

LTspice Model LED Driver TEXAS INSTRUMENTS TPS92520QDADRQ1

Model Information

Model	A macro model
Call Name	MDC_TPS92520QDADRQ1_LT
	1:COMP1 2:UDIM1 3:PGND1A 4:PGND1B 5:VIN1A 6:VIN1B 7:AGND1 8:V5D 9:V5A 10:AGND2 11:VIN2A 12:VIN2B 13:PGND2A 14:PGND2B 15:UDIM2 16:COMP2 17:CSN2 18:CSP2 19:BST2 20:SW2B 21:SW2A 22:MOSI 23:MISO
Pin Assign	24:SCK 25:SSN 26:LHI 27:FLT 28:SW1B 29:SW1A 30:BST1 31:CSP1 32:CSN1 33:PWMPH 34:CH1EN 35:CH1INTPWM 36:CH2EN 37:CH2INTPWM 38:CH1HSILIMFL 39:CH1LSILIMFL 40:CH2HSILIMFL 41:CH2LSILIMFL 42:SLEEP 43:CH1IADJ
File List	Model Library MDC_TPS92520QDADRQ1_LT01.lib Model Report MDC_TPS92520QDADRQ1_LT.pdf(this file)
Varified Simu	

 Verified Simulator Version
 LTspice

 Note
 Strongly recommend a Maximum Timestep of 10ns during verification

 Pin33 to Pin34 are additional pins

References

The information which was used for modeling is as follow:

[Data Sheet]

Date/Version	FEBRUARY 2021
Product name	TPS92520QDADRQ1
Company name	TEXAS INSTRUMENTS

[Characteristics listed]
Characteristics

PWM Operation INT PWM Dimming Sleep Mode V5D/V5A UVLO

Simulation Condition

This table shows the range of evaluated simulation range that was not occurs any convergence problems in this area.

Item	Condition	Unit	
Temperature	25	deg C	

© 2023 MoDeCH inc.

Model Functions Table	RANK=1	
Functions	RANK	Implemented
Control Method(PWM,PFM)	1	0
Programmable switching frequency	1	0
Soft Start	1	0
precision analog dimming	1	0
precision internal PWM dimming	1	0
Supports external PWM dimming input	1	0
UVLO	1	0
Configurable analog reference	1	0
switching frequency	1	0
PWM dimming duty cycle	1	0
Fault monitoring and reporting	1	0

Model specifications

Simulation results are following. Explanatory notes -: simulated

Additional pin information

Simulation results are following.

Explanatory notes -: simulated

No	Added Pin Name	Function
33	PWMPH	PWM phase shift setting for internal PWM generator
34	CH1EN	CH1 enable
35	CH1INTPWM	Enable internal PWM generator function for channel 1
36	CH2EN	CH2 enable
37	CH2INTPWM	Enable internal PWM generator function for channel 2
38	CH1HSILIMFL	Channel 1 high-side FET current limit fault response
39	CH1LSILIMFL	Channel 1 low-side FET current limit fault response
40	CH2HSILIMFL	Channel 2 high-side FET current limit fault response
41	CH2LSILIMFL	Channel 2 low-side FET current limit fault response
42	SLEEP	Sleep Command
43	CH1IADJ	Channel 1 Analog Current Control
44	CH2IADJ	Channel 2 Analog Current Control
45		

Additional pin settings Simulation results are following. Explanatory notes — : simulated

No	Added Pin Name	Setting
33	PWMPH	0 = 180° phase shift between internally generated PWM signals 5 = 0° phase shift between internally generated PWM signals
34	CH1EN	0 = Disable LED channel 1 5 = Enable LED channel 1
35	CH1INTPWM	0 = LED current duty cycle of channel 1 controlled by external signal connected to UDIM1 input 5 = LED current duty cycle of channel 1 controlled by internal PWM generator
36	CH2EN	0 = Disable LED channel 2 5 = Enable LED channel 2
37	CH2INTPWM	0 = LED current duty cycle of channel 2 controlled by external signal connected to UDIM2 input 5 = LED current duty cycle of channel 2 controlled by internal PWM generator
38	CH1HSILIMFL	0 = Channel 1 auto-restarts after the ILIM fault timer has expired. 5 = Channel 1 is latched off
39	CH1LSILIMFL	0 = Channel 1 auto-restarts after the ILIM fault timer has expired. 5 = Channel 1 is latched off
40	CH2HSILIMFL	0 = Channel 2 auto-restarts after the ILIM fault timer has expired. 5 = Channel 2 is latched off
41	CH2LSILIMFL	0 = Channel 2 auto-restarts after the ILIM fault timer has expired. 5 = Channel 2 is latched off
42	SLEEP	0 = Exit sleep mode and return to normal operation (SLEEP OFF). 5 = Enter sleep mode (SLEEP ON).
43	CH1IADJ	0~1023 Channel 1 Analog Current Control
44	CH2IADJ	0~1023 Channel 2 Analog Current Control

Additional parameter information

Simulation results are following.

Explanatory notes — : simulated

No	Added Parameter	Function
1	pwmdiv	The clock divider for the internal PWM generator
2	ch1pwm	Channel 1 PWM width control
3	ch2pwm	Channel 2 PWM width control
4	ch1ton	Channel 1 on-time control
5	ch2ton	Channel 2 on-time control
6	ift	The counter limit for the fault timer

Additional parameter setting

Simulation results are following. Explanatory notes — : simulated

No	Added Parameter	Function
1	pwmdiv	7 = fPWM = 1507 Hz 8 = fPWM = 1318 Hz 10 = fPWM = 1055 Hz 12 = fPWM = 879 Hz 16 = fPWM = 659 Hz 24 = fPWM = 439 Hz 49 = fPWM = 215 Hz 98 = fPWM = 108 Hz
2	ch1pwm	1~1023 Channel 1 PWM width control
3	ch2pwm	1~1023 Channel 2 PWM width control
4	ch1ton	1~43 Channel 1 on-time control
5	ch2ton	1~43 Channel 2 on-time control
6	ift	0 = 3.6 ms fault timer 1 = 7.2 ms fault timer 2 = 14.4 ms fault timer 3 = 28.8 ms fault timer

PWM Operation

Simulation results are following. Explanatory notes -: simulated

PWM Operation

Simulation results are following. Explanatory notes -: simulated

PWM Operation

Simulation results are following. Explanatory notes — : simulated

Sim result

2.04					V(vin)					
VIN										
120-	-									
5.01/2		V((v5d)				V(v5a)			
V5D)/V5A									
2.30										
V(comp2) V(comp1)										
COMP1	/COMP2			fW=462kHz						
0.01/-			4							
27V-				→	V(sw <mark>1</mark>)					
12V- SW1										
-3V			tON=706	ns			fW=449kHz			
27V-					V(sw2)					
12V- SW2						+				
-3V							/N=1.4105			
5.0V-					V(fit)					
2.5V- FLI										
0.0V					\//4\					
10mV	1 CONH)				v(csp),csi()					
SomV-V(CSP.	1,0311)									
10mV	i				V(csp2.csn2)					
	2 (SN2)									
50mV-	2,00112/1									
10mV					I(Ried1)					
TLED1		_								
0.5A-										
-0.1A	_				I(Ried2)					
ILED2	1									
0.5A-										
1.10-					I(L1)					
0.5A- IL1										
0.10										
1.1A-					I(L2)					
0.5A IL2										
0.14										
0.990ms	0.991ms	0.992ms	0.993ms	0.994ms	0.995ms	0.996ms	0.997ms	0.998ms	0.999ms	1.000

INT PWM Dimming

Simulation results are following. Explanatory notes -: simulated

INT PWM Dimming

Simulation results are following. Explanatory notes — : simulated

Sleep Mode

Simulation results are following. Explanatory notes -: simulated

Sleep Mode

Simulation results are following. Explanatory notes — : simulated

© 2023 MoDeCH inc.

V5D/V5A UVLO

Simulation results are following. Explanatory notes -: simulated

V5D/V5A UVLO

Simulation results are following. Explanatory notes - : simulated

© 2023 MoDeCH inc.

DISCLAIMER

- 1. This SPICE (Simulation Program with Integrated Circuit Emphasis) model and its content (the "Contents") are copyright of MoDeCH Inc. All rights reserved. Any redistribution or reproduction of any or all part of the Contents in any form is prohibited without express written permission made by MoDeCH Inc.
- 2. MoDeCH Inc. as licensor (the" Licensor") hereby grants to you, as licensee (the "Licensee"), a nonexclusive, non-transferable license to use the Contents as long as you abide by the terms and conditions of this DISCLAIMER.
- 3. The Licensee is not authorized to sell, loan, rent and redistribute or license the Contents in whole or in part, or in modified form, to anyone.
- 4. The Licensor shall in no way be liable to the Licensee or any third party for any loss or damage (including ,but not limited to, lost profits, or other incidental, consequential, or punitive damages), however caused (including through negligence) which may be directly or indirectly suffered from, arising out of, or in connection with, any use of the Contents.
- 5. Notwithstanding anything contained in this DISCLAIMER, in no event shall Licensor be liable for any claims, damages or loss which may arise from the modification, combination, operation or use of the Contents with the Licensee's computer programs.
- 6. The Licensor does not warrant that the Contents will function in any environment.
- 7. The Contents may be changed or updated without notice. MoDeCH Inc. may also make improvements and/or changes in the products, pricing and/or the programs related to the Contents at any time without notice.

MoDeCH Inc.

Head Office Location: 5-15 Yokoyama-cho, Hachioji-Shi, Tokyo 192-0081, Japan Tel:+81-42-656-3360 E-Mail:model-on-support@modech.co.jp URL:http://www.modech.com/en/