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Abstract 
Our understanding of the pathophysiological and biochemical basis of a number 
of neurological disorders has increased enormously over the last three decades. 
Parallel with this growth of knowledge has been a clearer understanding of the 
mechanism by which a number of naturally occurring plant extracts, as well as whole 
plants, can affect these mechanisms so as to offer protection against injury and 
promote healing of neurological tissues. Curcumin, quercetin, green tea catechins, 
balcalein, and luteolin have been extensively studied, and they demonstrate 
important effects on cell signaling that go far beyond their antioxidant effects. 
Of particular interest is the effect of these compounds on immunoexcitotoxicity, 
which, the authors suggest, is a common mechanism in a number of neurological 
disorders. By suppressing or affecting microglial activation states as well as the 
excitotoxic cascade and inflammatory mediators, these compounds dramatically 
affect the pathophysiology of central nervous system disorders and promote the 
release and generation of neurotrophic factors essential for central nervous system 
healing. We discuss the various aspects of these processes and suggest future 
directions for study.
Key Words: Cell signaling, flavonoids, immunoexcitotoxicity, nutraceuticals, 
polyphenols

INTRODUCTION

Over the last 50 years we have learned a lot about the 
molecular mechanisms involved in neurological damage 
occurring during central nervous system (CNS) insults, 
such as strokes, traumatic brain injuries (TBIs), exposure 
to neurotoxic substances, autoimmune disorders, 
infections, and the major neurodegenerative disorders. 
We are also beginning to understand the dynamic changes 

that occur in the CNS during these pathological events. 
Pharmacological treatments directed toward reducing this 
damage, and especially those capable of promoting brain 
healing and repair, are quite few in number. Furthermore, 
some of the mainstay treatments, such as the use of 
synthetic glucocorticoids, have been shown to be quite 
neurotoxic, especially to the aging brain.[205,209,261] 

In parallel with our expanding knowledge concerning 
the molecular mechanisms of CNS neurodegenerative 
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pathophysiology has been our understanding of the 
molecular mechanisms of action of a growing number 
of natural substances and extracts of particular plants 
and herbs shown to prevent much of this damage 
and to promote CNS repair. In fact, this information 
has undergone a virtual explosion in the last two  
decades.[18,44,69,78,230] Unfortunately, this knowledge is 
far less well known and appreciated, especially by the 
practicing neurosurgeon and neurologist. Yet many of 
these natural substances can be used to attain goals 
desired by those treating these disorders and are presently 
available as highly purified extracts. 

We have increased our understanding not only of some 
of the better known nutraceuticals, such as the basic 
vitamins and minerals, for example, ascorbate, tocopherol, 
the carotenoids, magnesium, zinc, selenium, and the B 
vitamins, but also of a unique group of substances called 
polyphenols, which include extracts from plants such as 
anthocyanidins, resveratrol, chalcones, flavonols, flavans, 
and flavones (collectively called flavonoids). Unlike 
pharmaceuticals, in physiological systems these naturally 
occurring compounds interact both synergistically and 
additively in a way that can affect their ultimate beneficial 
function – that is, they do not act as drugs.[4,84,176] 
This is primarily due to the fact that they operate through 
different receptors and cell signaling mechanisms and 
affect individual parts of the cell in very complex ways.

Over 4000 flavonoid compounds have been isolated from 
plants, with more being discovered every year.[191] It has 
also been shown that many of these compounds undergo 
extensive metabolism in the gut, liver, and regional tissues, 
producing a wide array of physiologically active metabolic 
products – many of which have beneficial effects 
equal to or beyond those of the parent compound.[230] 
Many of these compounds have been shown to have a 
number of useful properties, including anticarcinogenic, 
antiviral, anti-inflammatory, antibacterial, antifungal, 
immune modulating, antioxidant, and anti-excitotoxic 
effects.[41,186,208,223,259] 

Flavonoids have three very useful properties in CNS 
protection: First, they are very powerful and versatile 
antioxidants that neutralize reactive oxygen and nitrogen 
species, several of which are not neutralized by the usual 
antioxidant vitamins, such as the peroxynitrite radical.[31,36] 
Peroxinitrite plays an especially destructive role in the 
neurodegenerative disorders. They are also powerful 
inhibitors of destructive lipid peroxidation products, 
such as acrolein and 4-hydroxynonenal (4-HNE), which 
are also significantly elevated in Alzheimer’s disease 
(AD), Parkinson’s disease (PD), and amyotrophic lateral 
sclerosis (ASL).[278] Third, many are potent chelators of 
iron and/or copper as well as other neurotoxic metals.[167] 

Our understanding of ways to enhance substance 
bioavailability has also improved substantially. Such 

knowledge is of practical importance; low bioavailability 
has been one of the stumbling blocks facing the clinical 
use of medicinal plant extracts. Some plant extracts have 
remarkable beneficial effects when used in cell cultures. 
However, if the product is not efficiently absorbed from 
the gut and distributed to the tissues targeted, it will be 
of little clinical use. Nonetheless, there are now a number 
of ways to improve bioavailability that were not known a 
decade ago, such as phospholipid microencapsulation and 
nanoscaling. 

PATHOPHYSIOLOGY OF 
NEURODEGENERATION

There is compelling evidence that a combination of 
proinflammatory immune overactivation and excitotoxicity 
is central to the progressive neurodegenerative process.[28] 
The lead author coined the term ‘immunoexcitotoxicity’ 
to describe this destructive interaction.[27] Central to this 
pathological process is chronic activation of the brain’s 
innate immune system, primarily involving microglial 
cells and less so astrocytes. Both these glial cells, 
when activated, can release neurodestructive levels of 
proinflammatory cytokines, chemokines, interferons, and 
several excitotoxins, including glutamate, aspartate, and 
quinolinic acid (QUIN). 

A growing number of studies confirm proinflammatory 
cytokines and glutamate-type receptors cross talk in 
a manner that greatly enhances the sensitivity of the 
glutamate receptor system.[44,71] This has changed 
our thinking concerning excitotoxicity, since we now 
know that excitotoxicity can occur even with low 
levels of extracellular glutamate when the receptors are 
hyperactive, as in the presence of CNS inflammation.[128] 
As the pathology develops, the CNS becomes more 
vulnerable because of a loss of antioxidant systems, such 
as antioxidant enzymes (superoxide dismutase, catalase, 
glutathione reductase, and glutathione peroxidase) and 
cellular glutathione. The high levels of extracellular 
glutamate, as occurs during neurodegeneration, reduce 
astrocytic glutathione, the major source of neuronal 
glutathione, by suppressing the glutamate/cystine 
antiporter.[48,234] The cystine/glutamate antiporter is 
increasingly recognized as an important alternative 
excitotoxic pathway in multiple sclerosis by increasing the 
release of glutamate from macrophages and microglia.[185] 
The lower levels of glutathione have been described in 
AD, PD, and ASL.[8,212,216] 

Inflammation enhances sensitivity to excitotoxicity by 
a number of mechanisms, including upregulation of 
glutaminase (the astrocytic enzyme-producing glutamate 
from glutamine), recruitment of microglia, stimulation 
of microglial migration, inhibition of glutamate reuptake 
mechanism (excitatory aminoacid transporters [EAATs]), 
inhibition of glutamate removal enzymes (glutamate 
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dehydrogenase, glutamine synthetase, and glutamic acid 
decarboxylase), and increased trafficking of glutamate 
receptors, especially AMPA  receptors.[37,134,272] Both 
inflammation and excitotoxicity dramatically enhance 
free radical formation and lipid peroxidation of cell 
membrane structures. It appears that CNS inflammation 
primarily produces neurodestruction by enhancing 
excitotoxicity since studies in which glutamate receptors 
are blocked greatly attenuate proinflammatory cytokine 
injury to neurons.[172] Likewise, excitotoxicity triggers 
CNS inflammation by activation of microglia. 

Recent studies have shown that trafficking of 
glutamate receptors plays a major role in progressive 
neurodegeneration associated with both spontaneously 
occurring diseases as well as acute and chronic traumatic 
encephalopathy (CTE).[28] Glutamate receptors are the 
most abundant and most complex receptor types in 
the CNS, making up 90% of neurotransmission in the 
cortex. Sensitivity to glutamate signaling is modulated 
by changing the sensitivity of the functional glutamate 
receptor type inserted in the synaptic membrane via 
receptor trafficking.[243] 

Of great interest in neurotrauma and neurodegenerative 
disorders are the α-amino-3-hydroxy-5-methyl-4-
isoxazoleproprionic acid (AMPA)-type glutamate 
receptors, which are composed of a number of subunits. 
Normally, AMPA receptors contain a GluR2 subunit, 
which makes them impermeable to calcium.[9] Under 
certain physiological conditions and a growing number 
of pathological conditions, the endoplasmic reticulum 
rapidly manufactures special GluR2-lacking AMPA 
receptors that are calcium permeable, as is the case 
with N-methyl-D-aspartate (NMDA) receptors.[163] 
These are transported to the synaptic membrane and 
inserted in the active receptor site, rendering the synapse 
significantly more sensitive to excitatory activation. In 
certain circumstances, these special AMPA receptors can 
lead to progressive neurodegeneration over long periods 
of time. For example, one of the powerful triggers for 
GluR2-lacking AMPA receptor trafficking to the synaptic 
membrane is the presence of elevated levels of tumor 
necrosis factor-α (TNF-α), which is an indicator of 
CNS inflammation.[135] Furthermore, recent studies have 
demonstrated higher concentrations of GluR2-lacking, 
calcium permeable AMPA receptors in CNS injury, 
strokes, seizures, and neurodegenerative disorders, such as 
ALS, PD, and AD.[154,226] 

Immunoexcitotoxicity is driven by the chronic activation 
of microglia, resulting from interference with the normal 
switching mechanisms, which normally shut off microglial 
activation, thus eliciting the pathological release of 
proinflammatory cytokines and excitotoxins. A number of 
stimuli may interfere with microglial switching including 
TBI, occult infections, exposure to neurotoxic metals 

and pesticides/herbicides, autoimmune disorders, some 
addictive drugs, brain aging, and special neurotoxins such 
as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) 
and 6-hydroxydopamine (6-OHDA).[151,189,213,231] 

Because immunoexcitotoxic cascades generate high levels 
of free radicals and lipid peroxidation products, they can 
cause widespread damage to a number of tissues and 
cellular components, including microvessels, the blood–
brain barrier (BBB), mitochondria, proteosomes, cell 
membranes, nuclear and mitochondrial DNA, and the 
endoplasmic reticulum. It should also be appreciated that 
the suppression of neuronal energy production, primarily 
by mitochondrial injury, greatly increases sensitivity to 
glutamate excitotoxicity. There is growing evidence that 
mitochondrial energy loss is an early event in many 
neurodegenerative disorders.[11,115,228] Both glutamate 
and proinflammatory cytokines suppress mitochondrial 
energy production and mitochondrial migration along 
dendrites, essential to synaptic function.[177,220]  The 
ongoing process of positive feedback interactions between 
free radicals, lipid peroxidation products, inflammatory 
cytokines, and glutamate can further activate and recruit 
microglia, leading to a state of chronic progressive 
neurodegeneration. 

New evidence indicates that a large number of natural 
products can reduce the pathological cell signaling and 
metabolic disruptions associated with a number of 
neurological disorders. 

HUMAN STUDIES: EVIDENCE OF BENEFIT 
IN HUMAN COGNITION

Nutraceutical treatment of human neurological disorders 
has remained the redheaded stepchild of medicine. This is 
unfortunate since compelling scientific evidence suggests 
that natural extracts are powerful neuroprotectants 
and promoters of CNS healing.[7,10,18,33,47] Few practicing 
physicians appreciate the extensive research that has 
been conducted on these plant extracts. Many of the 
mechanisms by which nutraceuticals promote healing 
are quite complex, and contrary to pharmaceutical drugs, 
they do not address single-cell enzymes or processes. 
Rather many interact with cell membrane components, 
receptors, cell signaling systems, mitochondrial enzymes, 
DNA physiology, and the cell’s internal structure. A 
number of commercial companies now manufacture plant 
extracts that are of extremely high quality and purity 
and are carefully standardized, most of which qualify as 
pharmaceutical grade. 

There is a relative scarcity of clinical trials examining the 
therapeutic benefits of natural compounds. These trials 
are widely accepted as ‘gold standards’ and as such greatly 
influence clinical practice. However, unlike animal studies 
in which the diet, living conditions, and exposures to 
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other confounding factors are carefully controlled, many 
population studies are poorly controlled and depend 
on accurate reporting and compliance by thousands of 
participants in the studies. 

If one were conducting a study of vegetable intake and 
risk of PD, a negative study would have a large impact 
on physician recommendations. Yet, many of these 
studies do not control for a number of conditions that 
would completely alter the results. For example, most 
such studies do not even name the vegetable type, with 
many low-nutrient or even harmful nutrient “vegetables” 
being included in the study (i.e., French fries).[55,196,239] In 
contrast, there is a dramatic difference in outcomes when 
the studies are limited to assessing the intake of high-
nutrient-density cruciferous vegetables.[126] 

It should also be noted that the vast majority of vegetables 
are heavily contaminated with pesticides/herbicides and 
fungicides, many of which are known to have significant 
neurotoxic effects. For example, studies have shown 
a strong association between intake of the pesticide 
rotenone, the herbicide paraquat, and the fungicide 
maneb and the PD risk.[252] Many pesticides/herbicides 
stimulate microglial activation with a triggering of 
immunoexcitotoxicity and many suppress mitochondrial 
function.[66] Thus, pesticide residue can greatly reduce the 
beneficial effects of the plant polypenols, vitamins, and 
minerals. In spite of this, many studies do not control for 
washing of vegetables. 

In spite of the above limitations, there is strong evidence 
from human clinical trials for flavonoid protection of 
cognition, as exemplified by the prospective Personnes 
Agees QUID (PAQUID study), which involved a total of 
1640 subjects (aged 65 years or older) who were free from 
dementia at baseline.[136] These individuals were followed 
for a 10-year period and underwent a battery of cognitive 
tests (Mini Mental Sate Exam, Benton’s Visual Retention 
Test, and “Isaacs” set test) four times during their follow-
up. The study was adjusted for age, sex, and educational 
level, and a careful assessment was done for flavonoid 
intake. Those in the two highest quartiles of flavonoid 
intake had significantly better cognitive function and 
significantly better evolution of performance over time. 

A number of studies using vitamin E in cases of PD or 
AD have reported little or modest benefit with vitamin 
E supplementation.[29,79] However, the reason for such 
outcome may simply be an inadequate choice of the 
specific form of nutrient used. For example, a majority of 
studies have used α-tocopherol, either as dl-α-tocopherol 
or a d-α-tocopherol, as the chosen supplement. The doses 
vary widely, but in most studies the doses are quite small. 
Vitamin E is composed of eight classes of compounds: α-, 
β-, γ-, and Δ-tocopherol and α-, β-, γ-, and Δ-tocotrienol. 
Until recently, only α-tocopherol was considered of any 
interest. Newer studies have shown that γ-tocopherol 

and its metabolite, γ-CEHC (2,7,8-trimethyl-2-(beta-
carboxyethyl)-6-hydroxychroman), have far greater anti-
inflammatory effects than does the alpha component.[109] 
Indeed, γ-tocopherol, but not α-tocopherol, significantly 
reduced both proinflammatory prostaglandin E2 (PGE2) 
synthesis and lipid peroxidation and inhibited formation 
of leukotriene B4 in rats.[109] It also reduced TNF-α 
and nitric oxide release. γ-Tocopherol also reduced 
protein nitration and ascorbate oxidation in rats with 
inflammation.[110] 

Studies also show that γ-tocopherol is taken up by 
cells much more efficiently than α-tocopherol, which 
is vital in protecting internal cellular membranes, such 
as mitochondrial and endoplasmic membranes.[35,140] 
γ-Tocopherol also appears to be a superior modulator 
of PPAR, an important anti-inflammatory compound, 
compared to α-tocopherol.[35] Of great importance is 
the finding that supplementation with γ-tocopherol in 
humans significantly lowers serum γ-tocopherol levels 
(mean of 58%).[102] 

Overlooked in human trials are the tocotrienols. By 
using rat striatal cultures exposed to hydrogen peroxide, 
Osakada et al. found that unlike -tocopherol, which 
offered no protection, the tocotrienols (especially 
α-tocotrienol), were highly protective in this oxidative 
stress model.[173] One recent animal study, using a stroke 
model, showed that α-tocotrienol and γ-tocopherol 
significantly reduced the size of the infarct.[164] Not 
only tocotrienols affect inflammation, but they seem 
to profoundly protect against excitotoxicity as well. 
By using primary cortical neurons, Khanna et al. found 
that α-tocotrienol robustly protected the neurons from 
excitotoxic death even in nanomolar concentrations.[120] 
The mechanism of protection appeared to be inhibition 
of 12-lipoxygenase by α-tocotrienol, suggesting that 
vitamin E neuroprotection extends beyond its antioxidant 
effects. 

In light of these animal studies, previous human trials 
using α-tocopherol should be reconsidered and repeated 
using higher doses of mixed tocopherols or known 
neuroprotective vitamin E classes. 

CURCUMIN, QUERCETIN, AND RELATED 
FLAVONOIDS: EFFECTS ON CELL 
SIGNALING AND INFLAMMATION

There is growing evidence that neuroinflammation, 
especially if prolonged, plays a major role in a number 
of human CNS disorders, including strokes, TBIs 
(including concussions), autoimmune CNS disorders, 
infections, environmental neurotoxic exposures, and 
hypoxia and ischemia.[5,119,211] As stated, a number 
of natural substances have been shown to alter glial 
function in beneficial ways and to affect downstream 
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cell signaling that reduces the neurodestructive cascades 
of immunoexcitotoxicity. Besides vitamin C, the 
carotenoids, vitamin E, zinc, selenium, and magnesium, 
a number of plant flavonoids have shown superior ability 
not only to reduce inflammation but also to inhibit free 
radical and lipid peroxidation product generation, lower 
nitric oxide levels, attenuate inflammatory prostaglandin 
production, reduce excitotoxicity, and suppress microglial  
activation.[24,58,129,227,239,245,268] In vivo, flavonoids are 
less potent as antioxidants than those in vitro. Their 
antioxidant effects appear to act through cell signaling 
rather than through direct scavenging.[216] 

A recent review of the literature identified more than 
1500 papers examining the effects of curcumin alone. 
The authors reviewed all these abstracts and 300 
full papers and concluded that compelling evidence 
confirms curcumin is a powerful anti-inflammatory, 
anticarcinogenic, antioxidant, and an overall 
neuroprotectant.[23] According to the reviewed sources, 
in animals models, for example, curcumin showed 
either a curative or a preventive effect on a number 
of human diseases, such as atherosclerosis, cancer, 
diabetes, respiratory, hepatic, pancreatic, intestinal, eye, 
and neurological disorders. It was also concluded that 
curcumin had a very high margin of safety even in very 
large oral concentrations.[23]

Curcumin is a flavonoid extracted from the spice 
turmeric, a native plant of Asia. It is in the family of 
plants called Zingiberaceae, a relative of ginger. This 
bright-yellow extract gained attention based on the 
observation that populations in India, who eat a diet high 
in turmeric, experienced a 4.4-fold lower incidence of AD 
and dramatically lower rates of colon cancer than those 
eating a typical Western diet.[73] The most obvious link 
was its ability to dramatically reduce inflammation. It 
does this by inhibiting NF-κB, COX, and lipooxygenase 
(LOX) enzymes and by stimulating nuclear factor 
erythroid-2 (NrF2), all linked to inflammation.[277] 

Like many complex plant extracts, curcumin contains 
a number of metabolically related compounds, the 
main ones being the curcuminoids—curcumin, 
demethyoxycurcumin, and bisdemethyoxycurcumin. It is 
a highly lipophilic compound that is virtually insoluble in 
water, making it difficult to absorb as a dry powder from 
the gut, but readily enters the brain from the plasma.[16] 
One of its main beneficial effects on the CNS is its ability 
to downregulate NF-κB, which is a regulator of a number 
of gene products controlling inflammation (COX-2, IκB, 
TNF-α, cyclin D1, intercellular adhesion molecule-1 
(ICAM-1), c-myc, B-cell lymphoma-2 (bcl-2), matrix 
metalloproteinase-9 (MMP-9), iNOS, interleukin-6 (IL-6), 
and interleukin-8) IL-8).[1,15,192] 

Inflammation is also driven by the metabolism of 
arachidonic acid released from the cell membrane by 

phospholipase A2, which is then metabolized by the COX 
and LOX enzymes into inflammatory prostaglandins 
(PGE2). Excitotoxicity enhances COX-2 activation and 
inflammatory prostaglandin generation in strokes, TBIs, 
and neurodegenerative disorders.[89,104] Curcumin and 
quercetin (found in teas, capers, onions, and berries) have 
been shown to decrease the breakdown of arachidonic 
acid into leukotrienes, prostaglandins, and prostacyclins 
by inhibiting COX and LOX enzymes and to suppress 
inducible nitric oxide synthase (iNOS) activation and 
the generation of nitric oxide.[10,144,276] Unlike many 
products that inhibit only COX enzymes, curcumin 
also directly inhibits the enzyme that synthesizes PGE2 
(PGE2 synthase-1 enzyme), the highly inflammatory 
prostaglandin.[178] (−)-Epigallocatechin gallate (EGCG) 
from green tea and curcumin both have anti-inflammatory 
effects, and curcumin can induce cellular glutathione 
generation, which is a major antioxidant system within 
all cells and is significantly lowered in neurodegenerative 
disorders and CNS inflammatory disorders.[158,195] Another 
way curcumin suppresses inflammation is by stimulating 
NrF2, a nuclear transcription molecule that enhances cell 
antioxidant defences and reduces inflammation. 

In physiological concentrations, curcumin has been 
shown to inhibit mammalian target of rapamycin 
(mTOR), a cell signaling factor that, when activated, 
suppresses autophagy, an essential cleaning mechanism 
for cells, which removes damaged organelles and 
misfolded proteins.[21] Autophagy is severely suppressed 
in neurodegenerative diseases and can lead to an 
accumulation of damaging misfolded proteins.[51] This 
may be the first supplement having the ability to restore 
this vital process. Unlike the drug rapamycin, which 
also suppresses mTOR, curcumin does not dangerously 
suppress immunity.

New evidence demonstrates that resveratrol (found in 
red wine, grapes, and berries) has a number of major 
neuroprotective effects as well, including suppression 
of inflammatory prostaglandin generation, inhibition of 
nicotinamide adenine dinucleotide phosphate oxidase 
(NADPH oxidase) and other microglial neurotoxic 
factors, activation of peroxisome proliferator activated 
receptor-gamme  (PPAR-γ), stimulation of mitochondrial 
biogenesis, activation of SIRT1 deacetylase, inhibition 
of NF-κB, stimulation of protective NrF2, stimulation 
of AMP-activated protein kinase (AMPK)-related energy 
modulation, and elevation of levels of antioxidant 
enzymes.[25,60,130,184,202,207,231]

Another important property of polyphenols is their ability 
to chelate metals, especially neurotoxic metals such as 
iron, aluminum, and copper. Iron and copper both appear 
to play a major role in neurodegeneration, especially in 
AD and PD, with both ions triggering oxidative stress 
when found in excess.[112] Baum and Ng showed that a 
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submicromolar concentration of curcumin can bind iron 
and copper, thus preventing a major mechanism for ROS 
production in neurodegenerative diseases, such as AD 
and PD.[17] It is known that iron levels increase with aging 
associated with neurodegenerative disorders.[156] 

Further studies show that curcumin, another iron-
chelating flavonoids, can chelate toxic levels of iron 
without interfering with its physiological functions.[59,156] 
Curcumin and quercetin do not prevent iron absorption at 
the gut level, but rather prevent pathological accumulation 
in tissues. Catechins will bind iron in the gut and prevent 
absorption, as will a number of other flavonoids within 
plant vegetables.[59,121] Quercetin, apigenin, naringenin, 
kaempferol, myricetin, bacalein, luteolin, and rutin also 
have iron chelation properties.[30,50,155,169,188] 

Studies also show that curcumin reduces CNS iNOS, 
inflammatory cytokines, and lipid peroxidation, all 
of which are central to neurodegenerative pathology 
triggered by immunoexcitotoxicity.[28,56] For example, 
Bala et al. found that chronically administered curcumin 
greatly reduced age-associated elevations in brain lipid 
peroxidation and lipofuscin deposits while raising levels 
of protective antioxidant systems and membrane Na+/K+ 
ATPase, a major cell energy system, in the cerebral cortex, 
hippocampus, cerebellum, and medulla.[10] 

CURCUMIN AND OTHER POLYPHENOLS: 
EFFECT ON AD AND PD

Compelling evidence suggest that most neurodegenerative 
diseases are strongly linked to prolonged, smouldering 
inflammation within selected areas of the CNS and 
that this inflammation is also linked to excitotoxicity, 
a process referred to as immunoexcitotoxicity. 
Immunoexcitotoxicity appears to play an important 
role in the abnormal processing of amyloid β-protein 
precursor (AβPP) as well as the development of 
neurofibrillary tangles (NFTs). For a more in-depth review 
of immunoexcitotoxicity.[28] 

Several studies have shown that curcumin, both by its 
anti-inflammatory and anti-oxidant properties as well 
as by effects on pathological cell signaling, strongly 
suppresses abnormal AβPP processing and the formation 
of the hyperphosphorylated protein tau, which is the 
main constituent of NFTs. For example, in an in vivo 
study using a genetic model of AD (Tg2576 mice), Yang 
et al. clearly demonstrated that very low concentrations of 
curcumin can inhibit Aβ aggregation and at increasingly 
higher concentrations it can promote disassembly of 
preformed amyloid aggregates.[270] Importantly, they also 
demonstrated that ingested curcumin efficiently crosses 
the BBB. Compared with naproxen and ibuprofen, 
curcumin inhibited Aβ aggregation at a significantly 
lower dose. In a study by Ansari et al., pretreatment of 

primary hippocampal cells with quercetin significantly 
attenuated Aβ1-42-induced cytotoxicity, protein oxidation, 
lipid peroxidation, and subsequent apoptosis.[7] 

The new thinking in AD research is that the most 
toxic element is the soluble Aβ oligomers rather than 
the mature fibrils.[131] While curcumin at very low 
concentrations can efficiently prevent neurotoxic Aβ 
oligomer formation, the goal in most clinical settings is a 
reversal of already existing amyloid plaque. Experiments 
using mouse models of AD, where animals exhibit higher 
amyloid accumulation than that typically observed 
in human cases of AD, showed that animals fed with 
curcumin demonstrated a significant reduction in plaque 
burden in their hippocampus and cortex.[270] 

Similarly, Garcia-Alloza et al. demonstrated that feeding 
curcumin to a transgenic AD mice (APPswe/PS1de9 
mice) for 7 days clears or reduces existing plaque, as 
monitored by longitudinal imaging.[74] Consistent with 
Begum et al.’s study, they found curcumin to have 
powerful disaggregating effects on amyloid plaques.[22] 
Importantly, curcumin treatment also demonstrated a 
significant reversal of structural changes in dystrophic 
dendrites. In addition, Garcia-Alloza et al. showed that 
curcumin from the systemic blood circulation efficiently 
crossed the BBB and bound avidly to amyloid deposits. 

As with AD, curcumin plays a number of beneficial 
roles in prevention as well as treatment of PD. Similar 
to other neurodegenerative disorders, PD is largely a 
chronic inflammatory disorder with a major contribution 
from excitotoxicity.[237] The source of both inflammatory 
mediators and excitotoxins is the glial cells – microglia 
and astrocytes, with microglia being the main mediator 
of brain immunoexcitotoxicity. 

One of the early events in PD is a suppression of 
mitochondrial function within neurons of the substantia 
nigra, with inhibition of complex I of the electron 
transport chain being central to the process.[70,211] 
Immunoexcitotoxicity suppresses mitochondrial 
function, in part by triggering high levels of nitric oxide 
production, which by combining with superoxide leads 
to an accumulation of the powerful radical peroxynitrite. 
Mythri et al. have shown that curcumin prevents 
peroxynitrite damage to mitochondria, thus preventing 
complex I inhibition.[175] Curcumin has also been shown 
to significantly protect against 6-OHDA damage to the 
substantia nigra, a frequently used PD model in animals.[273] 
In addition, curcumin inhibits monoamine oxidase-B 
(MAO-B) in astrocytes cell cultures.[165] MAO-B inhibitors 
protect against oxidative neurodegeneration. Rajeswari 
demonstrated curcumin-induced neuroprotection in 
another PD animal model.[195] By using the neurotoxin 
MPTP, which causes a rapid-onset parkinsonism in 
humans, he found a dramatic reduction in glutathione 
(GSH) depletion and lipid peroxidation in both the 
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substantia nigra and the striatum in animals given 
curcumin at the time of MPTP exposure.  An increase 
in activity of the antioxidant enzymes, superoxide 
dismutase, and catalase in these brain regions was also 
observed in response to curcumin treatment. 

Curcumin appears to stimulate brain repair as well. Some 
of its protective effects on excitotoxicity may be secondary 
to an increased release of neurotrophins such as brain-
derived neurotrophic factor (BDNF).[255] Furthermore, 
administration of curcumin to adult mice resulted in a 
significant increase in the number of newly generated 
cells in the dentate gyrus of the hippocampus.[124] 
The latter observations suggest that curcumin is able 
to stimulate neurogenesis in the adult hippocampus. 
Studies using a mild TBI model showed that curcumin 
dramatically reduced the oxidative damage and 
normalized levels of brain repair factors (brain derived 
neurotrophic factor [BDNF] and cAMP response element 
binding (CREB) that were altered by the trauma.[265] 
Curcumin was also protective against the cognitive 
impairment caused by the TBI.[265] 

In one interesting study, researchers used male Sprague-
Dawley rats approximately 2 years old, which were fed 
one of four diets for 4 weeks, after which half of the 
animals were exposed to a mild fluid percussion injury.[215] 
The diets contained either curcumin plus chow or regular 
animal chow alone. Animals in each group were assigned 
to be exposed to a TBI or no-TBI. The study showed that 
both the sham controls and injured animals demonstrated 
a significant elevation in hippocampal energy production 
when fed curcumin with their chow (158 and 130% in the 
sham and TBI animals’ hippocampus, respectively). These 
results suggest that curcumin activates mechanisms that 
act to conserve ATP levels in the hippocampus in both 
the uninjured hippocampus and the injured brain. 

Because of their strong effects at very low concentrations 
and easy accessibility to the brain, curcumin, as 
well as several other neuroprotective flavonoids, 
hold much promise as agents to reduce one’s risk of 
neurodegenerative diseases, including CTE. Unlike many 
of the drugs being used for AD treatment, curcumin 
has a very impressive safety record. Oral doses as high 
as 8000 mg/day have been used in human cases without 
toxic effects.[49] In addition, curcumin lowers both 
serum and tissue cholesterol levels and can stimulate 
neuronal protective mechanism (heat shock protein 
[HSP] elevation), suppress microglial activation, reduce 
IL-1β release from microglia, inhibit subarachnoid 
hemorrhage-induced vasospasm, reduce stroke damage, 
stimulate neurogenesis in the hippocampus, and act as 
an antidepressant.[227,238,250,268,269] 

Because of inefficient absorption of the dry powder, 
a number of new technologies are being utilized to 
improve gut absorption of curcumin, including mixing 

it with specific oils, phospholipid microencapsulation, 
and nanoscaling techniques. Curcumin can also be given 
intravenously.[22] 

GREEN AND WHITE TEA EXTRACTS AND 
BRAIN PROTECTION

Green and white tea contain a number of compounds, 
called catechins, that have significant beneficial effects 
on the CNS. Like curcumin and many of the other 
flavonoids, green tea extract is a potent anti-inflammatory 
and antioxidant; it suppresses immune overreactivity; it 
chelates metals and has anticarcinogenic properties.[156,159] 
White tea is a younger harvested tea and has a higher 
level of catechins than green tea has. 

The main components of green tea are EGCG, 
epicatechin gallate (ECG), and epicatechin (EC). The 
vast majority of the research has focused on EGCG 
and has been directed at its anticarcinogenic effects 
and neuroprotective properties. One of the common 
pathological reactions observed in a number of 
neurological disorders is intermittent hypoxia/ischemia. 
Recent studies suggest that vascular dementias are rapidly 
catching up in prevalence with sporadic-type dementias 
and that AD has a considerable vascular component.[204] 

Green tea polyphenols (GTPs), in particular EGCG, 
markedly reduces hypoxic/ischemic tissue loss in 
models of ischemic stroke and may do so in part by the 
inhibition of caspase-3.[100,262] Severe hypoxia leads to 
marked upregulation of inflammation and associated free 
radical generation and membrane lipid peroxidation.[29,267] 
Ischemia/hypoxia triggers inflammation in the brain by 
the upregulation of COX-2 metabolism of arachidonic 
acid into the highly proinflammatory prostaglandin  
PGE2, which increases vascular permeability and 
vasodilatation.[141] In addition, ischemia/hypoxia 
activates a number of genes in the brain associated 
with inflammation, leading to microglial activation in 
a neurodestructive mode.[79,206] The hippocampus and 
prefrontal cortex are particularly sensitive to hypoxic and 
ischemic events, and this can lead to significant cognitive 
deficits.[79] Biacalein, quercetin, curcumin, luteolin, 
silymarin, hesperidin, resveratrol, and a number of other 
polyphenols can reduce ischemia/hypoxia-mediated 
damage by regulating a number of cell signaling processes 
and controlling gene activation.[39,76,77,101,143]

Burchhardt et al. demonstrated the protective effect of 
green tea extract by using Sprague-Dawley rats exposed 
to either intermittent hypoxia or normal room air.[33] 
The animals exposed to the intermittent hypoxia 
demonstrated high levels of lipid peroxidation in their 
cerebral cortex. Those fed GTPs showed a 33% reduction 
in lipid peroxidation levels. The level of PGE2 in the 
hippocampal CA1 area was significantly elevated in 



Surgical Neurology International 2012, 3:19 http://www.surgicalneurologyint.com/content/3/1/19

animals exposed to intermittent hypoxia, but this was 
dramatically attenuated in animals fed GTP during the 
intermittent hypoxia. Other studies showed that GTP 
significantly reduced glial activation associated with 
intermittent hypoxia.[79]

GREEN TEA EXTRACTS AND AD

Because AD, like TBI, is now considered to be a chronic 
inflammatory disease, researchers have examined the 
anti-inflammatory effect of green tea extracts on AD 
pathophysiology. Several studies have shown that EGCG 
can alter soluble amyloid β-protein precursor (sAPP) 
processing by modulating protein kinase C activity.[138,139] 
In addition, EGCG can inhibit the activities of the 
proinflammatory cytokines, probably by inhibiting 
inflammatory cell signaling cascades mediated by 
activating protein-1 (AP-1) and nuclear factor kappa B 
(NF-κB).[2,85] EGCG also reduces expression of TNF-α, 
a cytokine that plays a significant role in a number of 
neurodegenerative disorders and brain trauma.[185] 

By using a 94% pure extract of EGCG, Rezai-Zedheh 
et al. found that neurons from an AD mouse model 
(TgAPPsw) exposed to the extract switched from 
the amyloidogenic metabolite pathway during AβPP 
processing to the nonamyloidogenic α-secretase 
processing, which significantly reduced Aβ production and 
markedly increased brain protective levels of sAPP-α.[1,200] 
The treated mice showed decreased Aβ1-40,42 and 
β-amyloid plaques in their brains. The study also showed 
that the beneficial effects of EGCG on APP processing 
were not peripheral, but rather a central CNS effect 
was. The effects were both time and dose dependent. 
The EGCG reduced both soluble Aβ1-40,42 (by 54 and 
44%, respectively) and insoluble Aβ1-40,42 (by 47 and 38%, 
respectively). Furthermore, a 40% increased cleavage by 
α-secretase in the EGCG-treated neurons was observed 
and was inversely associated with total Aβ levels. At 
14 months of age, the Aβ deposits in mice brains were 
significantly reduced (by 47 to 54% and 35% and 46%, 
respectively), in the hippocampal and cortical brain 
regions. The EGCG did not suppress β-secretase, but 
rather the effect was mostly secondary to α-secretase 
stimulation. Interestingly, they found that gallocatechin 
and catechins, either alone or in combination, markedly 
reduced the ability of EGCG to inhibit Aβ buildup in 
the brain. They concluded that the ability of purified 
EGCG alone to reduce pathological APP processing was 
much greater than that of the whole green tea extract. 

It should be emphasized that sAPP produced by 
α-secretase is neuroprotective, having both neurotrophic 
and synaptotrophic effects.[61] In the case of neurotrauma, 
as well as spontaneous neurodegenerative disease, APP 
processing is diverted so as to reduce protective brain 

sAPP.[196] 

Like curcumin, green tea extract and EGCG are potent 
chelating agents for iron and copper.[111] Both green tea 
catechins and curcumin bind and neutralize a number 
of neurotoxic metals, some strongly associated with 
both AD and PD.[113,125] In fact, EGCG has a greater 
iron binding ability than does dexferrioxamine.[200] This 
makes EGCG of great value in modulating excess iron 
accumulation, which occurs in a number of neurological 
disorders, such as stroke, TBI, AD, PD, and ALS. Reduced 
iron accumulation triggers the generation of destructive 
free radicals and lipid peroxidation products. Green tea 
catechins reduce free radical and lipid peroxidation 
damage both directly and indirectly by binding free iron 
in brain tissues. 

In PD, there is abnormal iron accumulation in the 
substantia nigra pars compacta in surrounding activated 
microglia and in association with neuromelanin.[114] Lewy 
bodies, the pathological hallmark of PD, are composed 
of oxidized lipids, redox-active iron, and aggregated 
α-synuclein. Iron also converts inert α-synuclein into 
toxic aggregates. It is also interesting to note that MPTP 
and 6-OHDA induced PD in rodents and primates is 
iron dependent.[139] EGCG has been shown to prevent 
MPTP induction of PD in animal models. EGCG also 
increased brain antioxidant enzymes – catalase and 
superoxide dismutase.[202] In essence, iron appears to be 
playing a major role in the pathogenesis of PD and other 
neurodegenerative disorders, and naturally occurring 
iron chelators, such as tea catechins and curcumin, as 
well as many other polyphenols may play a major role 
in preventing these diseases. Both curcumin and EGCG 
readily enter the brain from the blood stream.[22]

Other studies have shown that both green tea and EGCG 
can attenuate MPTP-induced PD and it appears that this 
occurs via suppression of neuronal nitric oxide synthetase 
(nNOS) within the substantia nigra.[52] There is a link 
between iron and neuronal nitric oxide synthetase 
upregulation.[114] These beneficial effects of green tea and 
EGCG are attainable by tea drinking and oral extracts. 
Population studies show that green tea drinkers have 
lower rates of PD.[112] Because green and white tea can 
be consumed several times a day over a lifetime, they 
offer an excellent way to reduce neurodegeneration in the 
long-term. 

The various components of green tea vary in their 
protective ability against specific targets. Guo et al. 
defined the ability of the various components to protect 
these specific targets.[82] They tested EGCG, ECG, and 
EC and compared their effectiveness. The greatest overall 
protection in terms of stability of the compound and its 
strength was in the order of EGCG>ECG>EC. 
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OMEGA-3 FATTY ACIDS AND CNS 
PROTECTION

A considerable number of studies have shown that the 
omega-3 fatty acids (N-3 oils by the new nomenclature) 
possess a number of neuroprotective properties.[64,122,124] 
There is strong evidence that docosahexaenoic acid 
(DHA) is the most neuroprotective component of the 
N-3 oils and makes up the most abundant fatty acid in 
neural membranes, especially synapses. In addition, a 
number of population studies show at least some positive 
effects by adhering to the Mediterranean diet high in 
omega-3 oils, in terms of reducing the risk of AD, age-
related memory loss, and other cognitive difficulties.[67] 

Of particular interest is the impact of DHA oils on 
cognitive function. Lower levels of DHA have been 
found in the brains of AD patients and in those 
with lesser degrees of cognitive impairment.[57] In a 
prospective Framingham Heart Study, 899 men and 
women of a median age of 76 years and free of dementia 
at baseline were followed for a mean of 9.1 years 
and evaluated for the development of dementia.[210] 
Plasma phosphotidylcholine–DHA (PC-DHA) content 
were measured and it was found that subjects in the 
upper quartile of plasma PC-DHA levels had a 47% 
reduction in the risk of developing AD. In a study of 
815 nondemented subjects (aged 65–94 years) who were 
followed for 2.3 years, Morris et al. found that those who 
consumed fish at least once a week or more had a 60% 
less risk of developing AD.[173] Interestingly, reductions in 
risk correlated with total N-3 intake and DHA intake but 
not with eicosapentaenoic acid (EPA) intake. 

DHA supplementation is also supported by a number 
of studies in AD animal models and in cell culture. For 
example, Menard et al. showed that the treatment of 
brain slices with DHA (but not EPA) markedly reduced 
excitotoxicity triggered by AMPA-type glutamate 
receptors in the CA1 region of the hippocampus.[166] 
Newer research suggest that abnormal trafficking of 
calcium-permeable AMPA receptors is strongly linked 
to brain inflammation.[9,226] Also of critical importance 
is the finding that omega-3 fatty acid deficiency in rats 
increases the release of proinflammatory cytokines IL-6 
and TNF-α and raises C-reactive protein.[151] In this study 
they also found significantly greater serotonin metabolism 
in the frontal cortex, hypothalamus, and ventral striatum, 
which, in the presence of brain inflammation, shifts 
tryptophan metabolism toward QUIN generation. 
QUIN, an excitotoxin, is a potent inducer of the 
hyperphosphorylation of tau, a critical process in NFT.[193] 

Deficiencies in DHA increase abnormal APP processing, 
leading to amyloid deposits in the brain. Conversely, 
supplementation with DHA increases the sAPP secretion, 
which inhibits apoptosis and protects the synapse, as 
discussed above.[63] DHA when given prior to injury also 

reduces axonal damage in rats subjected to TBI.[167] This 
would have applications in preventing CTE and possibly 
ameliorating the postconcussion syndrome. Dietary 
administration of DHA protects against and reduces 
impairment in learning resulting from infusion of Aβ1-

40 in an AD rat model.[85] Oksman et al. demonstrated 
a significant reduction in Aβ levels as well as activated 
microglia in the hippocampus of transgenic APPswe/
PS1dE9 mouse model of AD when DHA was given for 
3–4 months.[177] Similarly, DHA has also been shown 
to suppress microglial activation in ischemic injury and 
increase levels of the antiapoptotic factor Bcl-2.[131] 

A recent study by Quinn et al. failed to find a benefit 
from DHA supplementation in mild and moderate AD, 
or at least that is how it was reported in the lay press. 
This was a randomized, double-blind, placebo-controlled 
trial involving 51 centers, in which 295 participants were 
given either 2 g/day of DHA (N = 171) or a placebo (N 
= 124).[192] The study participants were followed for 18 
months. Outcome measures included two standardized 
rating scales and MRI measures of progressive atrophy. 
There was no statistical difference in the rate of decline 
in cognitive or functional measure with DHA versus 
placebo supplementation. 

One of the main flaws in this study was in using DHA 
as one would test a drug, that is, used alone. Under 
conditions of intense reactive oxygen/reactive nitrogen 
species (ROS/RNS) and lipid peroxidation, as seen in 
AD, one would expect severe degrees of preexisting DHA 
depletion and oxidation. Under less severe conditions, 
DHA, when oxidized, is converted into several powerful 
antioxidant/anti-inflammatory metabolites, such as 
neuroprotection D1.[18,149] Yet, this system can be 
overwhelmed without the presence of elevated levels 
of other components of the antioxidant network. It is 
also known that neural membrane insertion of DHA is 
a very slow process, requiring many months or possibly 
even years to accomplish.[239] With levels of DHA being 
severely depressed in the synaptic membranes of AD 
patients, it may take much longer to reach adequate 
levels for synaptic functional repair than were allowed 
in this study. Another possibility is that there may be 
abnormalities in incorporation of the DHA into synaptic 
membranes in AD. There are also problems in the analysis 
of multicenter studies that could account for their failure 
to find benefit. Using a mixture of antioxidants and 
allowing a longer time frame may yield different results 
than were seen in this study.

RESVERATROL AND Aβ CLEARANCE IN AD 
MODELS

Besides curcumin, quercetin, and DHA, another 
polyphenol – resveratrol – is associated with Aβ clearance 
from the AD brain and neurons from AD model systems. 
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Interest in this compound was based on the observations 
that moderate wine consumption significantly reduced 
the risk of AD.[146,148,237] Marambaud et al. used several AD 
animal cell lines (HEK293 cells transplanted with human 
APP695 and N2a cells transfected with Swedish mutant 
human APP695 cDNAs) and measured the effect of three 
powerful polyphenols from grapes – quercetin, catechins, 
and resveratrol – on AβPP processing.[152] The results 
showed that resveratrol, but not quercetin or catechins, 
markedly reduced total secreted Aβ (including Aβ1-40 
and Aβ1-). Resveratrol treatment also reduced the total 
levels of intracellular Aβ. Interestingly, the effect was not 
immediate but appeared after 24 hours of incubation 
and gradually increased after 48–72 hours of incubation. 
The mechanism of action was not via inhibition of APP 
processing, that is, lowering of Aβ production, but rather 
via selective modulation of proteosome degradation of 
pathological Aβ. Interestingly, proteosomal activity is 
greatly reduced in AD brains.[115,147] Aβ itself may inhibit 
proteosomal activity.[81] Finally, resveratrol reduced 
6-OHDA-induced lipid peroxidation, protein carbonyl, 
and inflammatory prostaglandin production in a rat 
model of PD.[117] Resveratrol also upregulated antioxidant 
status (glutathione reductase, glutathione peroxidase, 
catalase, and superoxide dismutase) in the animals’ brain. 

SUPPRESSION OF MICROGLIAL 
ACTIVATION BY NUTRACEUTICALS

Central to the immunoexcitotoxic process is activation 
of microglia. When pathologically activated, microglia 
secrete large amounts of proinflammatory cytokines, 
interferons, chemokines, and three excitotoxins – 
glutamate, aspartate, and QUIN.[27] There is strong 
evidence that chronic neurodegeneration may occur when 
activated or primed microglia are unable to undergo 
normal switching to the quiescent (ramified) phenotype, 
which normally occurs following pathological activation. 
Switching of microglia is controlled by a number 
of molecules such as fractalkines and CD200.[180,231] 
Abnormalities in these switching molecules have been 
seen in neurodegenerative disorders. While some of 
the tetracycline antibiotics, such as minocycline and 
doxycycline, can suppress microglial activation, they may 
have significant side effects with long-term usage.[98,106] 

Many nutraceuticals can alter microglial activation states 
and reduce the release of neurotoxic molecules. For 
example, curcumin can reduce neurodestructive microglial 
activation, lower the generation of ROS/RNS and lipid 
peroxidation products, and prevent inflammation-
triggered increases in brain glutamate.[67,102] Curcumin 
can also inhibit the release of inflammatory cytokines 
from microglia, a major process in neurodegenerative 
pathology.[110] Importantly, curcumin can affect 
the switching of microglia from a neurodestructive 

phenotype to a neuroprotective phenotype. Lin et al. 
found general suppression of microglial activation by 
curcumin in an AD mouse model, except those near 
plaque.[143] These results suggest curcumin-stimulated 
phagocytosis by the microglia, which would aid in plaque 
clearance. Consistent with this, Zhang et al. showed that 
macrophages from AD patients demonstrated defective 
phagocytosis in the presence of Aβ and that this defect 
was significantly improved by treatment with curcumin.[270] 

The green tea catachin EGCG potently inhibits 
lipopolysaccharide (LPS)-induced microglial activation, 
reduces TNF-α, and downregulates iNOS, all of which 
play a critical role in immunoexcitotoxicity.[27] In doing 
so, the EGCG protects dopaminergic neurons from injury 
in PD animal models.[140] 

A number of compounds suppress nitric oxide generation 
and release by activated microglia, including naringenin, 
silymarin, chyrsin, apigenin, blueberry extract, butyrate, 
and baicalein.[101,124,198,251,258] In general, the dose needed to 
attain these beneficial effects is within attainable dietary 
goals or by using available commercial extracts. Silymarin 
was shown to suppress microglia activation at low 
concentrations.[100] Of great interest is the finding that 
luteolin, a flavonoid found in high levels in celery and 
parsley, promotes the conversion of activated microglia 
to the resting (ramified) state.[61] This is important 
when considering that microglial switching defects may 
underlie the pathology of a number of neurodegenerative 
disorders. Luteolin also inhibits IL-6 production in LPS-
activated microglia and significantly reduces microglial 
activation, neuronal death, and inflammation in a  
mouse model of hippocampal inflammation and PD 
model.[46,104,105] 

By using aged mice stressed with the immune activator 
LPS, Jang et al. found that animals given luteolin had 
enhanced spatial working memory whereas control 
animals exhibited deficits in their working memory.[104] 
The beneficial effect was attributed to microglial 
suppression and concomitant suppression of hippocampal 
inflammation. Both apigenin and luteolin suppress, dose 
dependently, interferon-γ (IFN-γ)-induced microglial 
activation – a commonly seen pathological mechanism in 
neurodegeneration, especially with pesticide exposure.[199] 
Unlike many other flavonoids, these effects were not 
related to suppression of NF-κB, but rather AP-1, JNK, 
and STAT1 suppression, which are also involved in 
microglial activation of neurodegeneration.[105,198] The 
short-chain fatty acid butyrate also selectively suppresses 
INF-γ activation of microglia.[186] Similarly, ferulic acid 
reduces IFN-γ activation of microglia in a mouse model 
of Aβ hippocampal microglial stimulation.[172] IFN-γ is 
thought to be involved in microglial priming associated 
with aging.[139] 

Wogonin, a component in the plant Scutellaria baicalensis 
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Georgi, potently inhibited microglial migration toward 
the chemokine monocytes chemoattractant protein-1 
in nanomolar concentrations, which were insufficient 
to significantly suppress cytokine or chemokine  
production.[189] This finding is of significant clinical 
importance as monocyte (macrophage) migration into 
the CNS is thought to be a major source of destructive 
microglial phenotype during neurodegeneration. N-Acetyl-
l-cysteine had a similar effect.[182] Biacalein, also from  
S. baicalensis Georgi, inhibited microglial NO generation 
by iNOS.[45]

Amentoflavone, a component in Ginkgo biloba, not 
only inhibits microglial activation but also suppresses 
caspase-3 activation, excitotoxicity, and microglial 
activation of iNOS and cyclooxygenase-2 (COX-2), both 
inflammatory mediators.[213] Blueberry extract suppresses 
microglial activation and associated activation of COX-2 
and iNOS.[132] 

MITOCHONDRIAL ENERGY RESTORATION

There is compelling evidence that one of the earliest 
changes in a number of neurodegenerative diseases is 
a progressive attenuation of mitochondrial function.[69] 
This is not only seen in the brain but also in peripheral 
tissues. The etiology of mitochondrial dysfunction 
is currently unknown even though, as in the case of 
PD, exposure to known mitochondrial toxins, such as 
MPTP and rotenone, appears plausible. Abnormalities 
in mitochondrial fission and fusion are seen throughout 
the course of these diseases.[42] Immunoexcitotocity 
is associated with both mitochondrial dysfunction 
secondary to free radical damage and interference with 
mitochondrial migration along dendrites and axons. 

Apart from direct generation of free radicals associated 
with mitochondrial dysfunction, there is a dramatic 
increase in sensitivity to excitotoxins. Thus even 
physiologic levels of extraneuronal glutamate can 
become neurotoxic under low-energy conditions.[19] 
Many earlier studies dismissed excitotoxicity as a major 
mechanism based on the absence of extreme elevations 
in extracellular glutamate levels. However, one must keep 
in mind that glutamate receptors can change sensitivity 
under a number of conditions, such as impaired energy 
production, so that excitotoxicity can occur at much 
lower concentrations of glutamate and other excitotoxins. 
Consistent with this interpretation, a number of studies 
have shown that stimulating mitochondrial function 
reduces brain sensitivity to excitotoxicity, not only by 
reducing free radical production and lipid peroxidation 
but also by improving mitochondrial regulation of 
cytoplasmic calcium levels. 

There are several ways to stimulate mitochondrial 
function. Much has been learned utilizing metabolic 

vitamin/mineral coenzymes and energy substrates 
in treating mitochondrial disorders. In animal and 
some human studies, ascorbate, vitamin K, thiamine, 
riboflavin-5 phosphate, pyridoxal-5 phosphate, 
magnesium, acetyl l-carnitine, R-α-lipoic acid, 
niacinamide (nicotinamide), curcumin, pyruvate, and 
quercetin have improved mitochondrial function and 
reduced excitotoxicity.[243,244] 

Nicotinamide, in particular, is a major source of 
nicotinamide adenine dinucleotide (NAD), and 
elevations in NAD have been attributed to its ability 
to protect the brain against ischemia, traumatic injury, 
and excitotoxicity.[144] Nicotinamide plays a major role in 
glycolysis and oxidative phosphorylation by conversion of 
glyceraldehydes-3-phosphate into pyruvate, which is the 
entry point into the Krebs cycle. By using a concussion 
brain injury model in Sprague-Dawley rats, Hoane et al. 
tested 50 mg/kg of nicotinamide given intraperitoneally 
at 15 min, 4 h, or 8 h, followed by five boosters at 50 
mg/kg every 24 h after the impact injury and found 
that the treatment significantly reduced behavioral 
impairments and led to a more rapid improvement and 
functional recovery.[93] Notably, Hoane et al. showed that 
the beneficial effects on sensorimotor tasks occurred 
even if the treatment started as late as 4 or 8 h after the 
injury. In contrast, improvements in working memory and 
reference memory tasks were seen only if the treatment 
started at 15 min and 4 h after the injury. Analysis of the 
lesions demonstrated that treatment with nicotinamide 
at 15 min and 4 h dramatically prevented brain tissue 
loss. Protection, however, was not observed in treatments 
started 8 h after the injury. 

It is known that severe brain injury is associated with a 
dramatic and rapid increase in the activity of poly(ADP-
ribose) polymerase (PARP), which leads to severe 
depletion of neuronal NAD.[33] Nicotinamide restores 
neuronal energy levels by elevating NAD levels.[39] Animal 
studies show that nicotinamide supplementation reduces 
neuronal death and brain edema and attenuates BBB 
disruption in TBI.[90,91] Also of importance is the finding 
that nicotinamide reduces glial proliferation in brain 
injuries.[94-96] 

It is known that axonal injury precedes neuronal loss in 
most neurodegenerative diseases, such as AD as well as 
peripheral neuropathies.[219,249] A recent study by Wang et al. 
found that in Wallerian degeneration slow mice, there is 
a dramatic fall in NAD levels and that nicotinamide can 
delay the onset of axonal degeneration associated with 
NAD depletion.[249] Interestingly, the protection was not 
related to nicotinamide’s effects on SIRT1, but rather 
energy generation. This was confirmed by the finding that 
pyruvate also protected the axons from degeneration.[249] 

The question of SIRT1’s contribution to neuroprotection 
is complex, given that SIRT1 stimulation by resveratrol 
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and SIRT1 inhibition by nicotinamide both protect the 
brain from ischemic damage in a stroke model. Liu et al. 
examined this question and found that with ischemia-
induced excitotoxicity, SIRT1 deacetylase activity fell 
significantly and PARP levels rose at the same time 
in response to DNA damage by free radicals.[144] Both 
SIRT1 and PARP require large amounts of energy and 
therefore consume neuronal NAD, thus leading to 
neuronal death. Nicotinamide supplementation did not 
change SIRT1 protein levels, but protected neurons from 
energy depletion induced by excitotoxicity by reducing 
SIRT1 deacetylase activity and by the maintenance 
of NAD+ levels. The SIRT1 activator resveratrol at a 
low concentration (25 mM) protected neurons from 
excitotoxic glutamate-induced NAD+ depletion and 
death, whereas at high concentrations, resveratrol had 
either no effect or exacerbated excitotoxic neuronal 
death.[144] Nicotinamide also protect against MPTP-
induced striatal damage to dopaminergic neurons in 
mouse models of PD.[6]

Also of interest is the finding that damage to the 
brain in cases of thiamine deficiency and Wernicke’s 
encephalopathy may be secondary to microglial activation 
induced by energy disruption.[236,248] Energy deficiencies 
can significantly enhance excitotoxicity and this may 
involve microglial activation. 

Riboflavin supplementation inhibits astrocyte activation, 
reduces brain edema, and improves behavioral outcomes 
in TBI models.[95] Riboflavin can also inhibit glutamate 
release from cortical nerve terminals, thus reducing 
excitotoxicity.[252] A number of interesting studies have 
demonstrated the presence of B-vitamin–type fibers in 
selected areas of the monkey brain, including those for 
thiamine, riboflavin, folic acid, and pyridoxal.[159-162] In 
addition, vitamin C immunoreactive neuronal cell bodies 
were found in the hypothalamic nuclei and anterior 
commissure, suggesting a unique function for these 
vitamins in the mammalian brain.[159] 

MAGNESIUM AND NEUROPROTECTION

Magnesium is one of the most abundant ions in the 
brain and plays a major role in a plethora of biochemical 
and physiological CNS tissue functions. In both humans 
and animals, low magnesium levels alone can trigger 
inflammation in a number of tissues, including the brain, 
as well as lower seizure thresholds. Experimentally, during 
progression of magnesium deficiency in a rodent model 
there is a significant increase in inflammatory cytokines, 
such as IL-1β, IL-6, and TNF-α, as well as substance P, 
within 5 days. The latter is known to stimulate the release 
of the proinflammatory cytokines.[253] A number of human 
studies have also shown elevations in inflammation with 
hypomagnesemia as measured by C-reactive protein.[3,181] 

TBI is associated with a rapid and sustained fall in 
blood and brain magnesium levels. The prognoses is 
significantly worse in patients when magnesium levels 
fall, even if they are corrected within 24 h following 
the injury.[220] In a series of animal studies, Vink et al. 
measured the dynamics of this effect and its impact on 
neurodegeneration and neurological function. In the case 
of focal and diffuse brain injury, there is a decline in both 
free and total tissue magnesium concentrations.[241] In a 
diffuse axonal injury model, Heath and Vink observed a 
highly significant and sustained decline in intracellular-
free magnesium 4 days after the trauma with full recovery 
by day 6.[86] All animals showed a significant neurological 
deficit. In a similar study using rats, there was a 60% 
decline in preinjury magnesium levels that lasted 5 days 
and recovered by day 8.[242] 

Cernak et al. examined plasma magnesium, calcium, 
and oxidative status in 31 males with TBI and found a 
significant fall in plasma magnesium levels in patients 
with mild to severe brain injury.[37] Interestingly, 
magnesium levels remained low the longest in patients 
with mild to moderate brain injury. Oxidative stress is 
correlated with magnesium deficiency and is particularly 
high in the aged brain.[196] Low magnesium is also 
associated with a significant fall in cellular glutathione 
and a dramatic increase in free radical generation.[44,163] 

Two patterns of decline in magnesium levels occur in 
animal models in which the animals either have a diffuse 
brain injury alone or in combination with subdural 
hematoma.[87] The latter demonstrated an immediate 
fall in brain magnesium followed by recovery to preinjury 
levels and then a second decline. This secondary decline 
occurred despite administration of a bolus of magnesium 
30 min after the injury. 

Several studies demonstrated significant neuroprotection 
by magnesium sulfate infusions following TBI in 
experimental animals. Browne et al. using parasagittal 
fluid percussion brain injury in young rats found that 
giving a bolus of magnesium sulfate significantly 
reduced progressive tissue loss in the hippocampus, 
demonstrating long-term protection following an injury.[31] 
Improvements in neurological function not only are 
limited to sensory or motor function but also involve 
behavior and cognition.[89,92] Barbre and Hoane found that 
riboflavin and magnesium infusions improved functional 
recovery to a greater extent than either alone following a 
frontal cortical contusion injury in rats.[13] Ghabriel et al. 
showed that magnesium replacement reduced brain 
edema following a diffuse TBI in male Sprague-Dawley 
rats.[76] 

Magnesium infusions also significantly reduce 
posttraumatic depression and anxiety following a diffuse 
TBI in animals.[71] The incidence of depression was 61% 
in the animals after the injury, which is similar to that 
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seen clinically. Animals receiving the magnesium bolus 30 
min following the injury demonstrated an incidence of 
depression of 30%, which persisted for the entire 6-week 
observation period. 

One of the vital functions for CNS magnesium is 
modulation of the NMDA glutamate receptor. Low levels 
of magnesium significantly enhance excitotoxic sensitivity 
and may be one of the mechanisms by which magnesium 
depletion precipitates seizures in otherwise healthy 
individuals.[216] Furthermore, magnesium deficiency has 
been demonstrated in neurodegenerative disorders, such 
as AD, where it was correlated with cognitive scores. 
Patients with lowest magnesium levels had the lowest 
Global Deterioration Scale scores and Clinical Dementia 
Ratings.[52] A review of studies found that magnesium 
may be useful in improving cognitive function and other 
symptoms in AD patients.[179] 

Recent population assessments reveal magnesium 
deficiency in the majority of the population. While 
total plasma magnesium remains rather stable in healthy 
individuals throughout life, total body and intracellular 
stores tend to decrease with age.[12] There are a multitude 
of reasons for this loss, including poor absorption from 
the gut, reduced bone uptake and mobilization, reduced 
adaptability to stress, progressive insulin resistance, and 
increased urinary loss. Thus, magnesium deficiency is 
commonly found in chronic stress, illness, diabetes, 
autoimmune disorders, acute and chronic infections, and 
poor diets. Moreover, a number of drugs commonly used 
in neurological patients are known to deplete magnesium, 
including steroids, diuretics, and cardiac drugs.[97] 

Ironically, few neurosurgeons add magnesium to their 
patient’s intravenous fluids, even though they will 
routinely add potassium. Over 45 million Americans 
suffer from metabolic syndrome and a larger number 
from insulin resistance, both of which are associated 
with magnesium deficiency.[170] In addition, many 
neurosurgical patients are either elderly or young athletes 
and are subjects of this deficiency. With abundant 
evidence for the vital role of magnesium in a multitude 
of metabolic reactions, synaptic function, antioxidant 
protection, anti-inflammatory effects, and protection 
against excitotoxicity, it makes little sense to ignore this 
mineral in neurosurgical treatments. 

Measuring magnesium sufficiency is challenging since 
99% is intracellular and only 1% resides in the plasma. 
Moreover, studies show that a person can have normal 
plasma magnesium levels but severe depletion in the 
tissues.[53] The best clinical measures for magnesium 
are taken from the red blood cells. It should also be 
appreciated that magnesium enters the brain slowly, and 
oral supplementation may take months for repletion 
within deep brain structures.[209] Intravenous infusions 
can enter the cortex and circumventricular organs of the 

brain within hours but can take much longer to enter the 
deeper brain structures. 

CONCLUSION

In this review, I have presented the evidence supporting 
a profound effect of selected neutraceuticals on a 
number of pathological conditions pertinent to human 
neurological disorders, including AD, PD, strokes, TBIs, 
concussions, posttraumatic stress syndrome, ischemia/
hypoxia, and brain edema.

In a previous paper, we demonstrated that growing evidence 
strongly suggest that a central mechanism in many of 
these disorders is a process called immunoexcitotoxicity. 
Essential to this process is prolonged, intense microglial 
activation. Because a number of natural products have 
been shown to affect cell signaling mechanisms, which 
also impact immunoexcitotoxicity, we suggest that more 
research be directed toward their clinical use. Most have 
shown a high degree of safety, even when used in rather 
large doses, as well as remarkable efficacy at very low 
concentrations, which can be easily reached with an oral 
intake of existing supplements. With newer methods of 
delivery and encapsulation, bioavailability can be further 
increased, making these extracts more clinically relevant. 

It should be noted that natural products act additively 
and synergistically in their positive effects on 
pathophysiological processes and thus work best when a 
healthy diet is also followed. While animal and in vitro 
studies strongly support the use of nutraceuticals in 
promoting CNS repair from a variety of insults, better 
conducted, long-term human studies are required in order 
to aid in developing more efficient and specific therapies. 
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