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SUMMARY

Silymarin, a C25 containing flavonoid from the plant Silybum marianum, has been the gold

standard drug to treat liver disorders associated with alcohol consumption, acute and

chronic viral hepatitis, and toxin-induced hepatic failures since its discovery in 1960. Apart

from the hepatoprotective nature, which is mainly due to its antioxidant and tissue regener-

ative properties, Silymarin has recently been reported to be a putative neuroprotective

agent against many neurologic diseases including Alzheimer’s and Parkinson’s diseases, and

cerebral ischemia. Although the underlying neuroprotective mechanism of Silymarin is

believed to be due to its capacity to inhibit oxidative stress in the brain, it also confers addi-

tional advantages by influencing pathways such as b-amyloid aggregation, inflammatory

mechanisms, cellular apoptotic machinery, and estrogenic receptor mediation. In this

review, we have elucidated the possible neuroprotective effects of Silymarin and the under-

lying molecular events, and suggested future courses of action for its acceptance as a CNS

drug for the treatment of neurodegenerative diseases.

Introduction

Silymarin, a plant-derived flavonoid from the plant Silybum

marianum [1,2], is considered the most potential drug to treat

almost all kind of liver diseases [3–6], particularly alcoholic liver

disease [7,8], acute and chronic viral hepatitis [9–11], and

toxins-mediated liver dysfunctions [12,13]. Silymarin is basically

a mixture of lignan-derived flavonols, containing mainly silybin

followed by silydianin, silychristin, and isosilybin [14–18]. It was

first isolated as a mixture from the seed extract of Silybum maria-

num in 1968 [19] and all the constituents were purified [20], and

their structures elucidated using techniques like X-ray crystallog-

raphy and NMR [21]. Since then myriads of research were

undertaken to understand the mechanisms of action of different

constituents or its mixtures in cellular and animal models, as well

as in human subjects. Several studies have reported that oral

absorption of Silymarin is about 23–47%, and the peak plasma

concentration is achieved in 4–6 h [6,22] while its serum half-life

is approximately 6 h [23,24]. However, the bioavailability of

Silymarin in brain is not known yet in spite of the fact that it is

shown to be protective against several CNS disorders.

Silymarin is reported to have a good safety profile with no

adverse side effects in either humans or animals in high doses

[23]. The potential benefit of Silymarin in the treatment of liver

disease is associated with its antioxidant property [25] and its

ability to block hepatotoxicant binding sites, along with tissue

regenerative capabilities [26]. Besides hepatoprotection, Silymarin

has recently been reported to be a putative neuroprotective agent

against several neurodegenerative diseases including Alzheimer’s

disease (AD) [27], Parkinson’s disease (PD) [28], and cerebral

ischemia (CI) [29]. Although, the underlying neuroprotective

mechanism of Silymarin is mainly due to its capacity to inhibit

oxidative stress in brain [30], it also confers additional neuropro-

tection by influencing other pathways such as inflammatory

pathways [31,32], inhibition of b-amyloid (Ab) aggregation [33],

apoptotic mechanisms of cell death [29], and estrogenic

receptor-mediated pathways of neuronal death [34]. Additionally,

Silymarin also exhibits the potential to recover psychomotor and
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cognitive abnormalities [35] in animal models. In this review, we

have explained the possible pathways of neuroprotective effect of

Silymarin and the underlying cellular and molecular events.

Silymarin in Neurodegenerative
Disorders

Neuroprotective evidences in support of Silymarin have been doc-

umented not only in animal models of neurodegenerative diseases

[28,34,36,37], but also in neuronal and non-neuronal cellular

models [33,38] of AD, CI, and PD. The in vitro and in vivo doses,

and the routes of application, the preparations used, and time

window of treatment of Silymarin, which are very important for

its potential clinical purpose are mentioned in Table 1. Surpris-

ingly, reports on the effect of Silymarin on other central nervous

system disorders where oxidative stress plays a pivotal role, such

as Huntington’s disease, amyotrophic lateral sclerosis, and multi-

ple sclerosis [39,40] are lacking.

Silymarin and Alzheimer’s disease

The cognitive impairment and the deposition of extracellular

amyloid-b (Ab) fibrils in senile plaques, which are the character-

istic features of AD brain [41–43], have been reported to be

attenuated by administration of Silymarin [27,33,38]. In an

Ab-induced animal model of AD, the cognitive abnormalities,

particularly memory impairment was significantly improved

after Silymarin administration [27,36], which is suggested to be

due to reduction in oxidative stress and inflammatory responses

[27,44]. Additionally, in amyloid precursor protein (APP)-based

transgenic animal model of AD, chronic Silymarin supplementa-

tion was reported to recover the characteristic behavioral

abnormalities, without causing toxicity to any organs [38].

Reports are also available on the protective effect of Silymarin

on inhibition of Ab fibril formation and aggregation in animal

and cellular models of AD [33,38; Figures 1 and 3], which is

discussed in later section of the review.

Silymarin and Parkinson’s Disease

The characteristic features of PD, particularly the loss of dopami-

nergic neurons in substantia nigra pars compacta and the motor

behavioral abnormalities [45–51] generated by intrastriatal

administration of parkinsonian neurotoxin, 6-hydroxydopamine

(6-OHDA) was considerably attenuated by treatment with Silyma-

rin [34]. In maneb- and paraquat-induced animal models of PD,

Silymarin was also found to be protective against midbrain dopa-

minergic neuronal loss and associated behavioral impairments

[28]. In different toxin-induced animal models of PD [28,35], and

even in naive animals [52], Silymarin administration showed sub-

stantial increase in dopamine and serotonin levels in hippocampus

and cortical regions of brain. Interestingly, Silymarin is reported

to inhibit monoamine oxidase-B [53], suggesting additional neu-

roprotective mechanism of Silymarin to counter the loss of dopa-

mine in PD [54,55; Figure 3]. However, reports on the effect of

Silymarin against parkinsonian hallmark pathology, a-synuclin
aggregation and Lewy body formation [56,57] are not available.

Nevertheless, the molecular mechanism of neuroprotective poten-

tial of Silymarin in PD has been mainly attributed to amelioration

of oxidative stress [28,34].

Table 1 The administration routes, doses, preparation, and time window of treatment of Silymarin

CNS

disorders

Model

system

Administration

routes

Effective

doses Preparation

Time window

of treatment References

Alzheimer’s disease Mouse Oral 200 mg/kg Suspended in 0.3%

carboxymethyl

cellulose (CMC)

8 days [27,36]

Mouse Oral 1% Silymarin in normal

diet

6 months [38]

PC12 cells Media 100 lM In dimethyl

sulfoxide (DMSO)

24/96 h [38]

SH-SY5Y cells Media 50 lM In DMSO 3 days [33]

Parkinson’s disease Mouse Intraperitoneal 40 mg/kg In DMSO 9 weeks [28]

Neuron-glia culture Media 80 lM In DMSO 7/25/49 h [31]

Rat Intraperitoneal 200 mg/kg In propylene

glycol (PEG)

2 weeks [34]

Cerebral ischemia Rat Oral 200 mg/kg Suspended in a 0.3% CMC 15 days [29]

Rat Intragastric 50/100 mg/kg Silibinin dissolved

in 0.9% NaCl

24/72 h [32]

Rat Intravenous 1–10 lg/kg Ethanol and

normal saline

24 h [37]

Rat Oral 200 mg/kg In 1% (w/v) CMC 7 days [61]

Ageing Rat Oral 200/400 mg/kg Suspended in corn oil 14 days [30]

Mouse Intramuscular 50 mg/kg In PEG 6 weeks [86]

Cognitive impairment Mouse Oral 100/200 mg/kg Suspended in 0.3%

CMC solution

7 days [35]
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Silymarin and Cerebral Ischemia

The neuroprotective effect of Silymarin on CI-induced neuro-

chemical alterations including elevated levels of free radicals,

nitrite content and inflammatory mediators [58–60], and behav-

ioral abnormalities have been convincingly established in the lit-

erature [29,61]. Silymarin showed considerable reduction in

cerebral infarct volume and neuronal cell loss in CI [61]. In com-

parison with commonly used anti-ischemic drugs such as pirace-

tam and protocatechuic acid, Silymarin significantly improved the

brain histochemical changes and psychomotor behavior in animal

model of CI [61]. Additionally, Silymarin is found to be anti-apop-

totic in CI by means of downregulating apoptosis inducing mole-

cules such as p53, apoptotic protease-activating factor 1 (apaf-1),

and caspase-9 in an animal model [29; Figure 3]. Silybinin, which

is one of the active constituents of Silymarin, has recently been

reported to activate Akt/mTOR signaling pathway, and to downre-

gulate the inflammatory marker, NF-jB and to upregulate the

anti-apoptotic marker, Bcl-2 in CI brain [32], thereby suggesting a

novel mode of neuroprotection. The underlying molecular mech-

anism of Silymarin in CI-induced neurotoxicity is mainly due to

downregulation of inflammatory mediators such as inducible

nitric oxide synthase (iNOS), myeloperoxidase, cyclooxygenases,

NF-jB and tumor necrosis factor-beta (TNF-b) [37], and upregula-

tion of antioxidant enzymes [29; Figure 2].

Molecular Mechanisms of
Neuroprotection by Silymarin

Oxidative Stress and Silymarin

Silymarin has been implicated in protecting neurons against

oxidative stress [27,34,44] and nitrosative stress [36; Figure 3].

Silymarin, being a mixture of flavonoids, is reported to exert

direct effect on neuronal oxidant status [1,30,44]. Silymarin off-

sets acetaminophen and manganese-mediated oxidative stress

and neurotoxicity in animal models by elevating the activities of

both enzymatic and nonenzymatic antioxidant markers [44,62].

Silymarin elicits its neuroprotective effects in manganese-

induced neurotoxicity by reducing both lipid and protein oxida-

tion, as well as by activating acetylcholinesterase activity, and

inducible nitric oxide synthase gene expression [63]. In animal

model of sepsis induced by cecal ligation and perforation,

decreased glutathione levels and increase in malondialdehyde

content, as well as myeloperoxidase activity in the brain, were

reverted by administration of Silymarin [64]. In the hippocampi

and the cortices of elderly rodent brain, Silymarin is reported to

be neuroprotective against oxidative insults by potentially inhib-

iting formation of oxygen and peroxyl radicals along with protein

oxidation products [30]. Silymarin administration in an encepha-

lopathy animal model produced by 4-pentenoic acid, elevated

the respiratory activity in brain mitochondria and inhibited lipid

peroxidation [65].

Several studies have established the involvement of oxidative

stress in Ab-induced neurotoxicity [66,67; Figure 3]. Silymarin

was found to alleviate the cognitive impairment induced by Ab by

preventing the oxidative damage in the hippocampus in terms of

lipid peroxidation and glutathione levels [27]. The level of nitroty-

rosine has been used as a marker of nitrosative stress [68,69], and

Silymarin significantly attenuated the elevation of nitrotyrosine

induced by Ab in the hippocampus and amygdala [36].

b-Amyloid and Silymarin

The potential role of Silymarin against Ab pathology has been well

reported in both in vitro and in vivo systems. In transgenic mouse

model of AD, oligomerization of Ab induced by over-expression of

APP was potentially inhibited by Silymarin [38]. Additionally,

administration of Silymarin in animals is also reported to clear the

fibrillar Ab deposits [38]. In the in vitro system, Ab fibrilization

and aggregation were reduced significantly after incubation of Ab
peptides with Silymarin [33,38; Figure 3]. It is also shown that Si-

lymarin has the potential to revert Ab-induced oxidative stress

[27,33] and cell viability [38]. The attenuation of Ab toxicity by

Silymarin has been reported to be due to its antioxidative property

(Figure 1), but without effecting b-secretase (BACE) [38], which

is known to be involved in production of toxic Ab [70,71].

Figure 1 Neuroprotective pathways of Silymarin in Alzheimer’s disease

(AD). In AD patients’ brains, proteolytic cleavage of amyloid precursor

proteins (APP) by b-secretase (BACE1) results in the formation of toxic

amyloid-beta (Ab) fragments, fragments of which undergo fibrilization as

well as oligomerization resulting in the deposition of intracellular Ab

aggregates, and as senile plaques in the extracellular space. Both Ab

fibrils as well as senile plaques mediate neurotoxicity either by enhancing

oxidative stress or by exaggerating glial cell-mediated production of

inflammatory markers such as cytokines. The cytokines in turn induce the

production of nitric oxide (NO) by activating inducible nitric oxide

synthase (iNOS). Silymarin potentially hinders the cleavage of APP and

thus impede the fibrilization and oligomerization of Ab, and reduces Ab

aggregates and senile plaques. The Ab-induced oxidative stress and glial

cell activation due to overproduction of inflammatory markers has been

shown to be inhibited by treatment of Silymarin. Thus, Silymarin, by virtue

of its antioxidant and anti-inflammatory properties, confers

neuroprotection in AD pathology (T indicates the inhibitory effect of

Silymarin).
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Ab-induced over-expression of inflammatory mediators such as

tumor necrosis factor-a (TNF-a) and iNOS mRNA in the hippo-

campus and amygdala of mouse brain was attenuated by adminis-

tration of Silymarin [36]. Silymarin by reducing nitrotyrosine

level in the hippocampus and amygdala also attenuates

Ab-induced nitrosative stress in animals [36].

Glia and Silymarin

Few reports are also available on the inhibition and prevention of

proliferation of glia by Silymarin [31,37,72]. Wang et al. [31]

reported that Silymarin administration in a lipopolysaccharide-

induced animal model of PD, prevented the dopaminergic neu-

Figure 2 Neuroprotective pathways of Silymarin in cerebral ischemia (CI). The major pathological pathways that are involved in CI include inflammation,

oxidative stress, and apoptosis. Silymarin elicits anti-inflammatory property in CI injury by preventing the activation of NF-jB-mediated production of

cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS). Silymarin thus by modulating NF-jB reduces both oxidative stress as well as

nitrosative stress by inhibiting the generation of reactive oxygen species (ROS) and nitric oxide (NO). In addition, Silymarin also suppresses the generation

of free radical-mediated lipid and protein oxidation, having the potential to change the redox state of the cell and hence ameliorate oxidative stress. The

activation of intrinsic pathway of apoptosis, which is evident in CI brain, is inhibited by Silymarin, by preventing the formation of apoptosome by inhibiting

apoptotic protease-activating factor 1 (apaf-1) that regulates the activation of caspases. Thus, Silymarin has the potential to prevent neuronal loss by

inhibiting the oxidative stress and apoptotic mode of cell death (T indicates the inhibitory effect of Silymarin).

Figure 3 Schematic representation of neuroprotective pathways of Silymarin. The potent herbal antioxidant Silymarin prevents conversion of dopamine

(DA) to 3,4-dihydroxyphenylacetic acid (DOPAC) by inhibiting the DA oxidizing enzyme, monoamine oxidase-B (MAO-B). The MAO-B inhibitory action of

Silymarin thus leads to lesser degradation of DA and therefore would increase the extracellular concentration of this catecholamine neurotransmitter.

Silymarin prevents the formation of amyloid-b (Ab) aggregates and fibrils; as a consequence, it attenuates Ab-induced neuroinflammation and cellular

stresses. By inhibiting the production of inflammatory agents such as NF-jB, TNF-a, TNF-b, iNOS, NO, COX, Silymarin impedes neuroinflammation and glial

activation resulting in increased secretions of trophic factors, leading to neuroprotection. Silymarin also showed anti-apoptotic property as revealed by

inhibition of the production of apoptotic proteins, p53 and apaf-1, and reduced caspase-9 activity. Due to estrogen-like activity and binding ability to ER-b,

Silymarin may provide additional neuroprotection (T indicates the inhibitory effect of Silymarin). TNF-a, tumor necrosis factors-a; TNF-b, tumor necrosis

factors-b; iNOS, inducible nitric oxide synthase; NO, nitric oxide; COX, cyclooxygenase; apaf-1, apoptotic protease-activating factor 1; ER-b, estrogen

receptor-b.
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rodegeneration by inhibiting activation of microglia, while other

studies reported the inhibition of glial cell activation by Silymarin

in cellular models possibly by inhibiting iNOS production [37,72].

Meanwhile, Silybinin has been reported to downregulate the CI-

induced inflammation by activating of Akt/mTOR pathway via

upregulation of anti-inflammatory markers [32]. Silymarin is also

reported to protect both microglia and astroglia from oxidative

insults induced by peroxide in ex vivo system [72]. However, Si-

lymarin-mediated inhibition of gliosis is suggested to be due to

inhibition of NF-jB activation as well as other inflammatory

mediators [31,72; Figure 3], but the exact molecular mechanism

is yet unclear.

Involvement of Estrogen Receptor

Estrogen receptor-b (ER-b) is distributed predominantly in hippo-

campus and cortical regions of rodents brain [73,74], and is

known to possess neuroprotective potential when it is activated or

upregulated [34,75,76]. Apart from the involvement of ER-b in

cognitive processes such as learning and memory [77–80], block-

ade of ER-b by antagonists has been reported to cause neurotoxic-

ity leading to many diseases, including PD [34], epidemiologically

supported by the fact that incidence of this disease in females is

significantly low worldwide [81]. Estrogen-mediated neuropro-

tective effect has been reported to be due to its ability to bind to

ER-b [82]. Silymarin administration has been reported to reduce

6-OHDA-induced rotational behavior and nigral neuronal loss in

parkinsonian rodents partly by modulating ER-b [34]. One of the

underlying mechanisms of Silymarin-induced neuroprotective

effect may be due its estrogen-like activity [75,83], as well as its

potential to bind and activate the ER-b [34,75,84,85; Figure 3].

Silymarin: Unknown Terrains

Although Silymarin has shown promising neuroprotective poten-

tial, still there are some lacunae in understanding the science of

this mixture of flavonoids. The reported inhibitory potential of Si-

lymarin on protein deposits formation in AD is not clearly under-

stood yet. It will be exciting to know how Silymarin modulate Ab
fibrilization without effecting BACE that cleaves APP in AD. Simi-

larly, it may be expected that Silymarin might have the potential

to inhibit a-synuclin aggregation and resultant Lewy body forma-

tion in PD. Therefore, extensive research needs to be initiated to

understand the mechanisms of macromolecular crowding in neu-

rons and the effects of Silymarin. Another avenue that needs to be

looked into is how Silymarin confer neuroprotection by interact-

ing with ER-b receptor. Although Silymarin is a flavonoid and

generally flavonoids can traverse the blood–brain barrier, yet no

confirmed reports are available on the mode of transport and bio-

availability of Silymarin in brain. Hence, there is a greater need to

search into these avenues to understand the true picture of Silym-

arin-mediated neuroprotection.

Conclusions

The present article concisely reviews the antioxidant, anti-apopto-

tic, anti-inflammatory and enzyme inhibitory activities of Silyma-

rin and shows how use of this molecule could provide protection

of neurons against oxidative insults in the brain under distress.

The neuroprotective nature of Silymarin seems to be unique as its

mode of action is diverse ranging from a general antioxidant

nature to specific anti-amyloidogenic, anti-inflammatory, and

pro-estrogenic properties. These diverse neuroprotective actions

of Silymarin on brain hold great promise to be a “wonder drug”

for the treatment of neurodegenerative disorders. The nontoxic

nature of this molecule warrants its urgent clinical evaluation for

its potential use as an antineurodegenerative molecule in

humans. However, its bioavailability in brain, including its ability

to penetrate blood–brain barrier is to be established in preclinical

studies, prior to any clinical trials.
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