PRL-4216UL-TR 2 x 1:8 DIFFERENTIAL FANOUT BUFFER, UNIVERSAL DIFFERENTAL AND TTL INPUTS, LVDS OUTPUTS

APPLICATIONS

- Long Line Driver/Level Translator
- Reference Clock Distribution/Translation
- 1 PPS/IRIG-B Signal Distribution
- Telemetry and Avionics Distribution
- Test and System Integration

FEATURES

- 2 x 1:8 Fanout with LVDS Outputs
- Two independent sets of fanout for CLK/DATA distribution
- Channel-to-channel Skew < 500 ps
- t_R = 1.6 ns Typ. @ 1.6 V Output into 50 Ω
- Floating 100 Ω Triax Input Compatible with RS-422, LVDS, NECL, or LVPECL
- BNC TTL Input has selectable 50 Ω or 1 k Ω Impedance
- Both TTL and Floating 100 Ω Inputs are Logically ORed
- Back-terminated Differential 50 Ω Triax Outputs Drive Long Lines into Floating 100 Ω Loads
- AC/DC Adapter Included

PRL-4216UL-TR Front View

PRL-4216UL-TR Rear View

GENERAL DESCRIPTION

The PRL-4216UL-TR is a 2 x 1:8 differential fanout buffer system, consisting of two independent 1:8 fanout PCBs, each with eight LVDS outputs and two inputs. The single-ended TTL inputs have selectable 50 Ω or 1 k Ω terminations to ground. The Universal Differential inputs can be driven by differential RS-422, LVDS, NECL, or LVPECL signals (ECL signals must be source-biased). The TTL and Differential inputs on each PCB are logically ORed; therefore a Hi level applied to either input can be used as a gate signal.

The input resistance of the TTL inputs can be selected to be either 50 Ω or 1 k Ω by toggle switches. The 1 k Ω inputs are desirable when interfacing with low power circuits. The TTL input threshold voltages are 1.0 V minimum.

The output swing is typically $600mV_{PP}$ with a 1.2 V_{CMV} into a 100 Ω floating load.

All I/Os are DC coupled and have Triax connectors, except for the TTL inputs, which are BNC. The PRL-4216UL-TR is housed in a 6.8" x 6.0" x 3.0" extruded aluminum enclosure and is powered by an included AC/DC adapter.

The PRL-4216UL-TR is part of the PRL-4108 series of differential fanout buffers, available with variety of options for input logic, output logic, and connector types.

*SPECIFICATIONS (0 $^{\circ}C \le T_A \le 35 ^{\circ}C$)

Unless otherwise specified, dynamic measurements are made with all rear-panel outputs terminated into floating 100 Ω , using 124 Ω shielded twisted pair Triax cables (Trompeter P/N PCGOW10PCG-36 or equivalent). Channel to channel skew and propagation delay measurements are made using a PRL-425NTR Differential Receiver with NECL outputs. Rise and fall time measurements are made using a Triax to SMA adapter and connecting the SMA outputs to a 50 Ω input scope.

SYMBOL	PARAMETER	Min	Тур	Max	UNIT	Comment
R _{T1-1}	Differential Input Resistance	95	100	105	Ω	
R _{INC}	Common Mode Input Resistance		5		kΩ	
R _{T2-1}	Input Resistance, TTL 50 Ω	49	50	51	Ω	
R _{T2-2}	Input Resistance, TTL 1 kΩ	0.95	1.00	1.05	kΩ	
V _{CMR}	Input Common Mode Voltage	-2.0		3.0	V	
V _{IH1}	TTL Input Hi Level	1.0		5.0	V	Internally limited to 3.5V
V _{IL1}	TTL Input Lo Level	-0.5		0.5	V	
R _{out1}	Output Resistance	24.75	25	25.25	Ω	Single-ended
R _{OUT2}	Output Resistance	49.5	50	50.5	Ω	Differential
V _{OH1}	Output High Level		1.8		V	No Load
V _{OH2}	Output High Level		1.65		V	Terminated to 100Ω
V _{OL1}	Output Low Level		0.78		V	No Load
V _{OL2}	Output Low Level		0.95		V	Terminated to 100 Ω
V _{OD}	Output Differential Voltage (V _{OH2} -V _{OL2})		0.7			Terminated to 100 Ω
V _{OCM}	Output Common Mode Voltage*		1.3			Terminated to 100 Ω
V _{AC1}	AC Adapter Input Voltage, 120	108	115	127	V	
V _{AC2}	AC Adapter Input Voltage, 220	216	230	254	V	
I _{DC1}	DC Input Current, +8.5 V Supply		770		mA	
I _{DC2}	DC Input Current, -8.5 V Supply		-1400		mA	
T _{prop1}	Prop. Delay to Output ↑, Diff. Input		2.5		ns	
Tprop2	Prop. Delay to Output \uparrow , TTL Input, 50 Ω		3		ns	
T _R	Rise Time (10%-90%)		1.2	1.8	ns	See Note 1
TF	Fall Time (10%-90%)		1.2	1.8	ns	See Note 1
T _{SKEW1}	Ch./Ch. skew \leftrightarrow any 2 \uparrow or 2 \downarrow Vo in each bank		200	350	ps	
T _{SKEW2}	Ch./Ch. skew \leftrightarrow any \uparrow and \downarrow Vo in each bank		700	1200	ps	
T _{SKEW3}	Ch./Ch. skew \leftrightarrow any 2 \uparrow or 2 \downarrow Vo		400	550	ps	
T _{SKEW4}	Ch./Ch. skew \leftrightarrow any \uparrow and \downarrow Vo		1000	1250	ps	
F _{MAX1}	Max Clock Frequency, Diff. Input	150	175		MHz	
F _{MAX2}	Max Clock Frequency, TTL Input	100	125		MHz	
	Size	3.0"H x 6.8"W x 7.3"L			in	Including connectors
	Weight	2			lbs	Excluding AC adapter
	Shipping weight		6		lbs	Including AC adapter

*V_{OCM} by definition is equal to $(V_{OH2} + V_{OL2})/2$

PRL-4216UL-TR Block Diagram (simplified; unit contains two sets)

floating differential 100 Ω input

using a 50 Ω input scope.

termination, T_R and T_F are measured

Notes: