
PRL-426N DUAL CHANNEL NECL TO LVDS TRANSLATOR PRL-426P DUAL CHANNEL PECL TO LVDS TRANSLATOR

APPLICATIONS

- Converting Single Ended or Differential NECL/PECL Signals to LVDS Signals
- High Speed Digital Communications systems Testing
- High Speed SONET Clock Level Translation

FEATURES

- $f_{max} > 500 \text{ MHz}$
- 1.1ns Typical Output Rise & Fall Times
- Single Ended or Differential 50 Ω/V_{TT} Inputs
- Complementary 50 Ω LVDS Outputs
- SMA I/O Connectors standard
- Triax Output Connectors for PRL-426NTR, PRL-426PTR
- Self-contained 1.3 x 2.9 x 3.9-in. units include ±9.0V/1.8A AC/DC Adapters

PRL-426N, NECL to LVDS Translator

DESCRIPTION

The PRL-426 is a series of NECL- or PECL-to-LVDS Logic Level Translators:

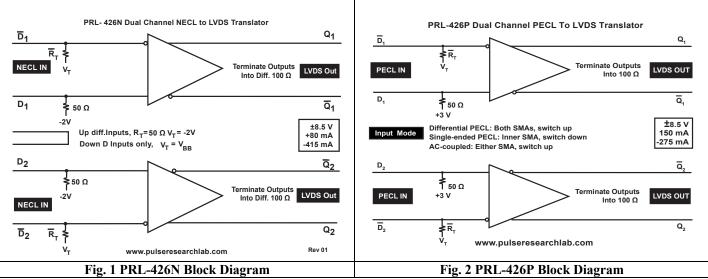
- PRL-426N converts NECL to LVDS
- PRL-426P converts PECL to LVDS

The PRL-426N/426P can receive either single-ended or differential input signals, selected by a switch. The input connectors on the PRL-426N/426P are SMA. A related model, PRL-426T, translates TTL to LVDS, and is described separately.

The differential outputs are 50 Ω back-terminated and are designed for driving floating 100 Ω loads, normally the configuration used in LVDS input circuits. The output swing is typically 600 mV with a common mode voltage of 1.2 V. The PRL-426NTR, and PRL-426PTR have Triax output connectors instead of the SMA connectors. These high speed translators facilitate testing of high speed digital communications circuits where conversion of NECL/PECL clock and data signals to LVDS level signals is often required.

The PRL-426N is designed to interface with -5.2 V or -3.3 V NECL circuits and the PRL-426P with +5 V PECL circuits. In the differential input mode, both inputs D and D of the PRL-426N are terminated into 50 Ω /-2 V, and those of the PRL-426P into 50 Ω /3 V. In this mode, either one or both inputs can accept AC coupled signals as well. In the single input mode, signals should be connected to the D inputs only. The D inputs are switched internally to V_{BB}, nominally -1.3 V for the PRL-426N and 3.7 V for the PRL-426P, and termination resistors R_{TS} for the D input channels are changed to 62 Ω .

Each unit is supplied with a $\pm 9.0 \text{ V}/1.8 \text{ A AC/DC}$ Adapter and housed in a 1.3 x 2.9 x 3.9-in. extruded aluminum enclosure. Available accessories include voltage distribution modules and brackets for mounting multiple units



PRL-426N_P.pdf PRL-426N/PRL-426P Datasheet Revised 01/31/24 22301 S. Western Ave. #107 Torrance, CA 90501, USA Tel: +1-310-515-5330 <u>sales@pulseresearchlab.com</u> www.pulseresearchlab.com

*SPECIFICATIONS ($0^{\circ} C \le T_A \le 35^{\circ}C$)

Unless otherwise specified, dynamic measurements are made with all outputs terminated into floating 100 Ω loads.

		PRL-426N			PRL-426P			
SYMBOL	PARAMETER	Min	Тур	Max	Min	Тур	Max	UNIT
R _{in}	Input Resistance	49.5	50.0	50.5	49.5	50.0	50.5	Ω
R _{out}	Output Resistance	49.5	50.0	50.5	49.5	50.0	50.5	Ω
V _{TT}	"D" Input Termination Voltage (fixed)	-2.2	-2.0	-1.8	2.7	3.0	3.3	V
V _{T1}	"D" Input Termination Voltage (variable)	-2.20	-2.0	-1.80	2.70	3.0	3.30	V
V _{T2}	"D" Input Termination Voltage (variable)	-1.17	-1.3	-1.43	3.33	3.7	4.07	V
Vol	Output Low Level		0.9			0.9		V
Vон	Output High Level		1.5			1.5		V
VCMV	Common mode voltage ¹		1.2			1.2		
I _{DC+}	DC Input Current, +8.5 V		85	100		150	175	mA
I _{DC-}	DC Input Current, -8.5 V		-300	-330		-250	-300	mA
V _{DC}	DC Input Voltage	±7.5	±8.5	±12	±7.5	±8.5	±12	V
V _{AC}	AC/DC Adapter Input Voltage	103	115	127	103	115	127	V
t _{PLH}	Propagation Delay to output ↑		2			2		ns
t _{PHL}	Propagation Delay to output \downarrow		2			2		ns
t _{r/tf}	Rise/Fall Times (10%-90%) ²		1	1.25		1	1.25	ns
t _{SKEW}	Skew between any 2 outputs ³		200	500		200	500	ps
f _{max}	Max Clock Frequency ⁴	500	625		500	625		MHz
	Size	1.3 x 2.9 x 3.9			1.3 x 2.9 x 3.9			in.
	Weight	7			7			Oz

Notes:

(1) $V_{CMV} = (V_{OH}-V_{OL})/2$; (2) Rise and Fall times are measured with SMA output connector units only and with ground-referenced 50 Ω loads.; (3) Skew is measured at the output of a PRL-425N when driven by a PRL-426; (4) f_{max} is measured using a PRL-425N with the corresponding input connectors as the receiver. The outputs of the PRL-425N are measured. f_{max} for the PRL-426T is currently limited by the lack of high frequency TTL drivers.

PRL-426N_P.pdf PRL-426N/PRL-426P Datasheet Revised 01/31/24 22301 S. Western Ave. #107 Torrance, CA 90501, USA Tel: +1-310-515-5330 <u>sales@pulseresearchlab.com</u> www.pulseresearchlab.com