

Filtering a 10 MHz TTL Square Wave into a Sinewave with a 7-Pole Chebyshev Low-Pass Filter

Device:	PRL-LPF7-12MHz			
Tested By:	Steven Kan			
Date:	27 August 2020			
Equipment:	PRL-175A-10	PRL-414B-SMA	DPO3054	HP 3585A
S/N:	ENG	1L412063	C012732	1750A02039

Introduction:

This experiment tested the ability to filter a 10 MHz TTL square wave from a PRL TTL fanout buffer into a 10 MHz sinewave, using a 7-pole Chebyshev Low-Pass filter designed for a 3 dB cutoff frequency of 12 MHz.

Methodology:

The <u>PRL-175A-10</u> supplies a crystal-based, 10 MHz TTL clock signal. The output was cabled into a <u>PRL-414B-SMA</u> fanout buffer to provide 4 identical copies. Output **Q1** of the **PRL-414B-SMA** was measured with an **HP 3585A Spectrum Analyzer** both with and without the **PRL-LPF7-12MHz** filter in series. Output **Q1** was then captured on an oscilloscope with the filter in series, alongside output **Q2** without any filtering.

The filter, model number <u>PRL-LPF7-12MHz</u>, was constructed using a <u>PRL-MNET-SMF Signal Conditioning</u> <u>Kit</u>. Ideal component values were calculated using an <u>online filter calculator</u> (<u>Lowpass, 7 pole, 12 MHz</u>, <u>50 Ω</u>) and then the closest standard values were used to approximate the calculated design, as follows:

Part Values								
0.1 dB Ripple Chebyshev								
Part	Calculated	Unit	Actual	Err.				
L1	1.01	uH	1.0	2%				
L2	1.11	uН	1.1	2%				
L3	1.01	uH	1.0	2%				
C1	334.62	рF	330	5%				
C2	593.97	рF	593	5%				
C3	593.97	рF	593	5%				
C4	334.62	рF	330	5%				

Fig. 1: Filter Schematic

Fig. 2: Component Placement on PRL-MNET-SMF

Measurements:

The **PRL-175A-10** produces a clean TTL square wave with good symmetry. Although the **PRL-175A-10** is capable of driving a 50 Ω load directly, the **PRL-414B-SMA** was used to re-buffer the signal, as the customer will be using this device to buffer a signal from an FPGA that will not drive a 50 Ω load. The TTL-compatible output circuit of the **PRL-175A-10** shares the same design as that of the **PRL-414B-SMA**.

With no filter in place, the power at **10 MHz** is **+13.6 dBm**, with the expected peaks at the harmonics of **20 MHz**, **30 MHz**, and **40 MHz**, as shown below. Screen captures from the **HP 3585A** were taken over GPIB via the **7470.exe HP 7470A Plotter Emulation Tool** (part of the freely available <u>KE5FX GPIB</u> <u>Toolkit</u>), and then converted from PLT to PostScript format using the freely available <u>HP-GL Viewer</u>):

With the baseline established, we installed the filter directly onto the output of the **PRL-414B-SMA**:

The power at the fundamental **10 MHz** frequency is slightly attenuated down to **+11.7 dBm**, and the power at the harmonics is reduced to within the noise floor of the measurement setup, approximately -60 dBm:

Freq	Power (dBm)		Attenuation: (dBm)	
(MHz)	Original	Filtered	Actual	Modeled
10	+13.6	+11.7	-1.9	-0.1
20	-6.8	-53.3	-46.5	-49.4
30	+3.5	-57.1	-60.6	-78.2
40	-7.2	-53.9	-46.7	-95.8

Actual vs. **Modeled** attenuations are compared below, where any measurements below approximately -60 dBm are below the noise floor of the measurement setup:

We then cabled the **PRL-414B-SMA** into a 500 MHz oscilloscope (**DPO3054**), both with and without the filter. Screen captures were taken <u>directly into MS Word via the TekVISA Toolbar</u>. The **PRL-414B-SMA** exhibits excellent symmetry across its 4 outputs, so output **Q2** is a very good proxy for **Q1** without the filter installed.

Conclusion:

The **PRL-LPF7-12MHz** does an excellent job filtering a 10 MHz TTL square wave from the **PRL-414B-SMA** into a clean sinewave with good spectral purity and low loss at the desired frequency.

Revised: 27 August 2020 Page 6 of 6