSET0=0 LEDOPSET1=0 LEDOPSET2=0 LEDOPSET3=0 LEDOPSET4=0 LEDOPSET3=0 L

Simulation results are following. Explanatory notes -: simulated

DC Dimming

© 2023 MoDeCH inc.

LEDFC Control Test bench

Referred to Data Sheet

Simulation results are following. Explanatory notes -: simulated

LEDFC Control

1.0V	V(ledfc[0])	V(ledfc[1])	V(ledfc[2])	V(ledfc[3])	V(ledfc[4])	V(ledfc[5])	V(ledfc[6])	V(ledfc[7])
0.5\/								
0.01/-								
5.0V	UU							
2.5								
0.01								
5.0V				V(CH7,	CH6)			
2.5V								
0.0V								
5.0V				V(CH6,	CH5)			
2.5V								
0.0V								
5.0V				V(CH5,	CH4)			
2.5V						·····	·	
0.0V								
5.0V				V(CH4,	СНЗ)			
2.5V					·····		×	
0.0V								
5.0V				V(CH3,	CHZ)			
2.5V				·····	YY	*****		
0.0V				Micha	CH4)			
5.0V				v(cnz,	chij			
2.5∨ −···		·····		r	r			
0.0V			:	VICHI	CHO			
5.0V				v(cn),	City			
2.5V			F	····· *	rr			
0.0V		<u> </u>						
0ms		5ms	10ms	15n	าร	20ms	25ms	30n

© 2023 MoDeCH inc.

DISCLAIMER

- 1. This SPICE (Simulation Program with Integrated Circuit Emphasis) model and its content (the "Contents") are copyright of MoDeCH Inc. All rights reserved. Any redistribution or reproduction of any or all part of the Contents in any form is prohibited without express written permission made by MoDeCH Inc.
- 2. MoDeCH Inc. as licensor (the" Licensor") hereby grants to you, as licensee (the "Licensee"), a nonexclusive, non-transferable license to use the Contents as long as you abide by the terms and conditions of this DISCLAIMER.
- 3. The Licensee is not authorized to sell, loan, rent and redistribute or license the Contents in whole or in part, or in modified form, to anyone.
- 4. The Licensor shall in no way be liable to the Licensee or any third party for any loss or damage (including ,but not limited to, lost profits, or other incidental, consequential, or punitive damages), however caused (including through negligence) which may be directly or indirectly suffered from, arising out of, or in connection with, any use of the Contents.
- 5. Notwithstanding anything contained in this DISCLAIMER, in no event shall Licensor be liable for any claims, damages or loss which may arise from the modification, combination, operation or use of the Contents with the Licensee's computer programs.
- 6. The Licensor does not warrant that the Contents will function in any environment.
- 7. The Contents may be changed or updated without notice. MoDeCH Inc. may also make improvements and/or changes in the products, pricing and/or the programs related to the Contents at any time without notice.

MoDeCH Inc.

Head Office Location: 5-15 Yokoyama-cho, Hachioji-Shi, Tokyo 192-0081, Japan Tel:+81-42-656-3360 E-Mail:model-on-support@modech.co.jp URL:http://www.modech.com/en/